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ABSTRACT 

The power transformation of Box and Cox (1964) has been shown to be 
quite useful in short-term forecasting for the linear regression model with 
AR(1) dependence structure (see, for example, Lee and Lu, 1987, 1989). 
It is crucial to have good estimates of the power transformation and serial. 
correlation parameters, because they form the basis for estimating other 
parameters and predicting future observations. The prediction of future 
observations is the main focus of this paper. We propose to estimate these 
two parameters by minimizing the mean squared prediction errors. These 
estimates and the corresponding predictions compare favourably, via revs 
and simulated data, with those obtained by the maximum likelihood 
method. Similar results are also demonstrated in the repeated 
measurements setting. 
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INTRODUCTION 

Through scientific discoveries and evolution, new products spread and grow to replace existing 
ones. This process is called technological substitution. Thus, as technology advances, 
steam/motor merchant vessels replace sail merchant vessels, colour televisions replace black- 
and-white televisions, digital telephone switching systems replace analog switching systems. 
The rate of the change, called technology penetration, is defined as the ratio of the number 
of new products to the combined total of new and old products. The penetration data tend 
to follow an S-shaped curve and exhibit very strong positive first-order autoregressive (or 
AR(1)) dependence. The S-shaped curve is typical in many types of growth curve models, such 
as Gompertz and logistic, among others. However, a typical growth curve such as Gompertz 
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or logistic is not quite adequate in forecasting penetration at a future time. To illustrate the 
point, let F ( t )  be the technology penetration at time t .  Then if a logistic curve is assumed, we 
expect log(F(t)/(l - F(t ) ) )  to be linear in time, i.e. a linear growth function. But when dealing 
with real data, we often found that the more flexible transformation of Yr = F(t)/(l - F ( t ) )  
gives much superior predictive accuracies. This is, perhaps, primarily due to the fact that the 
linearity assumption for the growth function can be enhanced considerably with the Box-Cox 
power transformation, along with the incorporation into the model of the proper dependence 
structure among the observations. For more details, see Lee and Lu (1987). Nevertheless, the 
maximum likelihood estimation method used by Lee and Lu (1987) could produce undesirable 
estimates to result in a poor forecast when the sample size is small. Therefore we propose in 
this paper an intuitively appealing method to deal with the prediction of future observations 
in small samples. 

A family of data-based transformed models for forecasting technological substitutions has 
been empirically shown to  be quite useful for short-term forecasts (see Lee and Lu, 1987, 
1989). These models are more general and include as special cases the four well-known 
S-shaped growth curve models: Gompertz, logistic, normal, and Weibull. The transformation 
needed depends on the data at hand. Basically, the widely used Box-Cox (1964) 
transformation is applied to the AR(1)-dependent data. More specifically, let YI, ..., YT be a 
set of T observations. The transformation is defined as 

when A Z 0 
y p  = h 

when A = 0 

where y is a known constant such that Y, + y > 0 for all t .  In practice, y = 0 if all Yr’s are 
positive. Furthermore, Y,“)(t = 1 ,  ..., T )  are assumed to be normally distributed with the 
mean linear in the regression parameters and the covariance matrix C = a‘V11, V I ~  = (Cab),  

~ ~ b = p l ‘ - ~ I ,  for a, b =  1 ,  ..., T,  and -1 < p < 1 .  In other words, 

YCA) = ( Y p ,  ..., Yf”)’ = xg+ E (2)  

where Xfl is the growth function, i s =  (a ,  p ) ’ ,  X is the design matrix with 1’s in the first 
column and tl, ..., t~ or log(tl), ..., log(tT) in the second column, depending on the growth 
curve model being considered (see Lee and Lu, 1987). The vector of disturbance terms E is 
assumed to distribute as a multivariate normal with mean vector 0 and covariance matrix 
a2V11. If a higher-degree polynomial is assumed for the growth function, the dimensions of 
X and f l  are adjusted accordingly. For example, if a second-degree polynomial in time is 
assumed for the growth function, then the third column of X is t :  to tf. Model (2) has also 
been proved useful by Fiebig and Bewley (1987) in forecasting demand for international 
communications services as well as for other types of data. 

The Box-Cox transformation has been considered for the general time series by several 
authors, including Granger and Newbold (1976), Hopwood et al. (1984), and Pankratz and 
Dudley (1987), among others. However, none of the above authors discussed the estimation 
of parameters from a prediction point of view. Model (2) has been extended to the situation 
in which several concurrent short time series are available (see Keramidas and Lee, 1990). We 
will discuss this extended model in more detail in the next section while the rest of this section 
is devoted to the single-series situation. 

Let y, of dimension k x 1 ,  be the vector of future observations to be predicted on the basis 
of the past observations Y = ( Y I ,  ..., YT)’ such that E(y(”)  = xfl where x is the design matrix 
corresponding to the future observations. Furthermore, Cov(Y(’)’, y(’)‘)’ = a2 (Cab), where 
Cab = pl‘‘-bl. When the unknown parameters are replaced by their maximum likelihood 
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estimates (MLEs), the forecasts of y, which is obtained from the conditional expectation of 
y(’) given Y, can be written as 

(3) 

where s =  (Xf6i11X)- ’X’~i11Y~~) ,  jj = @, j2, ..., 4 k ) ’ ,  1 = (1, ..., 1)’, 611 = (&,b), 

& 6 = $ u - 6 ’ ,  X r  and Y p )  are the Tth row of X and Ycx), respectively, and ^x and j are the 
MLEs of X and p,  respectively; z = (zl, ..., zk)’, z d  = (zf, ..., z?)‘,  for any constant d ,  and 
exp(z) = (exp(zl), ..., exp(zk))’. For the remainder of the paper we will concentrate on the 
special case in which k = 1, i.e. we are interested only in a one-step-ahead forecast. This is due 
to our belief that a one-step-ahead forecast is less speculative and hence is more reliable for 
the purpose of comparing different methods. 

The prediction of future observations y is the main focus of this paper. The forecasts 9 ,  of 
y, depend very crucially on the quality of the estimates ^x and 8. The MLEs of these two 
parameters have been used with some success by Lee and Lu (1987). Nevertheless, the method 
could produce undesirable estimates when the sample size is relatively small, as the MLEs are 
optimal in large samples only. This will in turn render poor forecasts in small samples. 

The purpose of this paper is to  propose an intuitively appealing method, minimum 
prediction error (MPE), for estimating these two parameters and to explore possible 
advantages of using this estimation method in the prediction of future observations. The MPE 
method, formulated to  some extent in the spirit of Rissanen’s (1986) accumulated prediction 
errors method and Lee’s (1988) minimum prediction variance estimate, is more sensitive than 
the traditional MLEs to the prediction of future observations. Moreover, it is less dependent 
on the distributional assumption imposed on the observations, as it minimizes the mean 
squared prediction errors. 

Since the MPE method will not give closed-form representations for the parameter 
estimates, only empirical comparisons of the proposed method with the maximum likelihood 
method will be made in terms of the predictive accuracy of future observations. These 
comparisons are made in both real and simulated data. In addition, empirical comparisons for 
the parameter estimates by both methods wilI also be made via simulation. 

Details of the proposed method are given in the next section. Empirical comparisons in both 
real data and simulations are presented in the third section. Conclusions are given in the final 
section. 

(1 + ~ [ X S  + ij(Y$) - X d ) ]  )”’ - y 
e x p [ x g + i j ( ~ P - X d ) ]  - 7  

when ^x # 0 
when ^x = 0 

4= [ 

MINIMUM PREDICTION ERROR ESTIMATES 

In this section we will consider the MPE method for a single series as well as for several 
concurrent short series, with the emphasis on the single-series situation. 

A single series 
In equation (3) the MLpEs of X and p are obtained by maximizing the profile log-likelihood 
function (see Lee and Lu, 1987), which is defined as 

T 
( T -  l)  log(1 - pZ)  (41 

where G2(X,  p )  = (l/T)(Y(” - Xg(X, p))’VII1(Y(’) - Xfi(X, p ) )  and b(X, p )  is the g, given in 
equation (3), with ^x and j replaced by X and p, respectively. The reason for considering only 
the profile likelihood function of X and p is that, given X and p,  b(X, p )  and e2(X, p )  are 

T 
2 t = 1  2 

/(A, p )  = -- log ;*(A, p )  + (A - 1) c iog(Yr + y) - ~ 
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functions of X and p only. Once1  and ,ij are obtained by maximizing 1 ( A ,  p ) ,  then B(A, {), 
G2(X, b ) ,  ̂ x and ,ij are the MLEs of 8, 02 ,  A, and p.  

Instead of using the MLEs for these two parameters, we can treat 9 ,  defined in equation (3), 
as a function of X and p,  whose values are obtained by minimizing the mean squared prediction 
errors, More specifically, the predictions are made for Yt,  t = 3, ..., T, since we need at least 
two observations to estimate parameters in a simple linear model. In predicting Yt, the sample 
is Yr-1 = ( Y I ,  ..., Y f - 1 ) ’ .  Thus, the predictions are made sequentially and the sample on which 
each prediction is based increases in size one at a time. The approach is prequential in nature 
in that predictions of future observations are made sequentially (see Dawid, 1984; Keramidas 
and Lee, 1990). The objective function to be minimized is 

where pf, is defined in exactly the same form as 9, given in equation (3), with k = 1, Treplaced 
by t -  1, x by X f ,  and X by Xr-1, the first t - 1 rows of X. 

The minimization of MSE1(X, p )  with respect to X and p can be facilitated by an 
optimization routine in the Port 3 Mathematical Subroutine Library (1984). We will use the 
version requiring both the first and the second derivatives of the objective function. These 
derivatives are provided in the Appendix. 

Several concurrent short series 
When several short time series are available, Keramidas and Lee (1990) extended model (2) to 
the general growth curve model with serial covariance structure for forecasting technological 
substitutions. The model is 

Y ( h ) =  X T A + E (6) 
T x N  T x m m x r r x N  ‘ T x N  

where Ych) = (Y {’I),  ..., Y!$””), Yl”’ = (Y!?) ,  ..., Y$?))’ with Y$’” defined as in model (1); 7 

is unknown, X is the known design matrix characterizing the type of growth function, and A 
is the known design matrix characterizing the grouping among the N independent series into 
r different curves. Furthermore, the columns of E are independent T-variate normal with mean 
vector 0 and common covariance matrix a2V~l. For the rest of the paper we will consider a 
particularly practical situation in which there are only r different A’s. This means that we will 
apply the same power transformation to each of the observations in the same group. The 
MLpEs of X and p have been considered by Keramidas and Lee (1990). 

For the MPE estimates of these parameters, we consider the following extended prediction 
problem. Let y, of dimension k x n, be a set of n( 6 N) future k-dimensional observations 
whose previous T-dimensional observations are a subset of Y. Let x, of dimension k x m, be 
the design matrix corresponding to y, Y = (YI, ..., YN), A = (AI, ..., AN), y = ( y ~ ,  ..., y,,) and 
assume that for i < n, 

where 
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for a, b = 1, ..., T +  k. When the MLEs of X and p are used in place of these unknown 
parameters, the forecasts of y i  is the same-as 9,  given in equation (3), with ^x replaced by ^xi, 

by iAi where i =  (X’~~II~X)-~X’~~IIY~)A’(AA’)-~. 
As in the single-series situation, we can treat the predictor 9i as a function of X i  and p ,  whose 

estimates are derived by minimizing the mean squared prediction errors. Thus, the objective 
function to be minimized is 

N T  
MSEz(X, p ) =  C C (Yi j -  P i j )* / (T-m)N (9) 

i = l  j = m + l  

The minimization of MSEz(X, p )  is similar to that of MSEl(X, p ) .  The derivatives of 
MSEz(X, p )  can be obtained in exactly the same manner as those of MSEl (A, p )  and hence 
are omitted. 

EMPIRICAL COMPARISONS 

In this section we will compare empirically the predictive accuracy of the linear models in 
which the power transformation and serial correlation parameters are estimated by the 
maximum likelihood (ML) and the MPE methods. For real data examples, we will consider 
four sets of observations on technology penetration, three in telephone-switching systems and 
one in television receivers. Since in the area of technological substitutions the logistic growth 
curve (or Fisher-Pry model, 1971) is the most popular, we will confine our attention to this 
particular model. For the logistic curve, if F(t )  is the new technology penetration at time t, 
then setting YI = F( t ) / ( l  - F(t))  we have Y!’’ = log(F(t)/(l - F(t))) when X = 0, which is 
exactly the logistic or  the Fisher-Pry model if the transformed variables are assumed 
independent. For the simulation study, however, we will be dealing with Yr directly and hence 
a particular growth curve is irrelevant to our discussion. 

In order to compare the predictive accuracy when the unknown power transformation and 
serial correlation parameters are estimated by the ML and the MPE methods, we will employ 
three different measures: the mean absolute deviation (MAD), the mean absolute relative 
deviation (MARD), and the fraction of accurate prediction (FAP). The MARD is perhaps a 
better measure than MAD for real data examples because the time series observations are 
monotonically increasing and the comparison of forecasts is conducted in a sequential manner. 
On the other hand, for the simulation study, we will fix the sample size and hence only MAD 
and FAP are employed for the comparison purpose. The definition of FAP is simply the 
fraction with more accurate forecast for a given method. We next define the other two 
measures. 

Let E ( t )  be the forecast of the new technology penetration F ( t )  and e ( t )  = F ( t )  - E ( t ) ,  for 
t = 1, ..., a. Then the MAD and MARD are defined as 

a 

r = 1  
MAD = I e ( t )  I/a (10) 

’ The technology penetration is defined as the ratio of the number of new products to the combined total of new and 
old products. 
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The above definitions are relevant for real data examples. For the simulation the corresponding 
definitions are easily seen by replacing F ( t )  by Yt and P( t )  by fit,. 

Real data with a single series 
Two sets of technology penetration data, analysed by Lee and Lu (1987, 1989), are listed in 
Table I. We will consider the empirical comparison of the predictive accuracy in one-step- 
ahead forecasts between the two estimation methods for the power transformation and serial 
correlation parameters. Also, in the comparison the initial sample size is five, instead of eight 
as in the previous studies. The feasibility of estimating these two parameters in small samples 
is one of the features of the proposed method. 

Table I1 shows the comparison of the predictive accuracy in terms of the three measures 
mentioned earlier. In terms of MARD, the improvements (IMP) of the forecasts based on the 
MPE method over the ML method for these two parameters are 27% for the TV data and 51% 
for the telephone data. The corresponding improvements in terms of MAD are 11 070 and 33%, 

Table I.  Technology penetration data 
~ ~~ ~ 

Colour TV receivers Telephone-switching systems 

Year Penetrations Year Penetrations 

1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1 964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

0.00016 
0.00052 
0.00219 
0.00394 
0.00569 
0.00743 
0.00943 
0.01208 
0.01889 
0.03 120 
0.05332 
0.09694 
0.16325 
0.24 1 75 
0.32034 
0.35744 
0.41015 
0.48631 
0.55355 
0.6225 1 
0.68394 
0.73606 
0.77065 
0.77984 
0.80926 
0.83028 
0.82916 
0.87595 
0.88703 
0.90465 
0.91519 

1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 

O.ooOo9 
o.oO015 
0.00157 
0.00707 
0.01205 
0.02234 
0.03578 
0.05746 
0.08495 
0.11700 
0.14995 
0.18482 
0.23308 
0.28858 
0.35238 
0.42244 
0.47951 
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Table 11. Comparison of one-step-ahead forecast accuracy for two single series 

Colour TV receivers Telephone-switching systems 

MPE ML IMP(%) MPE ML IMP(%) 

MAD 0.01 12 0.0126 11 0.0061 0.0090 33 
MARD 0.0586 0.0800 27 0.0383 0.0788 5 1  
FAP(%) 73 27 67 33 

respectively. Meanwhile, for the MPE method, the FAP achieves 73% for the TV and 67% 
for the telephone data. These improvements are indeed impressive. 

Real data with several concurrent short series 
The two data sets (Regions A and B), given in Tables 1 and 4 of Keramidas and Lee (1988), 
are used here for the comparison of the predictive accuracy of the two estimation methods for 
the power transformation and serial correlation parameters. Region B was further analysed in 
Keramidas and Lee (1990). 

In the comparison the initial sample sizes for Regions A and B are 3 and 4, respectively. The 
higher initial sample size for Region B reflects the inclusion of the quadratic growth function. 
In Region A only a linear growth function is used while both the linear and the quadratic 
growth functions are explored for Region B. It is found that only the linear growth function 
shows some improvement for the MPE estimates over the MLEs for Region B. Table 111 
exhibits the comparison of the predictive accuracy in terms of MAD, MARD, and FAP. There 
are some improvement of the forecasts based on the MPE Method over the ML method. The 
improvement, however, is not as pronounced as in the single series studied earlier. 

Simulation 
The main focus of this section is on the simulation results for a single series. We will consider 
the comparison of the predictive accuracy of the forecasts based on both estimation methods. 
In addition, we will also consider the comparison of the estimates of the power transformation 
and serial correlation parameters. 

In the simulation for a single series we have 

where the disturbance terms &(t = 1, ..., T )  are independent normal, Student’s t ,  or gamma, 

Table 111. Comparison of one-step-ahead forecast accuracy for two sets of 
concurrent short series 

Region A Region B 

MPE ML IMP(%) MPE ML IMP(%) 
~ ~~ 

MAD 0.0151 0.0198 24 0.0199 0.0216 8 
MARD 0.0491 0.0336 32 0.0589 0.0620 5 
FAP(%) 53 47 65 35 
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Table IV. Comparisons of one-step-ahead forecasts 
and parameter estimates for simulated data 

MAD-ML 
M PE 

IMP(%) 
FAP( To) 
Mean (p)-ML 

Var (p)-ML 
MPE 

Mean (A)-ML 

Var (A)-ML 

M PE 

MPE 

MPE 

0.01597 
0.01482 

7 
65 

0.346 
0.541 
0.053 
0.072 
0.9985 
1 .0001 
0.00095 
O.Ooo88 

0.01573 
0.01482 

6 
60 

0.346 
0.539 
0.05 1 
0.069 
1.0024 
1.0038 
0.00185 
0.00174 

0.01556 
0.01448 

7 
65 

0.360 
0.550 
0.047 
0.068 
0.9951 
0.9958 
0.00189 
0.00168 

each with mean o and variance u2. Also, G(&, 02) denotes the gamma distribution with the 
shape parameter 81 and the scale parameter l /&, and t ,  denotes the Student’s t distribution 
with Y degrees of freedom. In the simulation, we set (IL = 0, p = 0.2, y = 0, u = 0.03, h = 1, 
p = 0.85, and T =  20. The number of realizations of model (12) is lo00 for each distribution. 
Forecasts up to five steps ahead are performed and compared with the actuals. A summary of 
the comparisons of one-step-ahead forecast accuracy and parameter estimates are given in 
Table IV. 

From this table it is evident that some improvement in one-step-ahead forecast accuracy has 
been achieved in terms of MAD and FAP. Improvements for higher step forecasts are similar. 
Also, there is clearly a significant improvement of the MPE estimate of the serial correlation 
over the MLE. This means that the MPE method could provide a viable alternative to the MLE 
of the serial correlation alone even when no power transformation is applied to a linear model 
with AR(1) dependence structure. This special situation is very important because the model 
is useful in time-series data. A more detailed comparison of the estimation of the serial 
correlation parameter by both methods is depicted in Figure 1 in which the distributions of the 
lo00 estimates of p by both estimation methods for normal, t10, and G(l ,  1) are shown. First, 
the distributions of b,  for a given estimation method, is essentially independent of the 
distributional assumption on the disturbance terms 6,. However, there is a significant difference 
in these distributions between the two estimation methods. Even though the true value of p 
is 0.85, its ML estimate never goes beyond 0.8, while the MPE estimate of p is between -1 
and 1 .  This explains why the variance of the MLEs is smaller than that of the MPE estimates. 

Similar comparison of the estimation of the power transformation parameter by ML and 
MPE methods is depicted in Figure 2. There seems to be no significant difference between the 
two methods in estimating this parameter. 

We note that when the power transformation parameter X is fixed at either 0 or 1 the results 
for the norlnal distribution are not much different from those presented in Table IV. Similar 
results are obtained when h = 0 but estimates of both X and p are made for the purpose of 
forecasting. 

If p is restricted to [0, l), a possible situation in which the serial correlation is non-negative, 
the results for the one-step-ahead forecasts and parameter estimates are similar to those 
presented in Table IV. In general, the mean values of 6 are larger while the variances are 
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MPE ML MPE ML 

-1.0 ao 0.s 1.0 -1.0 ao 0.5 9.0 w 1.0 1.1 1 1  0.0 1.0 1.1 1 2  

N(o.1) w.0 wo Wac) 

4.0 0.0 0.5 1.0 -1.0 0.0 0.5 1.0 0.0 1.0 1.1 1 1  0.0 1.0 1.1 1 2  

no no no tl0 

-1.0 0.0 0.5 1.0 -1.0 0.0 0.5 1.0 0.B 1.0 1.1 12 0.0 1.0 1.1 12 

w.11 acl.$t W.1) GV.11 

Figure 1 .  Distributions of Z by MPE and ML 
methods methods 

Figure 2. Distributions of ̂ x by MPE and ML 

slightly smaller, because the negative values of are not allowed. The decrease in the size of 
the variance of b for each distribution is more appreciable in the ML method than in the MPE 
method, which may be an argument for considering only the nonnegative value for p,  when 
the ML method is used. 

CONCLUSIONS 

From the real and simulated data we found that the minimum prediction error estimates of 
the power transformation and serial correlation parameters are viable alternatives to the MLEs 
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of these two parameters. This is especially true with a single time series when the sample size 
is relatively small. For the situation in which several concurrent short time series are available, 
the results are still encouraging, even through they are not as convincing. Finally, it is 
emphasized that although all the real data are from the area of technological substitutions, the 
proposed method is useful for any type of data in which a power transformation of the 
dependent variable can be applied to a linear model with AR(1) dependence structure. The 
method is, of course, equally suitable when no power transformation is needed. 

APPENDIX: THE DERIVATIVES OF MSEi(X, p )  

In this appendix we will give the first and the second derivatives of the objective function 
MSE1(X, p )  with respect to X and p. 

2p - 1 - p  z o  

0 -1 - p  4p ... 
1 - 1 - p 2  4p - 1 - p  2 ::: 0 1  
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- 2x-2Pt[1 + x P p ]  

when A # 0 

when X = O  



5 10 Journal of Forecasting Vol. 12, Iss. No. 6 

a2 a2 a 2  
ax2 ax2 

a2 a2 - &A,  p ) =  w-’x;-1v11 - Y P l  ax2 ax2 

- PjA’ = ( X ,  - pxr-I) - &x, p )  + p jp YPI 
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