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TRANSITION PROBABILITY MATRICES FOR 
CONTINUOUS TIME FINITE MARKOV CHAINS 

NAN FU PENG,* National Chiao Tung University 

Abstract 

Using an easy linear-algebraic method, we obtain spectral representations, without the 
need for eigenvector determination, of the transition probability matrices for completely 
general continuous time Markov chains with finite state space. Comparing the proof 
presented here with that of Brown (1991), who provided a similar result for a special 
class of finite Markov chains, we observe that ours is more concise. 
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1. Introduction 

It is undoubtedly important to calculate numerically the time-dependent transition 

probabilities of continuous time Markov chains. We focus our attention on those with 
a finite state space. Keilson developed in his book [5] the methods of spectral decomposi- 
tion and the uniformization technique. Ross [10] found the external uniformization; this 
was followed by related work such as [7] and [12]. Some results on finite queues can be 
found in [1], [8], [9] and [11]. Brown [2] gave spectral representations, without eigenvectors, 
of the transition probability matrices of finite continuous time Markov chains with 

diagonalizable infinitesimal matrices (see also theorem 5 of [3]). Here we present an easy 
linear-algebraic technique which enables us to extend the result of [2] to completely 
general continuous time Markov chains with finite state space. The method used in this 

paper is also more concise and efficient than that of [2]. 

2. A simple linear-algebraic method 

Consider a Markov chain (X(t)) defined on a finite state space {0, 1, 
2,..., 

N}. Denote 
by LO= 0, 

2{,-.., 2N (maybe complex) the eigenvalues of its infinitesimal matrix Q. It is 
well known [5] that the transition probability matrix P(t) of X(t) is 
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Spectral representations of the transition probability matrices 29 

(1) P(t) = e'Qt=- n! n=o n! 

Obviously, (1) implies the following: 

(2) P (0)=1 and 
dt" 

t 
(Pdtn" 

p 
Q"', 

Vn?1. 
dtdt nt=0-dO / 

If P(t) is a transition function or, more generally, sufficiently smooth, then (2) implies 
(1); hence we obtain the equivalence of (1) and (2). The linear algebra used below can 
be found in many textbooks, e.g. [4]. 

Lemma 1. Let A and B be two complex n x n matrices and {1,.-., ,} be any basis 
of C". Then Aa, = Ba' for all i implies A = B. 

Although Theorem 1 is a special case of Theorem 3 below, it is worth listing the proof 
here for comparison with that of Theorem 3 and that of [2]. 

Theorem 1. If the 2i are all distinct, then 

N 

P(t)= H (I-Q/2,) i=I 

(3) N 
+ 3 (Q/Am) 1 [(I-Q/21j)/(1-Am/2j)]exp(Amt). m= 1 i m, O 

Proof. Call the right-hand side of (3) P(t). It is easy to see that, for m=0, 1,..-, N, 

d"P (t) 
dt Xm = 

" 
m = "m, n = 0, 1, 2, 

. t=0 

where ,m is an eigenvector associated with the eigenvalue 2,,. Since the Am are all distinct, 
the Xm form a basis of CN+'. The P(t) is obviously smooth, hence we obtain (3) from 
the fact that (2) implies (1) and Lemma 1. 

The above proof gives us a natural extension of Theorem 1 to Theorem 2 below. We 
allow repeated eigenvalues here, and relabel them Ao = 0, 1,5..., AM as the distinct values. 

Theorem 2. If the minimal polynomial of Q is of the form 

M 

g(x)=xHI (x-2,), M <N, i=1 

with distinct 20 = 0, 
2%,.. 

, 2M, then P(t) is of the form (3) with N replaced by M. 

The next corollary also appeared in [2]. 

Corollary 1. If (X(t)) is a finite birth and death process, then P(t) is of the form 
(3). 
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30 NAN FU PENG 

Proof. The infinitesimal matrix Q of (X(t)) is tridiagonal and it is shown in [2] that 
its eigenvalues are real and distinct. 

The following example makes Theorem 1 more plausible. 

Example 1. Consider a continuous time Markov chain having state space {0, 1, 2, 3} 
and starting from state 0 with infinitesimal matrix 

0 1 2 3 
0 --A A 0 0 

1 0 -2 2 0 

=2 0 0 -A A 
3 _2 0 0 -2A 

A simple argument shows that 

(00 t)4n 
- 1 

(4) P03(t) = P(T=4n-1)=e-t • E 
n=1 n= 1 (4n - 1)! ' 

where T is a random variable distributed as Poisson (At). In a similar fashion, we have 

(At)4n-3 
(5) Pl2(t)= e-At 

-n -. n=1 (4n - 3)! 

Alternatively, observing that 0, - 2, - + i and - -iL are the eigenvalues of Q, we 
obtain from (3) that 

(6) P03(t)= e- '['et-'-t -~ -Isin(At)] 

and 

(7) P12(t)= 
e-•t 

[iet- e-t + sin(At)]. 

By introducing the Taylor expansions of the terms in the brackets of the right-hand 
sides of (6) and (7), we obtain the respective equivalence of (6) and (7) to (4) and (5). 

3. The general result 

A matrix Q is defined to be lower semitriangular if Q,,= 0 forj > i+ 1. It was claimed 
in Theorem 1.2 of [6] that, if Q is lower semitriangular with Qi,i+l 0 for all i, then its 

eigenvalues are distinct but may be complex. This statement is incorrect as the next 

simple counterexample shows. 

Example 2. Let the matrix Q be 

0 1 2 

Q=1 1 -2 1 . 
2 1 0 -1 

The eigenvalues of Q are 0, -2 and -2. Neither Theorem 1 nor Theorem 2 can be 
applied to this case because the null space of Q + 21 is of dimension 1. Theorem 3 below 
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deals with general Q and provides us with a way to settle the problem. Several lemmas 
are needed in order to prove that theorem. 

Lemma 2. 
0 n<k 

dn(tke"t) _k! n=k 
dt" 

t=O k! "-k n>k. 

Proof. By the product rule of derivatives, it is easy to see that if f(t) and g(t) are 

continuously differentiable functions, 

n n 

(8) (fg)(") = ( 
f()g(-i)g i=0 \1 

We immediately obtain the lemma by letting f(t)= tk and g(t)= et. 

Lemma 3. For given M? 1, let 

(t) 
L= 

-' + 1 1 + 
, 
cit 

M=i ( a ij ) 

where the dm are non-negative integers and am 
=#0 

for m= 1,--, M- 1. Then f ")(0) =0, 
n= 1,2,..., K, if and only if the c, satisfy 

(9) - c= M-( C-i, .... im,_,, n= 1, 2,---, K, 
im t dm ------ i 

O<il+.+iM__ln m=1 a 

with the conventions that co= 1 and the right-hand side of (9) is zero when M= 1. 

Proof. A quick application of (8) shows, for M= 2, 3,-.. and any fl~,, fM, 

M 

dtO 
o?il++1+_?fln iLi2"' 

M m=1 
f( - ( 

with iM = n - i .. iM- here. Hence for n= 1, 
2,..., 

K, 
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32 NAN FU PENG 

d"f(t) n 

dt" t=O 

tx 

ml (d-ia 

(n-i - 
1 --i.... iM_1)! 

l 
i m dm Mn 

l 

Cn-il 

....iM- 

i=0 =n! C 
im:dm 11 1 

Oil+...+iM l<n 
m=l1 / 

if and only if (9) holds. 

Theorem 3. Let the minimal polynomial of Q be of the form f(x)= 11i0o (x - 2)di 
where the Ai are distinct and di 1. Then 

d 
l 

R (i DI t (10) P(t)=Z = I (Q ) 2I)J t) e't 

where 

(11) R(i,j)= (•H 
(Li_ )dm; 

(I?+ 
C i,n (Q-AI) 

and 

- Ci,n 
- 

kmd 

kn.,_m 
id, < •m, 

<i 6i ~ km:,!~n H i - 
kin 

with ci,0 = 1. 

Remark. It is easy to check that Theorem 3 reduces to Theorem 2 when di= 1 for 

i=O 0, , M. 

Proof. Call the right-hand side of (14) P(t). Due to the fact (Q -mI)= 
(Q-2AI)+(Ai - )I and Lemma 3, Rj,j)(Q-2AI)j for Oj j<di can be written as 

(12) R(,,j),(Q- 2,I) j = wp(Q- AI) + 
.. 

+wdi (Q- Ai ) + (Q - Ai I) 
where the w are complex scalars depending on i and P d= dm 1. 

With some algebra, Lemma 2 together with (10), (11) and (12) yield the following: 

P(O), = Ix, and 

d"QP(t) n)I Q x 
dtn I=o 

m=0 
m 

= (Q - A; I + A; I) " 2 = Q " f 
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Spectral representations of the transition probability matrices 33 

where Xi belongs to the null space of (Q - ALI)"i. Note that (Q - 2) I)m' = if m> di. 
Since these Xj form a basis for CN+' and P(t) is sufficiently smooth, Lemma 1 and the 

implication of (2) to (1) yield the desired result. 

Remark. Supposing the minimal polynomial is difficult to obtain, Theorem 3 still 
holds if we replace it with the characteristic polynomial. 

Corollary 2. If(X(t)) is ergodic, then V' = (1/(N+ 1)) T' n1lm (I- Q/i)di is the unique 
stationary vector of P(t), where 1 is the vector with all entries equal to 1. 

Proof. Since 0 < P,, (t)< 1, the real part of each Ak (k = 0) is strictly negative and do= 
1. Hence P(t) -*+FI~ (I- Q/i)di as t--+oo. Since (X(t)) is ergodic, each row of 
I[, I(I- Q/lA)d, is the unique stationary vector TV'. 

Note that irreducibility of (X(t)) implies ergodicity of (X(t)) [5]. 

Example 2 (Continued). The probability transition matrix P(t) corresponding to 
the infinitesimal matrix Q is 

1/2 1/4 1/4 1/2 -1/4 -1/4 (0 1/2 -1/2 

P(t)= 1/2 1/4 1/4 + - 1/2 3/4 - 1/4 e-2t + 0 -1/2 1/2 te-2t. 
1/2 1/4 1/4 - 1/2 -1/4 3/4 0 -1/2 1/2/ 
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