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ABSTRACT
Bankruptcy prediction methods based on a semiparametric logit model are pro-
posed for simple random (prospective) and case–control (choice-based; retro-
spective) data. The unknown parameters and prediction probabilities in the
model are estimated by the local likelihood approach, and the resulting esti-
mators are analyzed through their asymptotic biases and variances. The semi-
parametric bankruptcy prediction methods using these two types of data are
shown to be essentially equivalent. Thus our proposed prediction model can be
directly applied to data sampled from the two important designs. One real data
example and simulations confirm that our prediction method is more powerful
than alternatives, in the sense of yielding smaller out-of-sample error rates.
Copyright © 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Academics, practitioners and regulators have routinely used models to predict the bankruptcy of
companies. For example, the discriminant analysis model (DAM) has been a popular technique for
studying the financial health of a company; see Altman (1968). Other frequently referred models
include those by Ohlson (1980) and Zmijewski (1984). The former bankruptcy prediction method
is based on a linear logit model (LLM). The latter, on the other hand, is based on a probit model.
Grice and Dugan (2001) recently cautioned the routine application of these two probabilistic models
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of bankruptcy. Their study showed that using prediction models to time periods and industries other
than those used to develop the models may result in significant decline in prediction accuracies.

Bankruptcy prediction methods using other models or concepts include, for example, the recur-
sive partition model (Frydman et al., 1985), expert systems (Messier and Hansen, 1988), chaos theory
(Lindsay and Campbell, 1996), neural networks (Koh and Tan, 1999), survival analysis (Lane et al.,
1986; Shumway, 2001; Chava and Jarrow, 2004), rough set theory (McKee, 2003), KMV–Merton
model (KMV; Bharath and Shumway, 2004; Vassalou and Xing, 2004) and support vector machines
(Härdle et al., 2006).

Ohlson (1980) stated that the main reason of using the LLM is its simplicity in computation and
interpretation. There are many software packages having logistic regression capabilities, for example,
BMDP, EGRET, GLIM and SAS. Thus LLM can be easily updated or revised as long as there are
new observations of the same predictors or new predictive variables available for analysis. Another
interesting reason, not stated in Ohlson (1980), for using the LLM is that the approach gives us a
great flexibility in using different sampling schemes for collecting observations for building predic-
tion models. Farewell (1979) and Prentice and Pyke (1979) justified that under the LLM one can
analyze case–control (choice-based; retrospective) observations as if they were sampled from a
simple random sampling scheme (prospective observations). The observations in Ohlson’s empiri-
cal study were case–control observations. His prediction model had been estimated as if the obser-
vations were prospective observations (but without any justification).

The case–control data for bankruptcy prediction are composed of two simple random samples. One
is selected from the population of bankrupt companies, and called the case sample. The other is
selected from the population of nonbankrupt companies, and called the control sample. An important
special case of the case–control study is the stratified (matched) case–control study. In the latter study,
the numbers of cases (bankrupt companies) and controls (nonbankrupt companies) are matched
according to some stratifying variables. Usually, in most matched case–control designs, each case is
matched with one to five controls per stratum. For a detailed introduction of the LLM and the
(matched) case–control data, see, for example, the monograph by Hosmer and Lemeshow (1989).

Applying case–control data to the LLM, Prentice and Pyke (1979) showed that the resulting esti-
mators of the coefficients converge to their true values, except the intercept estimator, as both sample
sizes of control and case data become large. Due to the incorrect estimation of the intercept, the
‘estimated’ bankruptcy probability, obtained by plugging all these estimates of coefficients into the
LLM, does not converge to the true bankruptcy probability. However, since the logistic distribution
is a strictly monotone increasing function, such estimated bankruptcy probability still can be
employed to develop a prediction device as the LLM does under the prospective data. For further
discussion of these facts, see the next section.

Ohlson’s bankruptcy prediction model postulates that the logit function of bankruptcy probabil-
ity is a linear function of the predictors. Nine predictors were selected for developing his model
because they appeared to be the ones most frequently mentioned in the literature. One potential pitfall
of this model is that it assumes a linear relation between the predictors and the logit function of
bankruptcy probability. This approach in general is not robust with respect to the misspecification
of the linear relation. See the discussion and Figure 2 of Härdle et al. (2006). Their results show that
the relation between bankruptcy probability and predictors, such as net income change and company
size, may not be monotonic.

The main focus of this paper is to consider a robust method, against misspecification of the rela-
tion between the predictors and the logit of bankruptcy probability, by introducing a semiparamet-
ric logit model (SLM; Zhao et al., 1996) for predicting bankruptcy. This model is basically very
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similar to the LLM, except that some unspecified function H(·) replaces the linear function to model
the relation between the predictors and the logit of bankruptcy probability. Thus, clearly, the SLM
is much more general and flexible in predicting the bankruptcy of a firm. Härdle et al. (2006) also
propose a flexible but fully nonparametric approach for predicting bankruptcy. They use support
vector machines to generate nonlinear score function of predictors, and then employ a nonparamet-
ric technique to map scores into bankruptcy probabilities. Their work presents a new trend in bank-
ruptcy analysis.

In LLM, there are a finite number of coefficients and thus the usual likelihood method can be
applied to estimate the coefficients. In contrast, conceptually, there are infinitely many parameters in
the unspecified function H(·) in SLM. We shall use the local likelihood method (Tibshirani and Hastie,
1987; Wand and Jones, 1995) to estimate the unknown function H(·) and hence develop a bankruptcy
prediction method. Specifically, given the SLM and any particular predictor value x0, the quantity
H(x0) can be estimated using weighted linear logistic regression with weights determined by the local
neighborhood of x0. Thus the application of the SLM is rather straightforward and efficient.

We may consider SLM as an extension of LLM. This is a useful extension, since in many prac-
tical applications it is not easy to confirm the relation between the logit and a particular set of pre-
dictors. Usually, linear function only serves as an approximation and it may not be good enough for
the true model. It is possible, for a particular set of predictors, to add polynomial terms in the linear
function to achieve the same superior fit that the SLM provides. However, this polynomial model
may not be suitable for other sets of predictive variables. Further, we require a large dataset and
powerful lack-of-fit tests to confirm the polynomial model to be appropriate. In contrast, our SLM
provides a useful alternative approach. Using this approach, we do not need strategies for building
the relation between the logit and the predictors, and it is quite simple to apply.

The remainder of the paper is organized as follows. In next section, our methodology for predict-
ing bankruptcy based on SLM is developed using concepts similar to those based on LLM. The third
section describes one real case–control dataset and provides some summary statistics. The summary
statistics show that the predictors under consideration have reasonable power in discriminating the
bankruptcy status of the company. The real dataset is analyzed using SLM and the alternative methods
such as DAM, LLM and KMV. The prediction ability of each method is described by the out-of-
sample error rate. The results about out-of-sample error rates are summarized in the third section. Fur-
thermore, the out-of-sample error rate results from some Monte Carlo simulations are given in the
fourth section. From comparisons of these results, we can confirm that SLM has the best performance.
The fifth section contains concluding remarks and future research topics. Our theoretical results are
presented in Appendix A. Finally, sketches of the proofs are given in Appendix B.

METHODOLOGY

In this section we describe the formulation of SLM, develop the methodology for estimating its
unknown quantities, and build a bankruptcy prediction method based on SLM for both simple
random and case–control data.

Linear logit model versus semiparametric logit model
Most bankruptcy prediction methods were developed on training samples. Usually, the training
sample consists of the data of n companies collected for some time period by a simple random 
sampling scheme. For the ith company, i = 1, . . . , n, we observe values (Di, xi, zi) where Di = 1 
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indicates that the ith company is in the state of bankruptcy and 0, otherwise, and xi = (xi1, . . . , xid)T

and zi = (zi1, . . . , ziq)T are values of the vectors of explanatory variables used to forecast failure. Here
we have used X and Z, respectively, to represent the continuous and discrete variables, and employed
the upper index T to stand for the transpose of a vector. For example, in Ohlson (1980), there were
nine financial variables being used for developing his bankruptcy prediction model. Among these
explanatory variables, seven (= d) of them are continuous variables and two (= q) are binary 
variables.

Given the prospective training sample and the values (x, z) of the predictors (X, Z), the LLM is
defined by assuming the bankruptcy probability to be

or written in the form of the logit function of bankruptcy probability:

Here h, ς and q are 1 × 1, 1 × d and 1 × q vectors of logistic parameters, respectively. For the
company with predictor values (x0, z0), its predicted bankruptcy probability

is the logistic distribution evaluated at the predicted score ĥ + ς̂x0 + q̂z0, where ĥ, ς̂ and q̂ are the
maximum likelihood estimates based on the prospective training sample {(Di, xi, zi), i = 1, . . . , n}.

The main advantage of the LLM lies in its simplicity of computation and interpretation, but the
model may not be efficient for the purpose of prediction. Sometimes, based on previous experience,
there are reasons for modeling the logit function of bankruptcy probability as a particular function
of (X, Z), which may not be linear. However, there is a general drawback to such parametric mod-
eling. If one chooses a parametric family that is not of appropriate form, at least approximately, then
the resulting model-based bankruptcy probability prediction might not correctly estimate the true
bankruptcy probability, and there is a danger of reaching erroneous prediction.

The limitation of LLM can be overcome by removing the restriction that the logit function of 
p(D = 1 | X = x, Z = z) belongs to a parametric family. This approach may lead to the following SLM:

(1)

Here, we only assume H(x) to be a smooth function of the value x of the continuous predictor X;
otherwise, it is not specified. Clearly, this is a very flexible prediction model. For the company with
predictor values (x0, z0), its predicted probability of bankruptcy is thus defined as
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the logistic distribution evaluated at the predicted score Ĥ(x0) + q̂z0. Here Ĥ(x0) and q̂ are estimates
deriving from the prospective training sample and local likelihood method.

There exists many methods for estimating H(x0), for x0 = (x01, . . . , x0d)T. One of these methods
with a simple idea is the local likelihood method (see Tibshirani and Hastie, 1987). This approach
is to first choose a positive scalar constant b and define a neighborhood of x0 as N(x0; b) = {t = (t1,
. . . , td)T : |tj − x0j| ≤ b, for each j = 1, . . . , d}. Then the idea of the local likelihood method is to apply
both concepts of the likelihood method using partial sample S(x0; b) = {(Di, xi, zi) : xi ∈ N(x0; b)},
and the first-order Taylor approximation:

for xi ∈ N(x0; b). Here the parameters a and b stand for the unknown quantities H(x0) and H(1)(x0)T,
respectively, and H(1)(x0) is the column vector of partial derivatives of H(x0). Specifically, we find
the maximizer (â , b̂, q̂) of the ‘local’ log-likelihood function

(3)

use Ĥ(x0) = â to estimate H(x0), and combine estimates Ĥ(x0) and q̂ to develop a prediction of bank-
ruptcy probability (2).

Note that the concept of local inference is well established in regression analysis; see also Wand
and Jones (1995). There are two major strategies considered in the local likelihood approach: using
linear approximation (the first-order Taylor approximation) for each H(xi) with xi ∈ N(x0; b), and
using the partial (local) sample S(x0; b) to derive the maximum local likelihood estimates. This
method is directly analogous to the LLM, except that here we have used the concept of local fitting.

We now determine a p* ∈ [0, 1] value to make bankruptcy prediction for the company with pre-
dictor values (x0, z0). That is, if its predicted bankruptcy probability p̂(D = 1 | X = x0, Z = z0) derived
from (2) and (3) satisfies

then the company is classified to be in the status of bankruptcy; otherwise it is classified as a healthy
company. To decide a proper cut-off point p*, usually one would use the training sample to evalu-
ate the performance of the classification scheme. In doing so, there are two types of ‘in-sample’ error
rate occurred in this evaluation based on the training sample

Here I(·) stands for the indicator function.
Using the training sample and the cut-off point p, ain(p) is the rate of misclassifying a bankrupt

company as a healthy company, and bin(p) is the rate of misclassifying a healthy company as a bank-
rupt company. To keep these error rates as small as possible, we might determine a proper cut-off
point p* such that
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That is to control the in-sample type I error rate ain(p) to be at most u, so that the sum of the two
in-sample error rates tin(p) = ain(p) + bin(p) is minimal. This is essential if the type I error would
cause much more severe losses to the investors. On the other hand, if classifying healthy firms as
being bankrupt would cause more severe losses to the investors, we might control the in-sample type
II error rate bin(p) to be at most u. In practice, the value of u ∈ [0, 1] is determined by the investor.
If u = 1, then there is no restriction on the magnitude of in-sample type I and II error rates (Altman,
1968; Ohlson, 1980; Begley et al., 1996). Since the value of p* depends on that of u, it is also
denoted by p*(u).

More general estimates of bankruptcy probability
Suppose we define K(u) to be the uniform probability density function over [−1, 1], then the local
log-likelihood function (3) can be expressed in a different form:

(4)

where Kb(xi − x0) = Πd
j=1K{(xij − x0j)/b}. From this expression we see that the local log-likelihood

function (4) can be considered as a weighted log-likelihood function which gives weight 1 to the
data inside the neighborhood sample S(x0; b) and weight 0 outside. Conceptually, a different weight-
ing scheme can also be employed for defining a different weighted log-likelihood function, so that
larger weights are given to data points with X values closer to x0 and smaller weights to those with
X values far from x0. This can be achieved by introducing a unimodal probability density function
that is symmetric about 0 to replace the uniform density for K(·) in (4). However, the results from
the literature show that the choice of the density function K(·), also called the kernel function, is not
very important in the local fitting. A popular choice of K(·) is the Epanechnikov kernel defined as
K(u) = (3/4)(1 − u2)I(|u| ≤ 1) (see Wand and Jones, 1995), due to its computational convenience and
optimal performance (for example, it minimizes mean square error among all non-negative kernel
functions).

Refined estimates of bankruptcy probability
It was pointed out in Wand and Jones (1995) that the estimator of bankruptcy probability produced
from (2) and (4) is consistent under very general conditions. However, our theoretical results in
Appendix A show that more refined estimators of H(x0) and q, in terms of smaller asymptotic mean
square error, can be achieved. The computation procedure of the refined estimates includes the fol-
lowing three steps.

Step 1: For each xi, i = 1, . . . , n, use the local log-likelihood function (4) with the Epanechnikov
kernel to compute the estimate Ĥ(xi).

Step 2: Replace the unknown quantities H(xi) in model (1) with their estimates Ĥ(xi), for i = 1, . . . ,
n, fit the bankruptcy probability by the resulting model
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and use the training sample to maximize the corresponding pseudo log-likelihood function with
respect to q0 and q. Here q0 is a normalizing constant which makes the bankruptcy probability
function be integrated to 1. Let the maximum likelihood estimate of q be denoted as q̂R, the
refined estimate of q.

Step 3: Replace q in the local log-likelihood function (4) by q̂R and use the training sample to max-
imize the resulting pseudo local log-likelihood function with respect to a and b. Let (âR, b̂R) be
the maximizer, then the refined estimate of H(x0) is ĤR(x0) = âR.
The refined predicted bankruptcy probability

is the logistic distribution evaluated at the predicted score ĤR(x0) + q̂Rz0. Note that this new pro-
cedure is no more complicated than the procedure we discussed earlier. Since the computation
of q̂R depends only on the training sample, we consider q̂R as a constant in the prediction system.
For any new values (x0, z0) of the predictors (X, Z), we only need to apply Step 3 to compute
ĤR(x0) and then the predicted bankruptcy probability.

The selection of constant b
The practical implementation of SLM requires the specification of the constant b, also called the
bandwidth. It determines how many data points should be included in the SLM. From the last two
subsections, we see that the same bandwidth has been used for computing the refined estimates ĤR(x0)
and q̂R. Alternatively, we may consider using bandwidth bq to compute q̂R (Steps 1 and 2), and
employing bandwidth bH to compute ĤR(x0) (Step 3). The optimal values b*q and b*H of bq and bH,
respectively, can be determined by minimizing the mean square errors of the resulting q̂R and ĤR.
Theoretical results in Appendix A show that b*H is of larger order in magnitude than b*q. Although
such theoretical results give some indication on how to select bandwidth parameters bq and bH, they
are not available in practice, since they depend on the unknown H(·), q and density function of the
predictors. Thus, in real applications, we would suggest considering the in-sample type I and II error
rates defined in the first subsection as functions of p, bq and bH, denoted as ain(p, bq, bH) and bin(p,
bq, bH), respectively. The bandwidth parameters and the cut-off point are then simultaneously deter-
mined so that the sum of the two in-sample error rates tin(p, bq, bH) = ain(p, bq, bH) + bin(p, bq, bH)
is minimal, subject to the constraints p ∈ [0, 1], ain(p, bq, bH) ≤ u and bH ≥ bq. Note that such selected
values p̂(u), b̂q(u) and b̂H(u) for p*(u), b*q and b*H, respectively, also depend on the training sample.
Hence they are also considered as constants in the prediction system.

Applications to case–control data
The purpose of this paper is to develop a semiparametric bankruptcy prediction model. Previous
results show that a fairly simple SLM can be developed using the training sample, which consists
of simple random observations. However, as we stated earlier, many financial data are sampled using
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case–control designs. For example, in Ohlson, the bankrupt companies were generated from a list
of failed companies (cases) satisfying certain inclusion criteria, and a sample of nonbankrupt com-
panies was obtained from COMPUSTAT (controls). Further, in the analysis given by Grice and
Dugan (2001), the bankrupt companies were collected from those reported by COMPUSTAT meeting
certain conditions (cases), and the nonbankrupt companies were collected from those that did not
receive poor S&P ratings (controls). So the basic question is: can we use the case–control data to
develop SLM as the LLM did? The answer is yes, but it needs justification.

Applying case–control data to the SLM as if they were simple random observations is permissi-
ble, since our theoretical results in Appendix A show that the value of q can be consistently esti-
mated, and the unknown function H(x) can be correctly estimated, up to the unknown additive
constant

Using the case–control data, inferences about the constant c* are not possible since such data gen-
erally provide no information about the population frequency of bankrupt companies. Thus treating
the case–control data as if they were simple random observations and applying the procedures out-
lined in the third subsection, we can only estimate H(x0) + c* and q. Specifically, let ĤCC(x0) and q̂CC

be denoted as the estimators derived from the third subsection, then q̂CC consistently estimates q,
but for any x0 ĤCC(x0) estimates H(x0) + c*. Combining the inconsistency of ĤCC(x0) and the fact that
the unknown quantity c* is generally not equal to 0, the resulting predicted score ĤCC(x0) + q̂CC z0

does not estimate the true score H(x0) + qz0, and thus the predicted bankruptcy probability

does not estimate the true bankruptcy probability (1) with predictor values (x0, z0). This is the major
difference between applying the SLM to case–control data and to prospective data.

Fortunately, we still can use q̂CC and ĤCC(x) to develop a bankruptcy prediction device by apply-
ing the following simple equivalent inequalities:

if and only if

This result is to say that using the probability to define a classification device

with cut-off point p is equivalent to using the probability to define a

classification device with cut-off point p*. Hence we may pretend p̂CC(D = 1 | X = x0, Z = z0) to be
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the estimate of the true bankruptcy probability and as before use it to determine the associated cut-
off point p*(u) and bandwidth parameters b*q and b*H (see the fourth subsection), and then the semi-
parametric bankruptcy prediction device.

Before closing this section, we remark that, based on the same argument for bankruptcy predic-
tion, the methods of LLM using prospective data and case–control data are considered to be essen-
tially equivalent.

A REAL DATA EXAMPLE

In this section, a real case–control dataset is analyzed using our SLM method and prediction rules
DAM, LLM and KMV. McKee (2003) pointed out that company asset size and industry are signif-
icant factors affecting bankruptcy status. Thus an ideal approach is to stratify companies according
to industry and asset size and determine prediction model for each stratum. Unfortunately, we did
not have enough data from COMPUSTAT and CRSP databases for doing so. Thus, to illustrate our
method, we simply used two controls to match with one case so that they had the same standard
industry classification (SIC) code and similar company asset size from the same year. By doing this,
it is clear that the company asset size has no more power in discriminating the bankruptcy status of
the company and thus will not be included in the analysis of our example.

We now introduce the case–control dataset. The dataset contains 79 companies that were delisted
and declared bankruptcy (cases) during the period 1994–2002 by COMPUSTAT as meeting Chapter
11 Bankruptcy or Chapter 7 Liquidation. After identifying these companies filing for bankruptcy,
both COMPUSTAT and CRSP databases were searched to locate the latest annual financial data prior
to the delisting date. Thus the annual financial data for the identified bankrupt companies were from
the period 1993–2001. Among the 79 selected bankrupt companies, each was matched with two non-
bankrupt companies, except for two companies only matched with one nonbankrupt company each,
due to the incompleteness of the two databases. Hence our dataset also contains 156 nonbankrupt
companies (controls). The total number of companies in this research was n = 235.The financial
institutions were eliminated from the sample due to the unique capital requirements and regulatory
structure in that industry group.

We note that COMPUSTAT provides 233 companies whose common stocks were traded on the
New York Stock Exchange, American Stock Exchange or NASDAQ, and that were declared bank-
rupt during the period 1994–2002. But since COMPUSTAT and CRSP databases contain many
missing values for the predictors studied in our example, we only found 79 bankrupt companies with
complete predictor values. There are no additional criteria imposed on the bankrupt companies in
our case–control sample. The problem of missing data is not unusual in applications, especially when
there are many predictive variables used in the model. As long as the missingness occurs ‘at random’
then it will not introduce systematic biases in our analyses (Little and Rubin, 2002). We have no
reason not to believe that the missingness occurring in COMPUSTAT and CRSP databases is
‘missing at random’.

Information about industry and company asset size of the selected companies is given in Tables
I and II, respectively. The two-sample median test was performed to test the null hypothesis of equal
magnitude of the asset size for a nonbankrupt company and that for a bankrupt company. The p-
value given in Table II shows that there is no significant difference between both company asset
sizes at significance level 0.05. This result indicates that our matching process has successfully
created similar asset sizes for bankrupt and nonbankrupt companies in our case–control sample.
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For predicting bankruptcy, the values of the nine variables used by Ohlson (1980) and the two
variables suggested by Shumway (2001) were collected for our selected companies from COMPU-
STAT and CRSP databases. The 11 predictive variables are as follows:

1. TLTA = total liabilities divided by total assets.
2. WCTA = working capital divided by total assets.
3. CLCA = current liabilities divided by current assets.
4. NITA = net income divided by total assets.
5. FUTL = funds provided by operations divided by total liabilities.
6. CHIN = (NIt − NIt−1) / (|NIt| + |NIt−1|), where NIt is net income for the most recent period.
7. INTWO = one if net income was negative for the last two years, zero otherwise.
8. OENEG = one if total liabilities exceed total assets, zero otherwise.
9. SIZE = logarithm of total asset divided by GNP price-level index. The index assumes a base

value of 100 for 1991.
10. Relative size = logarithm of each firm’s market equity value divided by the total NYSE/

AMEX/NASDAQ market equity value.
11. Excess return = monthly return on the firm minus the value-weighted CRSP NYSE/

AMEX/NASDAQ index return cumulated to obtain the yearly return.

Note that Ohlson (1980) suggested using the first nine variables as predictive variables. But in
this paper we only used the first eight variables as the predictive variables in our case–control data
analysis. The ninth variable, SIZE, was not used as a predictive variable because the total asset had
already been used as the matching factor in the process of selecting the case–control sample for
study. The last two variables are the market-driven variables used in Shumway (2001).

Table I. The SIC codes of our case–control sample

SIC category Number of bankrupt companies Number of nonbankrupt companies

1000–1999 4 8
2000–2999 11 22
3000–3999 21 40
4000–4999 5 10
5000–5999 18 36
6000–6999 3 6
7000–7999 13 26
8000–8999 4 8
Total companies 79 156

Table II. Summary statistics of company asset sizes (in million US dollars) from our case–control sample

79 bankrupt companies 156 nonbankrupt companies Median-stat (p-value)

Mean 105.103 150.508 0.092 (0.927)
Median 32.211 33.599
SD 290.254 808.741
Min. 1.447 1.636
Max. 2345.800 9794.400
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For predicting bankruptcy, we further computed the KMV–Merton default probabilities pKMV for
the selected companies in our case–control data analysis. The detailed computation procedure of
pKMV can be referred to Bharath and Shumway (2004).

Pairwise scatter diagrams of our case–control sample on the continuous variables are presented
in Figure 1. From the figure, it is clear that the distributions of these variables are fat-tailed and
skewed, and it is very difficult to perform bankruptcy prediction visually, since most data points are
clustered together.

The summary statistics of the 10 predictive variables considered in our case–control data analy-
sis are presented in Table III. For each of these 10 variables, the two-sample median test was per-
formed to test the null hypothesis of equal magnitude for a nonbankrupt company and for a bankrupt
company. The p-value in Table III shows that the null hypothesis of equal magnitude for cases and
controls is significant at the 0.05 level for each predictive variable. This result indicates that each of
these variables should be an effective predictive variable. On the other hand, the summary statistics
and the frequency distribution of the values of pKMV for the selected companies in our case–control
data analysis are shown respectively in Table III and Figure 2. The results also indicate that pKMV

has good predictive power.
Given our case–control sample, the bankruptcy prediction rules associated with DAM, LLM,

KMV and SLM were estimated. Their performance was measured by the out-of-sample error rate,
which was computed on each of the 100 testing samples randomly selected from the given
case–control sample. Each testing sample was composed of 50% of bankrupt companies and their
matched nonbankrupt companies. The data not included in the testing sample were taken as the train-
ing sample, and were used to develop the prediction rule.

Under SLM, kernel function K was taken as the Epanechnikov kernel. To compute the out-of-
sample error rate for the prediction rule based on SLM on each testing sample, the procedure given
in the second section for computing the in-sample total error rate tin(p, bq, bH) = ain(p, bq, bH) + bin(p,
bq, bH) on the training sample was applied to choose the values of (p, bq, bH). We computed tin(p,
bq, bH) on the equally spaced logarithmic grid of 1001 × 501 × 501 values of (p, bq, bH) in [0, 1] ×
[1/10, 15] × [1/10, 15]. Given each value of u ∈ [0, 1], the global minimizer {p̂(u), b̂q(u), b̂H(u)} of
tin(p, bq, bH) on the grid points with the restrictions ain(p, bq, bH) ≤ u and bH > bq was taken as the
selected values for (p, bq, bH).

Using the selected values of {p̂(u), b̂q(u), b̂H(u)} and the training sample, the values ĤCC(xi) and
q̂CC were computed for each data point (xi, zi) in the testing sample. The company with the predic-
tor values (xi, zi) in the testing sample was classified as a bankrupt company if

otherwise a healthy company. After the classification procedure was completed for each company
in the testing sample, the out-of-sample error rates
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Figure 1. Pairwise scatter diagrams of our case–control sample on Shumway’s two market-driven variables,
Excess Return and Relative Size, and Ohlson’s six continuous variables. Each graph plots 156 nonbankrupt
companies (+) and 79 bankrupt companies (×) selected from COMPUSTAT and CRSP databases
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Table III. Summary statistics of variables in our case–control sample

Variable Mean Median SD Min. Max. Median-stat (p-value)

79 bankrupt companies

TLTA 0.801 0.747 0.435 0.020 2.450 −5.432 (0.000)
WCTA 0.040 0.075 0.387 −1.192 0.980 4.511 (0.000)
CLCA 1.711 0.857 3.545 0.020 23.214 −4.603 (0.000)
NITA −0.423 −0.161 0.649 −2.833 0.182 5.891 (0.000)
FUTL −0.335 −0.051 0.921 −4.953 1.279 5.339 (0.000)
CHIN −0.251 −0.363 0.655 −1.000 1.000 3.130 (0.002)
INTWO 0.570 1 0.498 0 1 −4.612 (0.000)
OENEG 0.190 0 0.395 0 1 −3.844 (0.000)
Excess return −0.254 −0.634 1.258 −1.320 6.617 3.682 (0.000)
Relative size −5.803 −5.830 0.675 −7.379 −4.577 4.234 (0.000)
pKMV 0.413 0.331 0.383 0.000 1.000 −6.537 (0.000)

156 nonbankrupt companies

TLTA 0.486 0.478 0.273 0.029 1.926
WCTA 0.276 0.291 0.258 −0.592 0.921
CLCA 0.707 0.509 0.796 0.055 6.904
NITA −0.079 0.024 0.386 −3.800 0.249
FUTL −0.030 0.110 0.715 −3.387 2.544
CHIN −0.015 0.052 0.573 −1.000 1.000
INTWO 0.263 0 0.442 0 1
OENEG 0.038 0 0.193 0 1
Excess return −0.131 −0.289 0.631 −1.246 2.503
Relative size −5.284 −5.320 0.659 −6.838 −2.821
pKMV 0.114 0.001 0.241 0.000 0.989

Figure 2. The frequency histogram of the values of pKMV for the 156 nonbankrupt companies and that for the
79 bankrupt companies in our case–control sample
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of the bankruptcy prediction rule based on SLM were computed, for each given value of u. For the
given value of u, aSLM(u) is the out-of-sample type I error rate of classifying the bankrupt compa-
nies as healthy ones, and bSLM(u) is the out-of-sample type II error rate of classifying the healthy
companies as bankrupt ones from the testing sample. After the computation procedure was com-
pleted for each testing sample, the average of each out-of-sample error rate over the 100 testing
samples was computed.

The same computation procedures were applied to the prediction rules based on DAM, LLM and
KMV. The bankruptcy prediction method based on KMV was performed by taking the predicted
bankruptcy probability p̂(D = 1 | X = xi, Z = zi) as the value of KMV–Merton default probability
pKMV associated with the ith company. Let {aDAM(u), bDAM(u), tDAM(u)}, {aLLM(u), bLLM(u), tLLM(u)}
and {aKMV(u), bKMV(u), tKMV(u)} be similarly defined as the out-of-sample error rates for DAM, LLM
and KMV. The results for applying the four discussed bankruptcy prediction rules to our case–control
data are shown in Figure 3 and Table IV.

Figure 3 presents the three (averaged) out-of-sample error rates for the four prediction models
under one (100) testing sample(s). These error rates were derived under the constraint that the type
I error rate was at most u. If no such constraint is required, we simply take u = 1 and the related
out-of-sample error rates are given in Table IV. For the case of u = 1, both SLM and KMV give
smaller out-of-sample type I error rates than DAM and LLM. Nevertheless, KMV has the largest
out-of-sample type II error rate among the four competing prediction rules. DAM and LLM show
rather similar behavior in the sense of having almost the same averaged out-of-sample types I and
II error rates. In terms of the total error rate, however, Table IV confirms that SLM has the best
overall performance. Thus it is fair to say that by a reasonable margin the most accurate model listed
in Table IV is the SLM.

From Figure 3, we find that similar conclusions to those shown in Table IV can also be drawn.
For u ≤ 0.2, KMV has the smallest averaged out-of-sample type I error rate. However, it also has
the largest averaged type II error rate in this range. For u > 0.2, KMV has a similar averaged type
II error rate to SLM but a larger type I error rate than SLM. For u ∈ [0, 1], DAM and LLM show
very similar performance. However, comparing the four prediction rules based on averaged out-of-
sample total error rate, Figure 3 shows that SLM has the best overall performance.

SIMULATION STUDIES

In this section, a simulation study was performed to compare the performance of the prediction rules
based on DAM, LLM and SLM. We first introduce the simulation settings. The dimension of the
continuous predictor X was d = 2, and that of the discrete predictor Z was q = 1.Two skewed and
fat-tailed distributions for the simulated X = (X1, X2) were considered. In the first case, the skewed
Student’s t distribution (Fernandez and Steel, 1998) with degrees of freedom k and scale parameter
s was considered. The simulated control (nonbankruptcy) Xj values were taken from the skewed
Student’s t distribution with (k, s) = (3, 2) for j = 1, and (7, 4) for j = 2, and those for case (bank-
ruptcy) values (k, s) = (5, −3) for j = 1, and (5, 2) for j = 2 were used. In the second case, the Pareto
distribution (Siegrist, 2005) with shape parameter a and scale parameter s was considered. Similarly,
the values of (a, s) of both Pareto random variables X1 and X2 for controls were (3, 2) and (7, 4),
and those for cases were (5, −3) and (5, 2), respectively.

t a bSLM SLM SLMu u u( ) = ( ) + ( ),
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Figure 3. Parts (a)–(c) show respectively three out-of-sample error rates of the prediction methods associated
with KMV, DAM, LLM, and SLM estimated with one testing sample. Parts (d)–(f) show respectively the aver-
ages of the three out-of-sample error rates over the 100 testing samples. Each testing sample was composed of
50% of bankrupt companies and their matched nonbankrupt companies in our case–control sample

Table IV. Given the value of u = 1, the values of the three out-of-sample error rates shown in (a)–(c) of Figure
3, and those shown in (d)–(f) of Figure 3 (given in parentheses)

KMV DAM LLM SLM

Type I error rate 0.250 (0.253) 0.375 (0.290) 0.350 (0.296) 0.200 (0.202)
Type II error rate 0.405 (0.328) 0.241 (0.278) 0.228 (0.287) 0.291 (0.321)
Total error rate 0.655 (0.581) 0.616 (0.568) 0.578 (0.583) 0.491 (0.523)

Given marginal distributions of X, the simulated control X values with size 200 were generated
using mean vector (m0, 0) and covariance matrix
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and their associated Z values were independently generated from a binary random variable with the
probability p(Z = 1) = 1/3.The simulated case X values with size 100 were similarly generated with
mean vector (m1, 0) and covariance matrix

and their associated Z values were independently generated from a binary random variable with the
probability p(Z = 1) = 2/3. Two sets of the values (m0, m1) = (−0.1, 0.1) and (−0.3, 0.3) were con-
sidered. For each distribution of X and each set of values (m0, m1), 100 independent sets of the
case–control data were generated. Given each case–control data set, one testing sample was ran-
domly selected, and was composed of 50% of cases and their matched controls.

Three bankruptcy prediction methods based on DAM, LLM and SLM were considered in this sim-
ulation study. The computation procedures and the measures of performance presented in the third
section were applied to the three prediction methods. For SLM, the equally spaced logarithmic grid
of 201 × 201 values of (bq, bH) in [1/10, 2] × [1/10, 2] were employed for selecting values of (bq, bH),
and the Epanechnikov kernel was used. The simulation results are presented in Figures 4 and 5.

Figure 4 presents averages of out-of-sample error rates over the 100 simulated datasets for the
three bankruptcy prediction methods under the case of the skewed Student’s t distribution for X.
From the figure, our SLM performs better than DAM and LLM, since for most values of u our pre-
diction method has a smaller average of out-of-sample error rate of any type. Further, the smaller
the absolute difference | m0 − m1 |, the more significant the advantage of SLM over DAM and LLM.
The forecasting performance of the three prediction methods in the case of the Pareto distribution
for X is shown in Figure 5. The results from Figure 5 also confirm that SLM has the best overall
performance.

CONCLUDING REMARKS AND FUTURE RESEARCH TOPICS

In this paper, bankruptcy prediction methods based on SLM are proposed for the prospective and
the case–control data. Our SLM is developed by replacing the linear logit function of the LLM with
an unknown but smooth logit function. Hence it is more flexible and robust than the LLM. The esti-
mators for unknown quantities in the SLM are computed by the local likelihood method, and their
large sample properties are studied through their asymptotic biases and variances. We point out that,
under the case–control data, the estimated bankruptcy probability does not estimate the true bank-
ruptcy probability, unless the quantity c* = log{p(D = 0)/p(D = 1)} + log(n1/n0) is 0. In contrast, for
the prospective data, our estimated probability does estimate the true bankruptcy probability. This
is the major difference between the applications of the logit model to the case–control sample and
the prospective sample. However, using the fact that the logistic distribution is strictly monotone
increasing, we discover that such estimated probability still can be used to develop a bankruptcy
prediction device.

To decide the optimal prediction rule, we propose to control the in-sample type I (II) error rate to
be at most u, so that the sum of in-sample type I and II error rates is minimal. This is sometimes
essential since the type I (II) error would cause much more severe losses to the investors. The value
of u ∈ [0, 1] is determined by the investor. If u = 1, then there is no restriction on the magnitude of
in-sample type I and II error rates. Our results from one real data example based on eight predictor
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variables of Ohlson (1980) and two market-driven variables of Shumway (2001) and simulations
confirm that the SLM performs better than the DAM, LLM and KMV, in the sense of having smaller
out-of-sample total error rate.

In applications of the SLM to the bankruptcy prediction problem with case–control data, the rela-
tion between the d-dimensional predictive variable x and the logit of bankruptcy probability can be
obtained from the plot of the estimated function ĤCC(x). For example, the relation between the jth
component of x and the logit of bankruptcy probability can be seen from the plot of ĤCC(x) with the
fixed values of other components of x with respect to the jth component of x, for each j = 1, . . . , d.
The same remark applies to the plot of ĤR(x) with prospective data.

In order to estimate the SLM, we need to decide proper values of the bandwidth parameters 
bq and bH. In this paper, we suggest estimating the bandwidth parameters so that the sum of the 

Figure 4. Given (m0, m1) = (−0.1, 0.1) in the case of the skewed Student’s t distribution for X, parts (a)–(c) show
respectively the sample averages of the three out-of-sample error rates of the prediction methods based on
DAM, LLM and SLM over the 100 simulated case–control datasets. For each simulated case–control dataset,
one testing sample was randomly selected, and was composed of 50% of cases and their matched controls. The
corresponding results for the case of (m0, m1) = (−0.3, 0.3) are shown in parts (d)–(f)
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corresponding in-sample type I and II error rates is minimized subject to some restrictions. This
approach may suffer from the heavy computational burden. One possible remedy for this drawback
is to use the plug-in method to estimate these bandwidth parameters. For example, given case–control
data, we may determine the bandwidth parameter to minimize the estimated mean square error of
each estimator ĤCC(x) and q̂CC. For more discussion of the plug-in method, see, for example, Härdle
et al. (1992) and Jones et al. (1996).

In the case of massive data, a remedy for reducing the computational burden for SLM is to bin
the data. See Fan and Marron (1994) and the monograph by Härdle (1991) for a detailed introduc-
tion of the binning method. On the other hand, in the case that there is a large number of predictors
available, we may perform variable selection for SLM. See, for example, Härdle et al. (2006) for a
variable selection method based on forward selection. These two topics are important in practice.
They are our future research topics.

Three extensions of SLM are outlined below. Firstly, Shumway (2001) criticized that the bank-
ruptcy model using single period data is static in nature, since it ignores the fact that the character-

Figure 5. As Figure 4, with the skewed Student’s t distribution for X replaced by the Pareto distribution for X
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istics of firms change through time. To avoid the drawback to the static model, Shumway (2001)
and Chava and Jarrow (2004) apply the idea of survival analysis (Cox and Oakes, 1984) to develop
the discrete-time hazard model (DHM) for bankruptcy prediction. Their DHM has the advantage of
using all available history information to determine each firm’s bankruptcy risk at each point in time;
hence it is a dynamic forecasting model. However, their DHM is also based on the assumption of
simple linear logit relation for the hazard function. This assumption may not be valid as in the LLM.
We point out that the idea of SLM can also be directly applied to the DHM using panel data.

Secondly, in the SLM, we assume that H(x) is an unknown but smooth function, and a local like-
lihood method has been developed to estimate H(x). However, the resulting estimator ĤCC(x) suffers
from the curse of dimensionality; that is, as the dimension of the continuous predictor X increases,
the performance of the resulting ĤCC(x) deteriorates. For example, from Remark 1 of Appendix A,
the minimum mean square error of ĤCC(x) with respect to bH is of order n−4/(d+4) in magnitude. Such
mean square error increases as the value of d increases. To avoid such a drawback, one possible
remedy is to consider an additive model for H(x):

as described by Hastie and Tibshirani (1990). Here x = (x1, . . . , xd)T and Hj(xj) is any unknown but
smooth function of xj, the jth component of x, for each j = 1, . . . , d. This is basically equivalent to
mapping the original predictors to the transformed variables having the desired linear relation in the
LLM.

Finally, the logit function of our SLM is basically an additive model with H(X) and qZ. This
assumption will be violated if X and Z are interactive. A possible solution to this problem is to intro-
duce a nonparametric interaction such as G(X)Z, where G(·) is a q-dimensional row vector of
unknown but smooth functions, in the model. It will be interesting to study the estimates of func-
tions H(x) and G(x) simultaneously.

APPENDIX A: THEORETICAL RESULTS

In Appendix A, we shall study the asymptotic properties of estimators Ĥ(x), q̂CC and ĤCC(x) given
in the second section with case–control data. For these, the composition of the case–control sample
and the formulations of these estimators are recalled. According to the case–control sampling, we
draw a random sample of nonbankrupt companies of n0 observations (controls), say (x1, z1), . . . , 
(xn0

, zn0
), from the conditional distribution of (X, Z) given D = 0, and an independent random sample

of bankrupt companies of n1 observations (cases), say (xn0+1, zn0+1), . . . , (xn, zn), where n = n0 + n1,
from the conditional distribution of (X, Z) given D = 1. Hence we have the case–control sample 
(Di, xi, zi), i = 1, . . . , n, where Di = 0 for i ≤ n0, and 1 for i > n0. Thus if f0(x, z) = f(x, z | D = 0) and
f1(x, z) = f(x, z | D = 1) are the conditional frequency functions of (X, Z) given D = 0 and 1, respec-
tively, then from Bayes theorem and (1), these two frequency functions can be related by

(5)

where H*(x) = H(x) + log{p(D = 0)/p(D = 1)}.
Given the case–control sample and the bandwidth parameters bq and bH, by the development of

the logistic regression in the case–control setting given in Section 6.3 of Hosmer and Lemeshow

f x z f x z H x z1 0, ,( ) = ( ) ( ) +{ }exp * ,q

H x H x H xd d( ) = ( ) + + ( )1 1 . . . ,
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(1989), the log-likelihood functions corresponding to Ĥ(x), q̂CC and ĤCC(x) given in the second
section with general kernel function K can be expressed respectively as

(6)

(7)

(8)

Note that the parameter b in (6) and (8) represents the unknown quantity H(1)(x)T, as it did in (3)
and (4), with x replaced by x0. But a in (6) and (8) stands for H(x) + c*, not as it did in (3) and (4)
for H(x), with x replaced by x0. Here c* = log{p(D = 0)/p(D = 1)} + log(n1/n0), and it has been defined
in the second section. Hence the maximum likelihood estimates of a produced from (6) and (8)
would be estimates for H(x) + c*, not for H(x). This fact causes the major difference between the
applications of the logit model to the case–control sample and the prospective sample.

To study the asymptotic properties of Ĥ(x), q̂CC and ĤCC(x), we need the following conditions:

C1. Kernel function K(u) is a symmetric and Lipschitz continuous probability density function sup-
ported on [−1, 1], and is bounded above zero on [−1/2, 1/2].

C2. n0/n → z ∈ (0, 1), as n → ∞.
C3. Bandwidth parameters bq, bH ∈ [dn−1+d, d−1n−d], for some d satisfying 0 < d < 1/2. They also

satisfy nbq
d+2 >> 1 >> bq and nbd

H >> 1 >> bH >> bq. The notation an >> bn means that bn/an →
0, as n → ∞.

C4. The d-variate function H(x) is defined on [0, 1]d, and each of its second-order partial derivative
is Lipschitz continuous on [0, 1]d.

C5. Under control and case populations, their respective marginal densities f0(x) and f1(x) of X are
Lipschitz continuous and bounded above zero on [0, 1]d. Also, their corresponding conditional
probabilities f0(z | x) and f1(z | x) of Z given X = x cannot be zero or one for each given x, and
are Lipschitz continuous with respect to x.

Conditions C1–C4 are regular for the usual nonparametric regression analysis. The support [0, 1]d

in C4 and C5 of the d-dimensional variable X is given for simplicity of presentation. It can be
replaced with any bounded region Ω ⊂ Rd, and the asymptotic properties for the resulting q̂CC and
ĤCC(x) remain unchanged. The first part of condition C5 guarantees that the design points X, under
control and case populations, have no holes on [0, 1]d. The second part of C5 makes sure that the
Hessian matrix for each �1(a, b, q) and �3(a, b) is invertible.

In order to give concise expressions for the asymptotic properties of Ĥ(x), q̂CC and ĤCC(x), we
need more notations. Let
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Q be the collection of all values of the discrete q-dimensional variable Z, and I1 be the (1 + q) ×
(1 + q) identity matrix with the first column vector of the identity matrix deleted, for i, j = 1, . . . ,
d and k ≥ 0. Here K*(t) is the d-variate Lejeune–Sarda kernel function of order two (Lejeune and
Sarda, 1992). In particular, given the point x ∈ [0, 1]d, the kernel function K, and the bandwidth
b, K*(t) can be expressed as

and its corresponding values cij become

Define

Define quantities related to the asymptotic biases and variances of Ĥ(x), q̂CC and ĤCC(x) in the 
following:

If x is in the interior region [b, 1 − b]d of [0, 1]d, then it can be seen that the values of cH(x; b) and
vH,1(x; b) become
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The following Theorem 1 states the asymptotic bias and variance for Ĥ(x), and those for q̂CC and
ĤCC(x). Its proof will be given in Appendix B.

Theorem 1: Under the SLM and the case–control sample, suppose that conditions C1–C5 are sat-
isfied. For each x ∈ [0, 1]d and as n → ∞:

(9)

(10)

(11)

(12)

(13)

(14)

Remark 1: The optimal kernel function K and the magnitudes of the optimal bandwidth parame-
ters b*q and b*H for constructing q̂CC and ĤCC(x). By Theorem 8 of Fan et al. (1993) and our Theorem
1, the optimal K satisfying the conditions in C1 for constructing ĤCC(x) is the Epanechnikov kernel,
for each x ∈ [0, 1]d, in the sense of having smaller asymptotic mean square error. On the other hand,
by (13) and (14), the optimal choice of bH, in terms of having smallest mean square error of ĤCC(x),
is b*H = c*Hn−1/(d+4), where c*H is a constant depending on the unknown factors H(·), q and f0(x, z). Sim-
ilarly, by (9)–(12) and C3, the optimal value b*q of bq, in terms of having smallest mean square error
of q̂CC, satisfies the condition n−1/(d+4) >> b*q >> n−1/(d+2). Hence we conclude that the value of b*H is of
larger order than that of b*q , and that the mean square error of ĤCC(x) using the optimal bandwidth
parameter bH* is of smaller order in magnitude than that of Ĥ(x) using b*q.

APPENDIX B: SKETCHES OF THE PROOFS

In Appendix B, sketches of the proof for Theorem 1 will be given. The following notations will be
used. Let �j

(1) and �j
(2) be the gradient vector and the Hessian matrix of �j, for each j = 1, 2, 3, given

in (6)–(8), respectively. Also, H(2)(x) is the Hessian matrix of H(x). Define P0 as the event 
that the number of control data points falling into the neighborhood N(x; b/2) of x is less than 
r0n0�N(x; b/2)f0(t)dt, where r0 is a positive constant satisfying r0 ≤ 1/4, and Q0 the event that the number
of control data points falling into the neighborhood N(x; b) of x is greater than j0n0�N(x; b)f0(t)dt, where
j0 is a positive constant satisfying j0 ≥ exp(1). The definition of neighborhood N(x; b) of the given
point x has been given in (3). The events P1 and Q1 are similarly defined for case data points with
n0, f0, r0 and j0 replaced respectively by n1, f1, r1 and j1.

The proofs of the asymptotic bias and variance for each Ĥ(x), q̂CC and ĤCC(x) are given below in
sequence.
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Proof of the asymptotic bias and variance for Ĥ(x)
Set w = (a, b, q)T and ŵ = (â , b̂, q̂)T, the maximizer of �1(a, b, q) in (6). By the first-order Taylor
expansion, we have

(15)

for each x ∈ [0, 1]d, where w* lies in the line segment connecting w and ŵ .
Using conditions C1–C5, (5), and the large deviation theorem in Section 10.3.1 of Serfling (1980),

a straightforward calculation leads to the following asymptotic results: as n → ∞,

(16)

(17)

(18)

(19)

for each w. Here

where

Using condition C3 and the results of (16)–(19) and comparing the magnitudes of �1
(1)(w) =

Op(nb2
q + n1/2bq

−d/2) and �1
(2)(w*) = Op(n) in (15), we have

(20)

Using (15)–(20) and approximations to the standard errors of functions of random variables in
Section 10.5 of Stuart and Ord (1987), the results of the asymptotic bias and variance of Ĥ(x) in (9)
and (10) follow, respectively.

Proof of the asymptotic bias and variance for q̂CC

Set g = (q0, q) and ĝ = (q̂0, q̂CC), the maximizer of �2(q0, q) in (7). Using the fact that q0 is a nor-
malizing constant for f1(x, z) = f0(x, z)exp{Ĥ(x) + q0 + qz}, the results of the asymptotic bias and
variance of Ĥ(x) in (9) and (10), C1–C5, (5), and approximations to the standard errors of functions
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of random variables, through a straightforward calculation, we have exp(q0) = (1 + b2
qc1 + c2)−1{1 +

op(1)}. Here c1 = �1
0 . . . �1

0 f1(x)cH(x; bq)dx, c2 = �1
0 . . . �1

0 f1(x)[Ĥ(x) − E{Ĥ(x)}]dx. Next, using this
result and C1–C5, through a straightforward calculation, we have, as n → ∞,

(21)

(22)

(23)

for each g.
Following the same arguments as those of (15) and (20) and using (21)–(23), we have ĝ − g =

op(1). Combining this result and using approximations to the standard errors of functions of random
variables in Section 10.5 of Stuart and Ord (1987), the results of the asymptotic bias and variance
of q̂CC in (11) and (12) follow, respectively.

Proof of the asymptotic bias and variance for ĤCC(x)
Set h = (a, b)T and ĥ = (â, b̂)T, the maximizer of �3(a, b) in (8). Using C1–C5, (5), the asymptotic
bias and variance of q̂CC in (11) and (12), and approximations to the standard errors of functions of
random variables, we have, as n → ∞,

(24)

(25)

(26)

for each h, where

Following the same arguments as those of (15) and (20) and using (16) and (24)–(26), we have
ĥ − h = op(1). Combining this result with (24)–(26) and using approximations to the standard errors
of functions of random variables, the results of the asymptotic bias and variance of ĤCC(x) in (13)
and (14) follow, respectively. Hence the proof of Theorem 1 is completed.
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