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Abstract

Brown and Gibbons [Brown, D.P., Gibbons, M.R., 1985. A simple econometric approach for utility-
based asset pricing model. Journal of Finance 40, 359–381], Karson et al. [Karson, M., Cheng, D., Lee, C.
F., 1995. Sampling distribution of the relative risk aversion estimator: theory and applications. Review of
Quantitative Finance and Accounting 5, 43–54], and Lee et al. [Lee, C.F., Lee, J.C., Ni, H.F., Wu, C.C.,
2004. On a simple econometric approach for utility-based asset pricing model. Review of Quantitative
Finance and Accounting 22, 331–344] developed the theory and the distribution of unconditional relative
risk aversion (RRA) estimates in utility-based asset pricing model by assuming normality for the log excess
returns. While the normality assumption is not always appropriate for some security returns, Brown and
Gibbons [Brown, D.P., Gibbons, M.R., 1985. A simple econometric approach for utility-based asset pricing
model. Journal of Finance 40, 359–381] proposed generalized method of moments (GMM) to estimate
unconditional RRA. However, RRA estimated by GMM is not statistically efficient with finite samples.
The main purpose of this paper is to derive the process of estimating dynamic RRA with the maximum
likelihood and a Bayesian method having a weakly informative prior density while assuming that the log
excess returns on the market are distributed as normal mixture GARCH(1,1). This methodology will
capture the variations of RRA across different periods. Empirical results are presented using market rates of
returns and risk-free rates over the period 1941 to 2001.
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1. Introduction

For the last several decades, utility-based asset pricingmodels have been investigated extensively
and attracted some empirical attention in financial economics. The power utility function defined
over consumption states with coefficient of relative risk aversion (RRA) and rate of time preference
is the most commonly utilized preference specifications. Hansen and Singleton (1982, 1983)
postulated that the pricing kernel is a power function of aggregate U.S. consumption and estimated
the parameters of the power pricing kernel. Hansen and Jagannathan (1991) derived bounds of the
consumption-based pricing kernel from the mean and standard deviation of the market portfolio
excess returns.

Furthermore, because the unknown parameter of isoelastic utility function is RRA, Brown and
Gibbons (1985) and Alonso et al. (1990) have argued that using this utility function can provide
precious information for several reasons. First, since some theoretical results in finance rely on log
utility function (i.e., β=1)(see, Hakanson (1970), Kraus and Litzenberger (1975), Rubinstein
(1977), Cox, Ingersoll, and Ross (1985)), wemust make appropriate judgment on these results when
RRA is significantly different from one. Second, when we are confronted with the demand for risky
assets and the savings decisions, the demand for risky assets depends on the magnitude of RRA (see,
Rothschild and Stiglitz, 1971). Third, there are many research papers dealing with the issue whether
stock prices have excessive volatility relative to the degree of aggregate risk aversion (see, Grossman
and Shiller, 1981).

Moreover, Lucas (1978), Grossman and Shiller (1981), Duan and Singleton (1986) used
aggregate consumption data for empirical analyses. However, Ermini (1989), Wilcox (1992), and
Slesnick (1998) have discussed that analyses in terms of aggregate consumption data are affected by
measurement problems, such as coding errors, imputation procedures, definitional problems, and
sampling error. In addition, Campbell (1993) and Rosenberg and Engle (2002) have indicated that
studies in use of these data, which aremeasuredwith error and are time-aggregated, will have serious
consequence for asset pricing relationships. In order to avoid these problems, Brown and Gibbon
(1985), Bansal and Viswanatham (1993), Campbell (1993), and Rosenberg and Engle (2002)
replaced the aggregate consumption return with a proxy for the market portfolio return if the
consumption was a constant proportion of wealth. Rosenberg and Engle (2002) also pointed out that
pricing model estimation over equity return states may yield more intuition into investor risk
aversion than estimation over National Income and Product Accounts (NIPA) consumption states if
the market return is a better proxy of the true consumption return than the data from NIPA.

On the other hand, analyzing the distribution of asset returns data has been an important research
area in financial economics. Accordingly, utility-based models of the asset pricing are of particular
interest while the distribution of returns can be suitably determined and explained. When the excess
return on the market portfolio is distributed as a lognormal distribution, Brown and Gibbons (1985),
Karson et al. (1995), and Lee et al. (2004) have proposed different methods for estimating
unconditional relative risk aversion (RRA), β, and derived the exact sampling andBayesian estimators
of RRA. However, it is well known that the normal distribution may not be adequate for the log asset
returns. The empirical findings seem to indicate that the unconditional and conditional distributions of
log asset returns are not symmetric and have fat tails relative to the normal distribution.

Therefore, Brown and Gibbons (1985) dropped the distributional assumption and recommended
using generalizedmethod of moments (GMM) to estimate unconditional RRA. GMM estimates and
their standard errors are consistent even though residuals are heteroskedastic. However, the GMM
can be applied only to large samples. In most cases GMM estimates are asymptotically efficient, but
they are hardly efficient at finite samples. In addition, we found that the unconditional RRA
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estimates vary a lot across different sub-periods in Brown andGibbons (1985) and, Lee et al. (2004).
Hence, estimatingRRAbased on unconditional and fixedmoments will not capture the phenomenon
of structural changes.

Even though a variety of evaluation methods have been proposed and implemented to RRA
estimator to date, they have mostly depended on GMM or the classical statistical framework.
However, parameter estimation risk and model mispricing risk are usually ignored in the classical
statistical framework. Therefore, Pastor and Stambaugh (2000) assumed normality of returns and
presented the Bayesian set-up, which factored uncertainties in both parameter estimation and
model mispricing into investors' decision making.

Although many appropriate distributions have been proposed to analyze asset returns, the RRA
estimator does not always have a solution by assuming asset returns distributed as any distribution.
Thus, this paper extended Brown and Gibbons (1985) and used the NM(K)-GARCH model, i.e. the
model where errors have K-component normal mixture distribution with generalized autoregressive
conditional heteroscedasticity (GARCH) variance process, to obtain more efficient dynamic RRA
estimator and its distribution. The primary purpose of this paper is to derive the process of estimating
dynamic RRA while assuming that the log excess returns on the market are distributed as NM(K)-
GARCH(1,1). On the part of the parameter estimation, we not only present the classical maximum
likelihood but also recommend aBayesianmethod,which combines an investor's prior belief about the
accuracy of the pricing model and the information in the data, with a weakly informative prior density.

The rest of this paper is organized as follows. In Section 2, we briefly review the literature of
RRA estimation. In Section 3, we present the NM(K)-GARCH(1,1) model, maximum likelihood
estimate of RRA, and a Bayesian approach to estimate RRA. Some simulation studies are shown
in Section 4. In Section 5, we describe the data and RRA estimation results using three different
approaches. Finally, we conclude the results in Section 6.

2. Literature review

Brown and Gibbons (1985) used the well known Euler condition for the dynamic consumption-
portfolio problem faced by a representative individual under uncertainty to derive a relationship
between RRA and the moments of security returns. In their work, the utility function in period t from
consumption Ct follows power (or isoelastic) utility, that is,

UðCtÞ ¼ C1−bt
t −1
1−bt

ð1Þ

where βt=−U″(Ct)Ct AU′(Ct) is RRA at time t. Furthermore, in order to avoid measurement problems
with consumption, most early researches on utility-based asset pricing models replaced aggregate
consumption with the return on some proxy for the market portfolio. Through above assumptions, the
first-order necessary condition for optimality with a time additive derived by Brown and Gibbons
(1985) is

E½ðxt−1Þd x−btt jIt−1� ¼ 0 ð2Þ
where

It−1 Information set available to the market in period t−1,
xt (1+Rmt) (1+Rft), the excess return on the market,
Rmt Return on the market portfolio,
Rft Return on the riskless asset.
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Assuming the existence of relevant moments, the law of iterated expectations applied to Eq.
(2) implies

E½ðxt−1Þx−btt � ¼ 0: ð3Þ
Although individuals have changing conditional expectations through time, the econometrician,

by relying on Eq. (3), can still construct a valid test of the theory based on unconditional and fixed
moments. Hence, most previous literatures claimed that it is not necessary to specify a model for the
conditional expectations or even the variables which affect these conditional expectations and only
estimated the static RRA, called β instead of βt in this paper, during some specific periods.

Rubinstein (1976) proposed estimating β by assuming that the excess return on the market has
a lognormal distribution, i.e., log xt ∼N(μ,σ2), and derived

b ¼ l
r2

þ 1
2
: ð4Þ

Following Brown and Gibbons (1985), a natural maximum likelihood estimator for β is

b̂ ¼ l̂

r̂2
þ 1
2
;

where l̂ ¼ 1
T

PT
t¼1 logxt and r̂2¼ 1

T

PT
t¼1ðlogxt− l̄ogxt Þ2.

Using the asymptotic theory, they also derived the variance of
ffiffiffiffi
T

p
b̂ as:

Varð
ffiffiffiffi
T

p
b̂Þ ¼ 2½EðlogxtÞ�2 þ Var½logxt�

½VarðlogxtÞ�2
: ð5Þ

Alternatively, following Karson et al. (1995), the minimum variance unbiased (MVU)
estimator of β is

b̂ ¼ ðT−3Þ l̂

ðT−1Þ r̂2
þ 1
2
: ð6Þ

Brown and Gibbons (1985) pointed out that estimate of β is inconsistent when the distribution
of log excess returns is a departure from normality. In order to remedy this weakness, they made
use of the generalized method of moments to estimate RRA. Therefore, RRA could be estimated
by finding the value β̂ which satisfies the equation,

f ð b̂Þ ¼ 1
T

X
t
ðxt−1Þx− b̂

t ¼ 0; ð7Þ

where β̂ ∈ (0,+∞) , and the asymptotic variance is

Varð
ffiffiffiffi
T

p
b̂Þ ¼ Ef½ðxt−1Þx− b̂

t �2g
½Efðxt−1Þx−bt logxtg�2

: ð8Þ

3. Methodology and estimation

The finite mixture model has a long and illustrious history in statistics. Starting with Newcomb's
(1886) application of the normal mixture model for outliers, it has provided a mathematics-based
approach to the statistical modeling of a wide variety of random phenomena. The maximum
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likelihood estimation and its inference have become very popular with the advent of the EM
algorithm of Dempster et al. (1977). Furthermore, with the advent of inexpensive, high-speed
computers and the rapid development in posterior simulation techniques such as Markov chain
Monte Carlo (MCMC) methods for enabling the Bayesian analysis to be undertaken, practitioners
are increasingly turning to Bayesian methods for the analysis of complicated statistical models.
Historical literatures, the latest inferential developments, and the applications associated with finite
mixture models are given in Titterington, Smith, and Makov (1985), Mclachlan and Peel (2000).

Owing to its greater flexibility, the normal mixture model has also been found superior for
describing the distribution of asset returns. Kon (1984) found positive skewness in the individual
returns of the stocks that make up the Dow Jones Index and proposed a mixture of normal
distributions as a suitable framework for capturing the skewness. Boothe and Glassman (1987)
also argued that the normal mixture distribution offers a better description of exchange rate
returns than the normal model.

The family of K-component normal mixtures is capable of exhibiting the skewness and excess
kurtosis characteristics of economical and financial data. The advantages of normal mixtures are the
valid distributional assumption and the ease in financial explanations. For example, the normal
mixture formulation allows for a sensible interpretation of two or more heterogeneous groups of
market participants. Consequently, bullish and bearish investors could behave differently.Moreover,
the mixture can also be interpreted as representing trading days of different types. For instance,
returns on the stock market on Mondays will follow the prevailing trend from the previous Friday,
and this phenomenon is viewed as theMonday effect. Besides, there are also January effect, October
effect, etc., and these phenomena may cause the stock's behavior in specific months to depart from
the other trading months. Furthermore, some substantial political or economical policies may give
rise to a component with relatively high or low variance and smaller weight.

Since Engle (1982) first found that volatility shows a clustering phenomenon, numerous
academic literatures have proposed a variety of models to predict future volatilities and exhibit
market volatilities which are more predictable than market returns. However, most of those papers
assume that the conditional distributions of the asset returns are symmetric, such as normal or
student-t models. Recently, Haas, Mittnik and Paolella (2004) improved these drawbacks and
proposed NM(K)-GARCH(p,q) models with an inter-dependent autoregressive evolution for the
variance series to capture the non-zero conditional excess kurtosis and sknewness. However, the
results of Haas et al. (2004) exhibited that neither the dependence of component variances nor the
inclusion of more than one lag in the conditional variance equations are significant. Therefore,
Alexander and Lazar (2005) recommended using a simpler NM(K)-GARCH(1,1) models to
exchange rate modeling. Throughout this paper, we estimate RRA by applying NM(K)-GARCH
(1,1) model to log market excess returns.

The log market excess returns, Yt, distributed as NM(K)-GARCH(1,1), is specified as follows:

YtjIt−1fNMðp1; : : : ; pK ; l1; : : : ; lK ; r21;t; : : : ; r2K;tÞ;
r2j;t ¼ wj þ aje

2
t−1 þ bjr

2
j;t−1; ð9Þ

where
PK

j¼1 pj ¼ 1;
PK

j¼1 pjlj ¼ l; et−1 ¼ yt−1−l; wjN0; aj; bjz0; and aj þ bjb1for j ¼ 1;

: : : ;K. The conditional density function of yt is f ðytjIt�1Þ ¼ PK
j¼1

pj/jðytjIt�1Þ and /j

ðytjIt−1Þ is normal density function with mean μj and variance σj,t
2 .

For the mixture model, the number of required component densities is unknown and need to be
empirically determined generally. Unfortunately, standard likelihood ratio test (LRT) theory
breaks down in this framework (see, McLachlan and Peel, 2000). However, standard model
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selection criteria such as AIC (Akaike, 1973) and BIC (Schwarz, 1978) are widely used to
compare models with different numbers of components. For a model with d parameters, sample
size T and log-likelihood ℓ, evaluated at the maximum likelihood estimator, AIC= −2ℓ+2d and
BIC=−2ℓ+d logT. When logTN2, it can be found that the penalty term of BIC penalizes
complex models more heavily than AIC. Hence, AIC tends to fit too many components, and BIC
is more conservative in that it favors more parsimonious models. Furthermore, the literatures on
mixtures provide some encouraging evidence in the context of unconditional model and suggest
that BIC provides a reasonably good indication for the number of components (see, Roder and
Wassermann, 1997; McLachlan and Peel, 2000). For this reason, we will use BIC to determine the
number of required component densities in empirical studies.

3.1. ML estimation of dynamic RRA

Given a sample of T observations, yt, from the NM(K)-GARCH(1,1) model, the conditional
likelihood function is

LðWÞ ¼ P
T

t¼2

XK
j¼1

pj/jðytjIt−1Þ
" #

; ð10Þ

whereΨ are all parameters of the NM(K)-GARCH(1,1) model.Maximization of L(Ψ ) with respect to
Ψ, for given data y=(y1, y2,… , yT), yields the maximum likelihood estimate of Ψ. Equivalently, and
more usually, the quantity to be maximized is the log-likelihood ℓ(Ψ ) = log L(Ψ ). For simple
parametric models, he maximum likelihood approach is very popular, partly because it fits into the
philosophy of likelihood-based inference (consistency, asymptotic efficiency, and invariance), partly
because of the existence of attractive asymptotic normality theory, and partly because the estimates are
often easy to compute. For the normal mixture model, however, we discover that the computational
aspect is not always so straightforward. Therefore, we will apply the EM algorithm (see, Aitkin and
Tunnicliffe Wilson, 1980), with the complete data conditional likelihood for Ψ given by

LcðWÞ ¼ P
T

t¼2

XK
j¼1

p
ztj
j ½/jðytjIt−1Þ�ztj

" #
; ð11Þ

where ztj=1 or 0 according to whether yt did or did not arise from the jth component of the mixture.
Then, the complete data conditional log-likelihood is

ℓcðWÞ ¼
XT
t¼2

XK
j¼1

zt j logpj þ log/jðytjIt−1Þ
� �

: ð12Þ

Suppose that Ψ is known and equal to Ψ (m), the observed complete log-likelihood is given by

QðW;WðmÞ; yÞ ¼ EjℓcðWÞjy;WðmÞj
¼
XT
t¼2

XK
j¼1

E½ztjjy;WðmÞ� � ½logpj þ log/jðytjIt−1Þ�
h i

¼
XT
t¼2

XK
j¼1

wðmÞ
tj ðWðmÞÞ � ½logpj þ log/jðytjIt−1Þ�

h i
ð13Þ

where wðmÞ
tj ðWðmÞÞ ¼ pðmÞj /jðytjIt−1;W

ðmÞÞ=PK
j¼1 p

ðmÞ
j /jðytjIt−1; jWðmÞÞ.
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Therefore, the EM Algorithm is as follows:

1. E-step: Compute Q(Ψ;Ψ (m), y).
2. M-step: Maximize numerical Q(Ψ;Ψ (m), y) with respect to Ψ and get updated estimates of the

parameters, denoted by Ψ (m+1).
3. Repeat E-step and M-step until ℓ(Ψ ) converging to a local maximum. We stop the iteration if

|ℓ(Ψ (m+1))−ℓ(Ψ (m))|b10−8.

For a transformed version of Eq. (2), we assume that log xt, the log excess returns on the
market, follow NM(K)-GARCH(1,1) model. So,

ytjIt−1 ¼ logxtjIt−1ffNMðp1; : : : ; pK ; l1; : : : ; lK ; r21;t; : : : ; r2K;tÞ;

And consequently we have

E½x−btt jIt−1� ¼
XK
j¼1

pje
−ljbtþ

r2
j;t
b2t
2 : ð14Þ

Substitution in Eq. (2) gives

gðbtjIt−1; lj; r
2
j;t; j ¼ 1; : : : ;KÞ ¼

XK
j¼1

pje
ljð1�btÞþ

r2
j;t
ð1�bt Þ2
2 −

XK
j¼1

pje
−ljbtþ

r2
j;t
b2t
2 ¼ 0: ð15Þ

Given that the excess returns on the market portfolio is NM(K)-GARCH(1,1) model, Eq. (15)
provides a relationship between dynamic RRA and the parameters of the NM(K)-GARCH(1,1)
model. Since log xt|Zt−1 has a normal mixture distribution, the MLE of RRA has no analytical
form. However, because a continuous function of maximum likelihood estimators is also a
maximum likelihood estimator (Zehna, 1966), β̂ t satisfying the following equation has all of the
well known properties of the maximum likelihood estimator,

gð b̂tjIt−1; l̂j; r̂2j;t; j ¼ 1; : : : ;KÞ ¼
XK
j¼1

p̂je
l̂j 1− b̂tð Þþ r̂2

j;t
ð1− b̂t Þ2
2 −

XK
j¼1

p̂je
− l̂j b̂tþ

r̂2
j;t

b̂
2
t

2 ¼ 0:

ð16Þ
where σ̂j,t

2 =ŵ+âjεt−1
2 + b̂j σj,t−1

2 for j=1,…,K.
In the Appendix, we prove that the function gðbjIt−1; lj; r

2
j;t j ¼ 1 : : : KÞ is a strictly

decreasing continuous function, so Eq. (16) has a unique solution. In addition, Fig. 1 illustrates
the nonlinear search for βt, when the other parameters μj,σj,t

2 are fixed.
One way of obtaining some inferences about the parameters in a NM(K)-GARCH(1,1) model

is based on the asymptotic theory. The standard errors of the parameter estimates are obtained
from the inverse of the observed information matrix. However, the only difficulty with this
method is the determination of the asymptotic variance of the estimator basing on the large sample
theory. Fortunately, in particular for mixture model, it is well known that the sample size T has to
be very large before asymptotic theory of maximum likelihood can be applied. Furthermore,
Basford et al. (1997) found that unless the sample size was very large, the standard errors found
by an information-based approach were too unstable to be recommended for the normal mixture
models.



Fig. 1. Graphical determination of the value of RRA, βt, for which the equilibrium condition is satisfied, i.e. g(βt|Zt−1, μj,
σj,t
2 , j=1,…,K)=0. The exhibitions are based on K=2, (p1, p2)=(0.3, 0.7), (μ1, μ2)= (−0.014, 0.014),and (σ1,t

2 ,σ2,t
2 )=

(0.003, 0.001).
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Therefore, in this paper, we apply the parametric bootstrap method (see, Efron and Tibshirani,
1993) to our empirical studies based on the MLE approach and the algorithm is described as
follows.

Step 1 Find the MLE, Ψ̂MLE.
Step 2 Draw T random variables Yj1⁎,Yj2⁎,…,Yj,t⁎ from the NM(K)-GARCH(1,1) model with the

parameter Ψ̂MLE, and use Yj1⁎, Yj2⁎,…, Yj,t⁎ to do inference.
Step 3 Repeat step 2 for j=1, 2,…, B.

When B is large enough, we can use the information in step 2 to understand the properties
about the estimator based on data, Y1, Y2,…,YT. An important index of the precision of a sample-
based estimate is the standard deviation (S.D.) of the estimator. This estimated S.D. is the standard
deviation estimate computed over the Monte Carlo bootstrap sampling distribution:

S:D:ð b̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB
j¼1

b̂j−ð1=BÞ
XB
j¼1

b̂j

" #2
=ðB−1Þ

vuut : ð17Þ
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Throughout this paper, we replicate B=50,000 times to make inferences for dynamic RRA
estimated by the MLE approach.

3.2. Bayesian estimation of RRA

We have seen that estimation for RRA based on NM(K)-GARCH(1,1) models is
straightforward using the EM algorithm. Meanwhile, with the advent of inexpensive and high-
speed computers, estimation in Bayesian framework is now feasible using posterior simulation
via Markov chain Monte Carlo (MCMC) methods. From past experiences, we would not expect
inference about the parameters in Eq. (10) to be highly sensitive to prior specification. In general,
we may prefer non-informative priors to informative priors, if no prior information is available.
Nevertheless, the main hindrance in normal mixture models is that improper non-informative
priors will not yield proper posterior distributions (Diebolt and Robert, 1994; Roeder and
Wasserman, 1997). Therefore, in this section, we choose a fixed number of components, K,
according to BIC and refer to Richardson and Green (1997) to construct weakly informative
priors for model parameters. As in Richardson and Green (1997), we assume that μj are drawn
independently with normal priors,

ljfNðn;j−1Þ ð18Þ

For the variance processes, we assume priors between the θ=(wj, aj, bj) are independent
uniform distributions, which are given by

Pðw; a; bÞ ¼
YK
j¼1

Pðwj; aj; bjÞ /
YK
j¼1

IðwjN0; ajz0; bjz0; aj þ bjb1Þ; ð19Þ

where I(·) is the indicator function with I(S )=1 if the event S is true, otherwise I(S )=0. The prior
on the weights p=(p1, p2,…, pk) will always be taken as symmetric Dirichlet,

pfDðd; d; : : : ; dÞ: ð20Þ

In order to give weakly informative priors for the model parameters, we introduce hyper-prior
and hyper-parameter choices which correspond to making the minimal assumption on the data.
Before determining the hyper-parameters, we comment briefly on the issue of labeling the
components. The whole model is invariant with respect to permutation of the labels j=1, 2, …, K.
For identifiability, Richardson and Green (1997) adopt a unique labeling in which the μj are in
increasing numerical order. Hence, the joint prior distribution of the μj is K! times the product of
the individual normal densities, restricted to the set μ1bμ2b…bμk. Following Richardson and
Green (1997) we take the N(ξ, κ−1) prior for μj to be rather flat over the range of data, by letting ξ
equal to the mid-point of this range, and κ equal to a small multiple of 1/R2, where R is the length
of the range. The complete hierarchical model is displayed in Fig. 2 as a directed acyclic graph
(DAG). We follow the usual convention of graphical models that square boxes represent fixed or
observed quantities and circles represent the unknowns.

In order to make inferences about model parameters, we need to integrate over high
dimensional probability distribution, which could be very difficult. MCMC methods are very



Fig. 2. Directed acyclic graph specific to the complete hierarchical model.
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helpful for solving our problem. MCMC is essentially Monte Carlo integration using Markov
chains. It draws samples from the required distribution by running a cleverly constructed Markov
chain for a long time and then forms sample averages to approximate expectations. The Gibbs
sampler and the Metropolis–Hastings (M–H) algorithm are well known among the several ways
of constructing those chains. A great advantage of the Gibbs sampler and the M–H algorithm is
the ease of implementation which makes heavy use of the modern computational capabilities.
Excellent tutorials on the methodology have been provided by Casella and George (1992), Chib
and Greenberg (1995), Gilk, Richardson and Spiegelhalter (1996). The MCMC methods are used
to make inferences in this section. For the distribution of βt based on hierarchical NM(K)-
GARCH(1,1) models, we shall use five move types.

1. Updating the weights p=( p1, p2,…, pK)
Through conjugacy, the full conditional for the weights p remains Dirichlet in form:

pðmÞj : : :fDðdþ nðm−1Þ1 ; : : : ; dþ nðm−1ÞK Þ; ð21Þ
where nðmÞj ¼PT

t¼1 z
ðmÞ
tj is the number of observations currently allocated to the j component

of the normal mixture. Here and the rest of the paper, ‘|’ denotes ‘conditional on all other
variables’.
2. Updating the parameters μ=(μ1, μ2,…, μK)
The full conditionals for μj are

lðmÞj j : : :fN

P
t:zðm�1Þ

t ¼j

xt
r−2

ðm−1Þ
j;t

� �
þ jn

P
t:zðm�1Þ

t ¼j

1

r−2
ðm−1Þ

j;t

� �
þ j

;
X

t:zðm−1Þt ¼j

1

r−2
ðm−1Þ

j;t

 !
þ j

 !−1

0
BBBB@

1
CCCCA: ð22Þ

In order to preserve the ordering constraint on the μj, the move is accepted provided the
ordering is unchanged and rejected otherwise.
3. Updating the parameters (wj, aj, bj), j=1,…, K.
The posterior conditional density for (wj, aj, bj) are

pðwðmÞ
j ; aðmÞj ; bðmÞj j : : : Þ / P

t:zðm−1Þtj ¼1
/jðytjZt−1Þ � IðwjN0; ajz0; bjz0; aj þ bjb1Þ; ð23Þ

We update (wj, aj, bj) independently by using the Metropolis–Hastings (MH) algorithm.
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4. Updating the allocation ztj
For the allocations we have conditional probability

f ðzðmÞtj ¼ 1j : : : Þ / pðmÞj

rðmÞj

exp −
xi−l

ðmÞ
j

� �2
2r2ðmÞj

8><
>:

9>=
>;: ð24Þ

We can sample directly from this distribution and update the allocation variables indepen-
dently through Gibbs sampling.
5. Updating RRA βt
βt must satisfy the following equation

gðbðmÞt jIt−1; l
ðmÞ
j ; r2

ðmÞ
j;t ; j ¼ 1; : : : ;KÞ

¼
XK
j¼1

pðmÞj el
ðmÞ
j ð1�bðmÞt Þþ

r2
ðmÞ

j;t
ð1�b

ðmÞ
t Þ2

2 −
XK
j¼1

pðmÞj e−l
ðmÞ
j bðmÞt þ

r2
ðmÞ

j;t
b
ðmÞ2
t

2 ¼ 0: ð25Þ

We update βt independently by means of the Gibbs sampler.
The results of Bayesian estimation in this paper correspond to runs of 100,000 sweeps after a

burn-in period of 50,000 sweeps. The following settings are used for the previously unspecified
constants: κ=1/R2 and δ=1. Richardson and Green (1997) and Stephens (1997) pointed out that
these values convey the belief that “the posterior distributions of parameters are similar, without
being informative about their absolute size”. Here, equal-tails probability is also used in
estimating the 95% posterior interval.

4. Simulation studies

We perform simulation studies to compare the proposed MLE and Bayesian RRA estimations
based on the NM(K) model with the GMM method and to determine the numbers of components
based on some different information criteria.

In the first part, we generate data from the NM(2)1 model with five different sample sizes,
N=50, 100, 200, 500, 1000. The true parameters are (p1, p2)= (0.3,0.7), (μ1, μ2)= (−0.014,
0.014), and (σ1,t

2 , σ2,t
2 )= (0.003, 0.001), thus, these values imply the true RRA parameter,

βTrue =3.564. Table 1 displays the average and standard deviation of RRA estimators as well as their
mean square errors, MSE(β̂ )=bias2+Var(β̂ ), across 10,000 samples. We see that MLE and GMM
estimators have moderate upward biases, but Bayesian estimator has mild downward bias for small
sample size. However, as the sample size increases the bias is substantially reduced for all estimation
methods. We also find that the RRA estimator based on the NM(2)-GARCH(1,1) model are more
efficient than that based on the GMM model. In addition, based on the MSE criterion, the RRA
estimated by MLE is similar to that estimated by Bayesian approach, but they are slightly more
accurate than GMM estimators in large samples. In small samples, RRA estimated by the Bayesian
approach with a weakly informative prior is obviously more accurate than GMM and MLE.

In the second part, the AIC and BIC criteria are applied to two time series generated by the NM
(2)-GARCH(1,1) model with different sample sizes, N=200 and 500. We set the true parameter
1 If we generate data from the NM(2)-GARCH(1,1) model, we will only have the true parameter values of GARCH
process but the true values of the volatilities at time t. This will produce forecasted RRA but true RRA, and the
comparisons may be meaningless. This is why we do not simulate data from the NM(2)-GARCH(1,1) model but from the
NM(2) model.



Table 1
Simulation results from MLE, Bayesian, and GMM

N β True MLE Bayesian GMM

β̂ SE(β̂ ) MSE(β̂ ) β̂ SE(β̂ ) MSE(β̂ ) β̂ SE(β̂ ) MSE(β̂ )

50 3.564 4.069 3.907 15.520 3.390 3.798 14.455 4.036 4.043 16.569
100 3.564 3.808 2.626 6.955 3.433 2.508 6.307 3.809 2.633 6.993
200 3.564 3.637 1.797 3.235 3.482 1.707 2.921 3.682 1.799 3.250
500 3.564 3.626 1.094 1.201 3.484 1.095 1.205 3.626 1.099 1.212
1000 3.564 3.586 0.771 0.595 3.548 0.772 0.596 3.592 0.779 0.608

The table considers N=50, 100, 200, 500, and 1000 observations obtained by generating sample from NM(2) models with
true parameter values ( p1, p2)= (0.3, 0.7), (μ1, μ2)= (−0.014, 0.014),and (σ1,t

2 , σ2,t
2 )= (0.003, 0.001) . Therefore, from

Eq. (15), we have the true RRA, β True=3.564 By simulating 10,000 times, the means, β̂, standard deviations, SE(β̂), and
mean square errors, MSE(β̂), of RRA estimators for three different estimating methods are shown. The bold figure
represents the minimum MSE among MLE, Bayesian, and GMM methods.
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values to be (p1, p2)= (0.3, 0.7), (μ1, μ2)= (−0.014, 0.014), (w1,a1,b1)= (0.00015, 0.1, 0.85) , and
(w1,a1,b1)= (0.00005, 0.1, 0.85). Then, we use the EM algorithm to find the MLE estimators of
those parameters and calculate the maximum log conditional likelihood, ℓ, AIC and BIC values.
Table 2 shows that the AIC criterion tends to select too many components and the BIC criterion
correctly selects the true number of components.

5. Empirical studies

The empirical analyses in this paper are based on monthly market rates of return and riskless
rates during the period January 1941 through December 2001 with a sample of T=732
observations. The value-weighted index of the New York Stock Exchange from 1941 to 2001 are
collected from the Center for Research in Security Prices (CRSP) at the University of Chicago and
used as the proxies for the rates of return on the market portfolio. The proxies for the risk-free
rates are monthly returns of U.S. Treasury bills in stock, bonds, and inflation. Using this set of
data, we calculate the excess return x=(1+Rmt) / (1+Rft), the return in the market portfolio over
the risk-free rate, for doing the following empirical studies.

Table 3 provides the summary statistics for the whole period of the log excess returns which are
based on the monthly value-weighted index and the 30-day U.S. Treasury bills returns from January
Table 2
Simulation likelihood-based goodness of fit

K d N=200 N=500

ℓ AIC BIC ℓ AIC BIC

1 4 358.30 −708.60 −695.41 924.12 −1840.24 −1827.05
2 9 387.78 −757.55 −727.87 1003.34 −1988.68 −1959.00
3 15 400.84 −771.68 −722.20 1009.85 −1989.70 −1940.23
4 20 405.25 −770.49 −704.52 1010.97 −1981.94 −1915.97

The table considers N=200 and N=500 observations obtained by generating sample from NM(2)-GARCH(1,1) with true
parameter values ( p1, p2)=(0.3, 0.7), (μ1, μ2)= (−0.014, 0.014), (ω1, α1, β1)= (0.00015,0.1, 0.85) and (ω2, α2, β2)=
(0.00005,0.1, 0.85). The columns labeled K and d refer to the number of required component densities and the number of
parameters for the respective model; ℓ is the log likelihood; AIC=−2ℓ+2d; BIC=−2ℓ+d log N. For each of the three
criteria, the criterion values are shown for K=1, 2, 3, 4. The bold figure represents the optimal model, which is chosen by
AIC or BIC criteria.



Table 3
Descriptive statistics for monthly log excess returns (%) of value-weighted index (1/1941–12/2001)

A. Summary statistics for log excess returns (%)

Mean 0.5957 S.D. 4.2332
Minimum −25.8077 Skewness −0.7253
Median 0.9897 Kurtosis 5.5227
Maximum 14.7679

B. Test for Normality

Jarque–Bera test Chi-square test
J–B stat. 258.2843⁎⁎⁎ Chi-square stat. 51.3689⁎⁎⁎

J–B p-value b0.001 Chi-square p-value b0.001

C. Ljung–Box test for log excess returns, yt

Q(5) stat. 9.0876 Q(5) p-value 0.106
Q(10) stat. 11.2520 Q(10) p-value 0.338

D. Ljung –Box test for square of log excess returns, yt
2

Q(5) stat. 9.5489⁎ Q(5) p-value 0.089
Q(10) stat. 17.2170⁎ Q(10) p-value 0.070

The table shows the summary statistics of log(monthly excess returns), yt, over the period from 1/1941 to 12/2001 in panel
A. The statistics and p-value of chi-square and Jarque and Bera (1980) tests are used to check the closeness of the data to a
normal density in panel B. Moreover, we exhibit the p-value of Ljung-Box Q-statistic (1978) to measure the serial
correlations of yt and yt2 using five and ten lagged values. ⁎, ⁎⁎ and ⁎⁎⁎ indicate statistical significance at the 10%, 5%
and 1% levels (two tailed test), respectively.
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1941 to December 2001. The summary statistics includes sample mean, minimum, median,
maximum, standard deviation, skewness, kurtosis, the p-values of chi-square and Jarque and Bera
(1980)2 tests to check the normality of the data, and the p-values of Ljung and Box (1978) to verify
the serial correlations of returns and square of returns data. From Table 3, we can observe that the
unconditional distribution of the log excess return has negative skewness and heavy tails relative to
the normal distribution. For chi-square and Jarque and Bera (1980) tests, we reject the normality
assumption for overall periods at 1% significant level. Therefore, it appears that normal distribution
is not an adequate assumption to the log transformation for the excess returns. In addition, the results
of Ljung-Box test confirm that log monthly excess returns of the value-weighted index for overall
period have no significant serial correlations. Table 3 also shows that there are some serial
correlations for square of the log returns and there is volatility clustering phenomenon. Therefore,
assuming log monthly excess returns to be NM(K)-GARCH(1,1) model may be more appropriate.

We set K=2 according to the BIC criterion. Therefore, the MLE and Bayesian estimators and
95% confidence intervals of dynamic RRA based on the NM(2)-GARCH(1,1) model from 1/
1956 to 12/2001 are shown in Figs. 3 and 43. We find that the coefficients of RRA are not stable
2 The Jarque–Bera test for normality is based on skewness (Skew) and kurtosis (Kurt). The statistic is given by

JB ¼ T
6

Skew2 þ ðKurt−3Þ2
4

 !
, which has a chi-squared distribution with 2 degrees of freedom.

3 It is well known that the structure of the market may vary a lot across different periods. If we estimate the RRA based on
the whole sample period, we will only mildly capture the variation in the market structure. Therefore, in our analyses, we
estimate the RRA at time t based on the data from time t−180 to t−1. Although, we can also apply the BIC criterion to
choose different number of components, K, across the rolling sample. However, we think that this operation may be
worthless. Therefore, we determineK only by basing on the whole sample and adopt this result to do the following analyses.



Fig. 3. The MLE estimators of dynamic RRA (solid line) and 95% confidence intervals (dotted line) in the NM(2)-GARCH(1,1) model, when proxy for the rates of return on the market
portfolio are the CRSP value weighted index during 1/1956 through 12/2001.
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Fig. 4. The Bayesian estimators of dynamic RRA (solid line) and 95% posterior intervals (dotted line) in the NM(2)-GARCH(1,1) model, when proxy for the rates of return on the
market portfolio are the CRSP value weighted index during 1/1956 through 12/2001.

343
C
.C
.
W
u,

J.C
.
L
ee

/
E
conom

ic
M
odelling

24
(2007)

329–349



Fig. 5. The comparisons between MLE and Bayesian estimators of dynamic RRA in the NM(2)-GARCH(1,1) model, when proxy for the rates of return on the market portfolio are
the CRSP value weighted index during 1/1956 through 12/2001.
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Fig. 6. The comparisons between standard deviations of MLE and Bayesian estimators of dynamic RRA in the NM(2)-GARCH(1,1) model, when proxy for the rates of return on the
market portfolio are the CRSP value weighted index during 1/1956 through 12/2001.
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throughout overall period. Largest and smallest RRA are in the 1950's and 1970's, respectively.
The coefficients of RRA tend to decline from 1950's to 1970's, and increase from 1980's to
1990's. Figs. 5 and 6 exhibit the RRA estimators and their standard error comparisons between
MLE and Bayesian methods. The RRA estimated by MLE method, on average, is larger than that
estimated by Bayesian method. In addition, we find that Bayesian estimation method is more
efficient than MLE estimation method. In Fig. 6, we also see that the volatilities of RRA are larger
before 1974 and after 1983 but lower between 1974 and 1983.

6. Conclusions

This paper shows that the utility-based model of asset pricing can be estimated to be dynamic
and more accurate with the NM(K)-GARCH(1,1) model for log asset returns. Then, the MLE
method with the EM algorithm and the Bayesian approach with a weakly informative prior are
derived to estimate RRA. The empirical findings are as follows. First, the log excess returns can be
adequately characterized by the NM(K)-GARCH(1,1) model with their conditional and
unconditional nonzero sknewness and excess kurtosis. Secondly, we have identified that RRA
estimator is statistically efficient with the robust model assumption. Third, the RRA estimator
obtained by the Bayesian approach with a weakly informative prior performs better in small
samples based on the MSE criterion. Finally, Bayesian approach can combine an investor's prior
belief about the accuracy of the pricing model and the information in the data and describe the
sampling distribution of RRA estimator.

Appendix A

Proof that bt is a continuous function of (pj, μj, σj,t
2 ) for j=1, 2, …, K.

Consider

gðbtjIt−1; lj; r
2
j;t; j ¼ 1; : : : ;KÞ ¼

XK
j¼1

pje
ljð1−btÞþ

r2
j;t
ð1−bt Þ2
2 −

XK
j¼1

pje
−ljbtþ

r2
j;t
b2t
2 ¼ 0

which has a unique solution when the other parameters pj, μj, σj,t
2 =1, 2,…, K are given. We have

the following first derivative of g,

gVðbtjIt−1; lj; r
2
j;t; j ¼ 1; : : : ;KÞ

¼
XK
j¼1

pj ð−lj þ r2j;tðbj−1ÞÞd eljð1−btÞþ
r2
j;t
ð1−bt Þ2
2 −ð−lj þ r2j;tbtÞd e−ljbtþ

r2
j;t
b2t
2

	 

:

It is easy to see that

eljð1−btÞþ
r2
j;t
ð1−bt Þ2
2 −e−ljbtþ

r2
j;t
b2t
2

b0 if btN
lj
r2j;t

þ 1
2

¼ 0 if bt ¼
lj
r2j;t

þ 1
2

N0 if btb
lj
r2j;t

þ 1
2

for j ¼ 1; 2; : : : ;K:

8>>>>>>><
>>>>>>>:
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For each j, when btN
lj
r2j;t

þ 1
2
, we have

−lj þ r2j;tbtNlj þ r2j;t
lj
r2j;t

þ 1
2

 !

¼ 1
2
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j;t
b2t
2
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So, we have
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Hence, for bteR and j=1, 2,…, K,
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Accordingly, as long as
lj
r2j;t

þ 1
2 ; are not identical for j=1, 2,…, K, then g′(βt) is strictly

negative. Furthermore, because
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btYl

XK
j¼1

pj eljð1−btÞþ
r2
j;t
ð1−bt Þ2
2 −e−ljbtþ

r2
j;t
b2t
2

� � !
¼ l;

lim
btYl

XK
j¼1

pj eljð1−btÞþ
r2
j;t
ð1−bt Þ2
2 −e−ljbtþ

r2
j;t
b2t
2

� � !
¼ −l;

and g(βt) is continuous, g(βt)=0 has at least one real solution.
For these reasons, g(βt) is a strictly decreasing continuous function and g(βt)=0 has a unique

solution. Therefore, we can consider βt a continuous function of pj; lj; r
2
j for j ¼ 1; 2; : : : ;K.
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