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Architectures for interconnection networks can be represented by graphs, while vertices represent processors 
and edges represent communication links between processors. We use the terms vertices and processors 
interchangeably. Let G = (V, E )  be a graph representing the topology for an interconnection network. Let 
vo be a special vertex outside GI called the host processor, which is connected to each vertex in G . The 
host processor is the sender or source of the message to be transmitted to all of the vertices in G . In each 
time unit, the host processor may send an identical message to an arbitrary vertex in G or remain idle. At 
the same time, each processor in G that has already received the message can send it to all its neighbors 
in one time unit. A transmitting scheme allowing all processors to receive the message in t time units and 
requiring the host processor to send the message s times is called a ( t ,  s)-transmitting scheme, where t 
2 s. We call t the transmitting time, and s, the workload of the host processor. We aimed to find an optimal 
transmitting scheme, i.e., a transmitting scheme such that t is minimized while s is also minimized. In this 
paper, we present optimal transmitting schemes for linear arrays, rings, complete binary trees, star trees, 
and (directed) de Bruijn graphs. Furthermore, we present a ( t ,  s)-transmitting scheme for diagonal meshes 
which are defined slightly different from meshes, and the ratio of t to the optimal transmitting time is ap- 
proximate to 1.1. 0 7996 John WiIey & Sons, Inc. 

1. INTRODUCTION 

As is customary in structure studies of parallel architec- 
tures, we restrict our attention to a set of identical pro- 
cessors, and we view the architectures of the underlying 
interconnection networks as graphs. The vertices of a 
graph represent the processors of an architecture, and the 
edges of the graph represent the communication links be- 
tween processors. Let G = (V, E )  be a graph representing 
the topology for a network. Let vo be a special vertex out- 
side G,  called the host processor (abbreviated as host), 
which is connected to each vertex of V. The host processor 
is the sender or source of the message to be transmitted 
to all the vertices in G. In each time unit, the host may 
send its message to any single vertex of the graph G,  ac- 
cording to its choice. At the same time, each processor 
that has already received the message can send it to all its 

neighbors in one unit of time. For u ,  v E V, d(u,  v) 
denotes the shortest distance from u to 0. If in the i-th 
time unit the host sends its message to processor pi ,  then 
after the k-th time unit, k > i, all the processors v satisfying 
d ( p j ,  v) I k - i can receive the message. The objective 
is to minimize the number of time units such that all the 
vertices in G can receive the message. This minimum 
number of time units for graph G is called the optimal 
transmitting time for G, denoted by t (  G). 

For an n-dimensional hypercube Qn, Alon [ 11 showed 
that t( Q n )  = rn/21 + 1 and gave a simple procedure to 
achieve this goal. The host processor simply sends its 
message to an arbitrary processor p ,  in the first time unit, 
then to the antipodal ofp, , i.e., the vertex having a Ham- 
ming distance n from pl ,  in the second time unit. After- 
ward, the host just waits. This transmitting scheme gives 
the host a rather light workload. We note that even if the 
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host sends the message to a processor in each time unit 
the transmitting time remains the same. Thus, we consider 
the transmitting problem as a problem to not only deter- 
mine t( G)  but also to minimize the workload of the host 
when t( G) is achieved. The workload of the host is defined 
as the number of time units in which the host sends the 
message to processors in G. 

We give here a formal description of the transmitting 
problem: We are given a graph G = (V, E )  and a special 
vertex uo as introduced before. For u E V and a nonneg- 
ative integer r, the r-neighborhood of u is defined as Nr( v )  
= { u E Vl d( u ,  u )  I r}. By convention, No( u )  = { u } .  
Let t be a positive integer and V’ = V U { u o }  . We use 
[t] to denote the set { 1, 2, . . . , t} . Let f b e  a function 
mapping [ t] to V’ defined as follows: f (  i) = u # vo if the 
host sends its message to u at time i, and f( i) = uo if the 
host is idleat t imei .  L e t s =  I{ i l f ( i )E  V}(,whichis  
called the workload of the host. It is obvious that s I t .  
The function f is called a ( t ,  s)-transmitting scheme if 
U/(,)EvNt-,( f( i)) = V, i.e., all vertices in V can receive 
the message in t time units. In a ( t ,  s)-transmitting scheme, 
each processor in G receives the message either from the 
host or from its neighbor within t time units, while the 
workload of the host is given by s. Such a t is called a 
feasible transmitting time. The cost of a (t, s)-transmitting 
schemef, denoted by c ( f ) ,  is defined as the ordered pair 
(t,  s). Let TS( G) denote the set of all possible transmitting 
schemes for G.  Let f ,  g E TS( G)  be two transmitting 
schemes with c ( f )  = ( t , ,  s,) and c(g) = (t2, s2). We say 
f d  g if c ( f )  I c(g) lexicographically, i.e., t l  < t2 or t l  
= t2 and sI I s2. A scheme f *  E TS( G) is called an 
optimal transmitting scheme for G iff * 3 g for all g 
E TS( G).  The optimal transmitting cost of G, denoted 
by c(G), is defined as c(G) = c ( f * )  = (t*, s*), where 
t* = t(  G) is called the optimal transmitting time and s* 
= s( G) is called the optimal workload Qf the host. 

Since we can always obtain a (D + 1, 1 )-transmitting 
scheme, where D is the diameter of the underlying net- 
work, an optimal transmitting scheme is what we seek. 
The problem of designing an optimal transmitting scheme 
for a graph G is important to communication of inter- 
connection networks. Alon [ I] proposed an optimal (rn/ 
21 + 1,2)-transmitting scheme for the n-dimensional hy- 
percube Q, . Besides hypercubes, rings, trees, meshes, and 
de Bruijn graphs are important topologies for network 
architectures. In this paper, we give transmitting schemes 
on rings and some special tree structures, such as linear 
arrays, complete binary trees, and star trees, and prove 
their optimality. However, it can be observed that the 
transmitting problem is difficult for general tree structures. 
In addition, we propose a function f as defined earlier for 
diagonal meshes which are defined slightly different from 
meshes and are a special case of perfect recursive diagonal 
tori/meshes introduced in [ 5,6]. The function f is shown 
to be a (t,  s)-transmitting scheme. The proof already in- 

volves a very complicated calculation, not to mention 
solving the transmitting problem on meshes. Furthermore, 
we show that the ratio o f t  to the optimal transmitting 
time is approximate to 1.1. Finally, the de Bruijn graph 
is studied since it can interconnect a large number of ver- 
tices with small diameter, fixed degree, and recursive con- 
struction. The optimal transmitting scheme for a d-ary 
n-dimensional (directed) de Bruijn graph is presented. 

2. TRANSMITTING ON LINEAR ARRAYS 
AND RINGS 

A linear array of n vertices, L,, is an undirected graph 
given by V (  L,) = { u l ,  v 2 ,  . . . , v,} and E(L,) = { (v,, 
~ , + ~ ) 1 1  1 i 5 n -  l ) .Ar ingof lengthn ,  C,,isagraph 
given by V(C,) = V ( L , )  and E(C,) = E(L,) U {(unj 
V l ) } .  

Theorem 1. The optimal transmitting cost of L, is 

Proof: Without loss of generality, we assume that n 
= rn2 for some positive integer m .  Let f b e  an optimal 
transmitting scheme with c ( f )  = (t,  s). L, can be easily 
partitioned into m nonoverlapping intervals ZI , Z2, . . . , 
Z, with 1 Z, 1 = 2i -  1 vertices for 1 5 i s  m. An ( m ,  m) -  
transmitting scheme can be easily obtained by settingf( i) 
to the center of Thus, m 2 t. 

On the other hand, it is observed that INr(u)l I 2r 
+ 1 for any vertex u and nonnegative integer r.  Since f 
is a transmitting scheme, it follows that 

( r G i ,  r GI). 

= 1 + 3 + . . . + ( 2 t - l ) = t 2  . ( 1 )  

Thus, t2 2 m2, i.e., t 2 m. Hence, t = m. 
Suppose that s I m - 1 = t - 1. It follows that 

= 3 + - . . + ( 2 t -  I ) = t 2 -  1 = m 2 -  I ,  

which leads to a contradiction. Consequently, the pro- 
posed ( m ,  m)-transmitting scheme is optimal, and, 
moreover. the theorem follows. 

The optimal transmitting cost for C, can be easily ob- 
tained as a corollary. 

Corollary 1. The optimal transmitting cost of C, is 
(rGi, rGi). 
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3. TRANSMITTING ON COMPLETE BINARY 
TREES AND FULL BINARY TREES 

A complete binary tree of height n ,  denoted by BT,, is an 
undirected graph given by V (  BT,) = { 1 ,  2, . . . , 2" 
- I } ,  and ( i , j )  E E(BT,,)  ifand only i f ~ j / 2 ]  = i .  The 
vertex 1 is called the root of BT,,. The level of the vertex 
i is defined as d( I ,  i )  + 1 ,  which is given by (log2ij + 1. 
The leaves of BT,, are all of the vertices in level n.  We 
also denote the complete binary tree BT,, as FT( 2" - 1 ). 
For a positive integer j 5 2 " - 1, the full binary tree with 
j vertices, F T ( j ) ,  is the subgraph of FT( 2" - 1 ) induced 
by vertices { 1, 2, . . . , j }  . The height of F T ( j )  is  log, j j  
+ 1. Two binary trees BT4 ( = F T (  15)) and FT( 12) are 
illustrated in Figure 1. In the following theorem, we derive 
the optimal transmitting cost, and the optimal transmit- 
ting scheme is given in the proof of the theorem. 

Theorem 2. The optimal transmitting cost for BT, is 
( n ,  1 ) .  

Proof: We give an ( n ,  I)-transmitting scheme by 
sending the message to the root, vertex 1, of BT, at the 
first time unit and then the host simply idles. After n time 
units, all the vertices will receive the message. Therefore, 
we only need to show that the message cannot be trans- 
mitted to all of the vertices of BT( n )  in n - 1 time units. 

Let f be an ( n  - I ,  s)-transmitting scheme. We assume 
without loss of generality that s = n - 1 .  Let L denote 
the set of all leaves in BT,,. It follows that I LI = 2"-'. 
For any vertex v in BT,,, it is observed that lNn-l-L(v) 
n L I I 2"- I - '  for i I n - 1 and, moreover, the equality 
holds if and only if v is at level i + 1. Since f is an ( n  
- 1, n - 1 )-transmitting scheme, L = Uf(r)EV( N,,-l-r ( f (  i ) )  
rl L ) .  However, IU,,,,,,(N,,-,-,(f(i)) fl L)l I c::,' 

1 < I L 1 ,  which is a contradiction. Hence, 2n-1-1- - 2"-1 - 
the proposed ( n ,  1 )-transmitting scheme is optimal. The 
theorem follows. 

Observe from Figure 1 that FT( 12) is a subgraph of 
BT4.  There exists a trivial (4, 1 )-transmitting scheme for 
FT( 12). However, we have a ( 3 , 3  )-transmitting scheme 
for FT( 12). For example, the host sends its message to 
vertex 2 in the first time unit, then to vertex 6 at the 
second time unit, and, finally, to vertex 7 at the third time 
unit. It can be easily verified that all the vertices in FT( 12) 
receive the message in three time units. Using similar ar- 
guments in the proof of Theorem 2, we can obtain the 
following corollary: 

Corollary 2. For 1 I m I 2"-' ,  the optimul transmitting 
c o s t o f F T ( 2 " - m ) i s ( n ,  l ) i f m  = 1 , 2 , a n d ( n -  1 , n  
- \.log2( m - I ) j) otherwise. 

Optimal transmitting schemes for FT(2" - m )  are 
given as follows: When m = 1,2, an optimal ( n ,  1 )-trans- 

(a) @) 

Fig. 1. (a) Complete binary tree BT4(=FT(15)); (b) Full binary 
tree with 12 vertices FT(12). 

mitting scheme f is given byf( 1 ) = 1 and f (  i) = oo for 
all 2 I i I n .  When 2"-k + 1 I m I 2n-kt1 and 3 I k 
I n - 1, an optimal ( n  - 1, k)-transmitting scheme is 
given byf( I )  = 2 , f ( i )  = 2 ( f ( i  - 1 )  + 1 )  for all 2 I i 
I k - I ,  andf(k) = f ( k  - 1) + 1. When 2n-2 + 1 I m 

given byf( 1 ) = 2,f( 2 )  = 3. 
- < 2"-', an optimal ( n  - 1, 2)-transmitting scheme is 

4. TRANSMITTING ON STAR TREES 

Let P i  denote the graph which is the disjoint union of k 
linear arrays, each of n vertices, i.e., V (  P : )  = { o: 11 
I i I n ,  I I ~ I  k} and E ( P i )  = {v:, U : + ~ ) I  1 I i I n 
- 1, I I j I k}. For an integer k 2 2,  the star tree S: is 
the graph given by V (  S:) = V (  P i )  U { u,} with uo 
$E V ( P k )  and E ( S i )  = E(Pk)  U { ( u o ,  V ' ~ ) I  1 s j r  k}. 
The following number theory result is required to evaluate 
the transmitting time of S; for some n and k: 

Lemma 1. Let p and n be positive integers such that p I n 
andp # n. The set 0,, consisting ofall positive odd integers 
less than or equal to 2n - I ,  can be partitioned into p 
disjoint subsets, D, , D 2 ,  . . . , D,, such that the sum ofthe 
elements in D, equals n 2 / p  for I 5 i I p. 

Proof: We prove this lemma by the construction of 
D,, D2,  . . . , Dp. Let q = n / p .  Consider the following 
cases: 

CASE 1. q is an even integer. 
Let 0: = { 4 ( j  - I)p + 2k - 1,4jp - (2k - l ) }  for 
1 1 k i p a n d I  1j1q/2.Forafixedj,(D:Il s k  
5 p ) forms a partition of the set { 1 I 4 ( j  - 1 ) p  + 1 
I 1 I 4jp - 1 } , and the sum of the elements in D: is 
(8;-4)p.DefineDk= U;L:D:.Then,theset{Dk(l 
5 k I p }  forms a partition of the set 0, such that 
CxEDk x = C,=l (8; - 4)p = pq2 = n 2 / p .  

It follows that n 2 / p  = ( 3 ~ ) ~ / p  = 9p. Now, we consider 
two possibilities of p :  

q l 2  

CASE 2. q = 3. 
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SUBCASE 2. I .  p is an even integer. 
Let D, = ( 3 p  + ( 2 i  - l ) ,  6 p  - ( 2 i  - l ) }  for 1 
I i 5 p / 2 .  It is easy to see that {Oil 1 I i 1 p / 2 }  
forms a partition of the set { 2i - 1 l3p  + 1 I 2i 
- 1 1 4 p -  1 o r 5 p +  1 1 2 i -  1 1 6 p -  l}. 
Moreover, the sum of all elements in Di is 9 p  for 1 
I i I p / 2 .  Let Dl+p12 = { 2i - 1 ,  2p  - 2i + 1 ,  2 p  
+ 2i - 1,5p - 2i + I } . It can be easily verified that 
{ Di+p,z I 1 I i I p / 2  } forms a partition of the set 
( 2 i -  1 1 1  1 2 i -  1 1 3 p -  1 o r 4 p +  1 1 2 i -  1 
I 5p - l }  . Moreover, the sum of all elements in 
DI+p12 is 9 p  for every 1 5 i I p / 2 .  Hence, the set 
{ Dk I 1 I k I p } forms a partition of the set 0, such 
that CxEDk x = n 2 / p .  

For 1 I i 5 p ,  let Di be { 2i - I ,  2 p  + 2rp/21- i ,  
6 p  - i }  if i is an odd integer, and { 2i - 1, 4 p  - i 
+ 1 ,  4 p  + 2rp/21 - i - I }  otherwise. It is easy to 
verify that { Dkl 1 I k I p }  forms a partition of 0, 
such that CXEDk x = n 2 / p .  

CASE 3. q is an odd integer and q 2 5. 

SUBCASE 2.2. p is an odd integer. 

Applying the result in Case 2, we can decompose the 
set 03p into p subsets, D', , 05, . . . , Db, such that the 
sum of all elements in each subset equals 9 p 2 / p  = 9 p .  
Let 

DI = 0'1 U { 6 p  + I ,  l o p  - 1, l o p  + I ,  

14p - 1 , .  . . , 2 ( q  - 2 ) p  + 1 ,  2pq - 1 = 2n - l } ,  

0 2  = 0; U { 6 p  + 3, l o p  - 3, l o p  + 3, 

14p - 3 , .  . . , 2 ( q  - 2 ) p  + 3,2pq - 3 = 2n - 3 } ,  

0 3  = D;  U { 6 p  + 5 ,  l o p  - 5 ,  l o p  + 5 ,  

14p - 5 , .  . . , 2 ( q  - 2 ) p  + 5,2pq - 5 = 2n - 5 } ,  

Dp = Db U { 8p - 1 , 8 p  + 1 ,  12p - I ,  

12p + 1 , .  . . , 2 ( q  - 1 ) p  - 1 , 2 ( q  - 1 ) p  + l } .  

It can be easily verified that { Dk I 1 I k I p }  forms 
a partition of 0,. Moreover, the sum of all elements 
in each Dk is 9 p  + 16p + 24p + -  - .+ 4 ( q  - l ) p  
= n 2 / p .  

Hence, the lemma follows. W 

Based on the above lemma, we have the following re- 
sults: 

Theorem 3. Let p and n be positive integers such that p 1 n 
and p # n. Then, the optimal transmitting costs of P$zlP 
and S $ Z ~ ~ + ,  are ( n ,  n )  and ( n  + 1,  n + I ), respectively. 

Theorem 4. The optimal transmitting cost of Sf is less 

than or e ual to (rpxl + 1 ,  rpxl + l ) ,  where x = ( - p  
+ + p 2  + 4 p k ) / ( 2 p ) ,  and equality holds when p x  is an 
integer. 

Prooj It is easy to see that Si is a subgraph of 
S4)p2x21p~+px, where x is the smallest positive integer sat- 
isfying ( p 2 x 2 / p )  + p x  2 k .  This theorem follows from 
Theorem 3. W 

5. TRANSMITTING ON DIAGONAL MESHES 

A diagonal mesh of size n , denoted by M, , is an undi- 
rected graph with vertex set V = { ( i , j )  I 1 5 i ,  j I n }  and 
edge set E = { ( ( i , j ) ,  ( i ' , j ' ) ) l  ) i  - i ' )  I 1 and l j  - j ' I  
I l }  . An example of M5 is shown in Figure 2. This def- 
inition is slightly different from the conventional defini- 
tion for meshes. The diagonal mesh is a special case of 
perfect recursive diagonal tori/meshes [ 5 ,  61. Given a 
(conventional) mesh M ,  a perfect recursive diagonal mesh 
(PRDM),  denoted by PRDM(d, r ) ,  where d and r are 
positive integers, is defined as U:=, Mi, where M o  = M ,  
and M' is constructed in the following way: Each vertex 
( x ,  y )  in Mi is connected to vertices (xi, y ' )  where 

(x f id ,  y k i d )  if i is odd, 

( x  t id ,  y )  and (x, y k i d )  if i is even. 
( X I ,  Y ' )  = 

By convention, i fx t -  i d @  ( 1 , 2 , .  . . , n }  o r y +  i d @  (1 ,  
2, . . . , n }  , the corresponding vertex becomes vacuous. 
PRDM( d ,  r )  has a maximum degree 4(  r + 1 ). In [ 5 , 6 ] ,  
the authors proposed and studied an architecture called 
recursive diagonal mesh ( R D M )  which is a subgraph of 
PRDM(d, r )  containing Mo.  Each RDM is constructed 
from PRDM under a specified selection policy. Perfect 
recursive diagonal torus ( P R D T )  and recursive diagonal 
torus ( R D T )  are similarly constructed as PRDM and 
RDM, respectively. The RDM / RDT architectures can 
achieve a small diameter with a reasonable degree and 
can emulate hypercubes and trees easily; refer to [ 5 ,  61 
for details. Based on the RDT, a massively parallel ma- 
chine has been under development in the Japan University 

Fig. 2. M5, a diagonal mesh of size 5. 
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MZt-13 

M Z t . 7  

Massively Parallel Processing Project. The diagonal mesh 
defined in this paper is indeed a PRDM ( 1, 1 ) . 

We use meshes to mean diagonal meshes for conve- 
nience. The vertices ( i ,  j )  for i ,  j = 1 or n are called the 
boundary of M,,. To be precise, the vertices (i, j )  are called 
the top, bottom, left, and right boundaries, which are also 
called one-side boundaries, if i = 1, i = n ,  j = I ,  and j 
= n,  respectively. A two-side boundary is the union of 
two connected one-side boundaries. There are four two- 
side boundaries, called the left-top, right-top, left-bottom, 
and right-bottom boundaries. A mesh is said to be laid 
on a one-side (say, top) boundary of M,, if the mesh is 
laid inside M,, with its one-side (top) boundary coinciding 
with the one-side (top) boundary of M,,. Similarly, we 
define “a mesh laid on a two-side boundary.” 

In this section, we give an approximation algorithm to 
find a transmitting scheme on M,. When a processor u 
receives the message, all the processors in Nr( u )  can receive 
the message after r time units. Without loss of generality, 
we assume that Nr( v )  is a mesh M2r+l which contains ( 2 r  
+ 1 ) 2  vertices. A processor pi receiving the message from 
the host at the i-th time unit can transmit the message to 
the processors in N k - , ( p , ) ,  a mesh M2(k-r)+l ,  at the k-th 
time unit where k L i L 1. Therefore, finding the optimal 
transmitting time is equivalent to finding the smallest in- 
teger t such that t meshes M I  , M3,  . . . , MZ1-] can cover 
M,. The transmitting strategy is to send the message from 
the host to the center vertices of these meshes. 

Let t be a feasible transmitting time. It follows that t 
satisfies the following constraint on the number of vertices: 

. 

. I  

I 

I ,  . 
. I  I. 

I M Z t - S m + l l  

I 

I - MZt-3 

I - - - - - - -  
0 . .  

t 3  
4 4  

i.e., t 3  - - L - n2. To approximate t and ensure the 

feasibility of t , we choose t to satisfy the constraint 

t 3  L n2.  ( 3 )  

In other words, if t satisfies ( 3 ) ,  it follows that t also satisfies 
(2) .  Note that if t is a feasible transmitting time, t‘ is 
obviously also a feasible transmitting time when t’ > t .  
We give a transmitting scheme with transmitting time 1 
= rn2/31 + 2. The “$2” term in the choice o f t  is added 
to satisfy some special cases of n ,  whereas t = rn2/31 is 
feasible for most cases of n . We restrict the following dis- 
cussion to t = rn2/31 is feasible for most cases of n. We 
restrict the following discussion to t = rn2/31 for most 
cases of n and consider the special cases of n later. 

Our transmitting strategy is as follows: 

Mesh arrangement: Let m be the smallest number of 
meshes required to be laid on each one-side boundary 
of M,, such that all vertices of the boundary of M,, are 
covered by 4m - 4 meshes, M2[-], M2[-3, . . . , 
M21-8m+9. These meshes are laid on the one-side or 
two-side boundaries of M,, in the following sequence: 
(left-top, right-bottom, right-top, left-bottom) , (bot- 
tom, right, left, top), (top, left, right, bottom), (bottom, 
right, left, top), and so on. (Parentheses in the sequence 
are added for clarity of the pattern.) This arrangement 
is illustrated in Figure 3. Once we have m meshes ar- 
ranged on each one-side boundary, we can reduce the 
problem from M,, to a mesh of smaller size. 

Reduction step: Consider the last four meshes arranged 
by the above strategy. If the mesh M21-8m+i5 is arranged 
on the top boundary of M,,, it follows that M2[-8m+13,  

M21-8m+l  and M2r-8m+9 are arranged on the left, right, 
and bottom boundaries of M,,, respectively. On the 
other hand, if the mesh M 2 1 - 8 m + 1 5  is arranged on the 
bottom boundary of M,,, then M2[-8m+13, M21-8m+l I ,  

and M2r-gm+9 are arranged on the right, left, and top 
boundaries of M,,, respectively. In either case, the un- 
covered portion of M,, can be covered by Mi, where 

ri = n - (2t - 8m + 1 1  ) - (2t  - 8m + 13) 

= n - ( 2 t  - 8m + 9) - (2t - 8m + 15) 

= n - 4t + 16m - 24. 

Thus, we reduce the problem from M,, to Mi and the 
transmitting time from t to t - 4m + 4. 

To show the correctness of the transmitting strategy, 
it requires the following lemma to show the derivation of 
m so that Li can be determined in the reduction step: 

Choice oft:  Choose t = rn2/31. 
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Lemma 2. Let m be the number of meshes laid on each 
one-side boundary of M,, . By the above arrangement strat- 
egy, when m is even, the sums of sizes of meshes laid on 
the top, left, right, and bottom boundaries in M,, are 2tm 
- (4m2 - 8m + 6 ) ,  2tm - (4m2 - 8m + 8),  2tm - (4m2 
- 8m + 8),  and 2tm - (4m2 - 8m + l o ) ,  respectively. 
When m is odd and greater than one, these sums are 2tm 
- (4m2 - 8m + 9 ) ,  2tm - (4m2 - 8m + 9 ) ,  2tm - (4m2 
- 8m + 7) ,  and 2tm - (4m2 - 8m + 7) ,  respectively. 

Proof We prove the lemma by induction. In this proof, 
we state “the sums” to mean “the sums of sizes of meshes 
laid on the top, left, right, and bottom boundaries” for 
convenience. When m = 2, it is the case that only four 
meshes M2[- , M2t-3, M2r-5, and M2f--7 are laid on each 
two-side boundary of M,,. The sums are 4t - 6,  4t - 8, 
and 4t - 10, respectively, which equal 2t X 2 - ( 4  X 22 

- ( 4  X 22 - 8 X 2 + 8), and2t  X 2 - ( 4  X 22  - 8 X 2 

When m = 3, the sums are 6t - 2 1, 6t - 2 1 ,  6t - 19, 
and 6t - 19, respectively, which equal 2t X 3 - ( 4  X 32 
- 8 X 3 + 9 ) ,  2t X 3 - ( 4  X 32 - 8 X 3 + 9 ) ,  2t X 3 
- ( 4  X 3 - 8 X 3 + 7 ) , and 2t X 3 - ( 4 X 3 - 8 X 3 
+ 7).  

Assume that m = k and that the sums are, respectively, 
2tk - (4k2  - 8k + 6 ) ,  2tk - ( 4 k 2  - 8k + 8) ,  2tk - ( 4 k 2  
- 8k + 8), and 2tk - (4k2  - 8k + 10) if k is even and 
are, respectively, 2tk - (4k2  - 8k + 9 ) ,  2tk - (4k2  - 8k 
+ 9 ) ,  2tk - (4k2  - 8k + 7) ,  and 2tk - (4k’ - 8k + 7)  
if k is odd and greater than one. When m = k ,  4k - 4 
meshes have been arranged accordingly. 

Now we consider m = k + 1 .  We first consider that m 
is even. It follows that k is odd and greater than one. The 
first 4k - 4 meshes have been arranged according to the 
mesh arrangement strategy. Furthermore, the last four 

laid on the top, left, right, and bottom boundaries, re- 
spectively. It follows from the induction assumption that 
the sum of sizes of k + 1 meshes laid on the top boundary 
is given by 

- 8 X 2 + 6 ) , 2 t  X 2 - ( 4  X 22 - 8 X 2 + 8) ,  2t X 2 

+ 10). 

meshes, M21-8k+7 9 M2t-8k+5 3 M2t-8k+3 3 and M2t-8k+ I 9 are 

2tk - (4k2  - 8k + 9 )  + (2 t  - 8k + 7)  

= t ( k  + 1 )  - (4k2  + 2 )  

= 2t(k  + 1 )  - ( 4 ( k  + 1 ) 2  - 8 ( k  + 1 )  + 6 ) .  

Similarly, we can show the sums of sizes of k + 1 meshes 
laid on the left, right, and bottom boundaries are given 
by 2t (k  + 1 )  - ( 4 ( k  + 1 ) 2  - 8 ( k  + 1 )  + S) ,  2t (k  + 1 )  
- ( 4 ( k  + 1 ) 2  - 8 ( k  + 1 )  + 8),  and 2t(k  + 1 )  - ( 4 ( k  
+ 1 ) 2  - 8 ( k  + 1 ) + l o ) ,  respectively. We can similarly 
prove that when m = k + 1 is odd the sums are 2t (k  
+ 1 )  - ( 4 ( k  + 1 ) 2  - 8 ( k  + 1 )  + 9 ) ,  2 t (k  + 1 )  - ( 4 ( k  
+ 1 ) 2  - 8 ( k  + 1 )  + 9 ) ,  2t(k  + 1) - ( 4 ( k  + 1 ) 2  - 8 ( k  

+ 1 )  + 7 ) ,  and 2t(k  + 1 )  - ( 4 ( k  + 1 ) 2  - 8 ( k  + 1 )  
rn + 7 ), respectively. Thus. the lemma follows. 

It follows from Lemma 2 that the smallest sum of sizes 
of m meshes on the four one-side boundaries in M, is 
2tm - ( 4m2 - 8m + 10) when m is even and 2tm - ( 4m2 
- 8m + 9 )  when m is odd and greater than one. This also 
implies that at least 2tm - (4m2 - 8m + 10) vertices of 
each one-side boundary are covered by these 4m - 4 
meshes. Thus, by the definition of m ,  we choose m to be 
an integer as small as possible and satisfying 

2tm - (4m’ - 8m + 10) 2 n ,  

i.e., 4m2 - ( 8  + 2 t )m  + (10  + n )  I 0. ( 4 )  

Once m is determined, the problem is reduced from M,, 
to a smaller mesh Mn-4,+1m,,-44, and the transmitting time 
is reduced from t to t - 4 m  + 4 as shown in the reduction 
step. Hence, the reduction step is correct. 

Let t’ = n2I3 and t = r t l  L t‘. It implies that m“ L m‘, 
where m“ and m’ are the smaller roots of 2t‘m - (4m’ 
- 8m + 10) - n = 0 and 2tm - (4m2 - 8m + 10) - n 
= 0, respectively. Nonetheless, it suffices to choose m 
= rml,  rather than rm’l, as shown in ( 6 )  of the proof of 
Lemma 3. Based on the choice o f t  and m, we show the 
following lemma to ensure the feasibility of the reduction 
step in the proposed transmitting strategy as specified in 
terms of (3) :  

Lemma 3. When n is large enough, we have 

( t  - 4m + 4 ) 3  2 ( n  - 4t + 16m - 24)2.  ( 5 )  

ProoJ: Let t ,  t‘, m’, and m’‘ be defined as above. Since 
t 2 t‘, m‘ + 1 L m ,  and m“ 2 m‘, it follows that 

( t  - 4m + 413 2 ( t ’  - 4m’)’ L ( t ’  - 4m”)3 ,  ( 6 )  
and ( n  - 4t‘ + 16m” - 8)‘ 

2 ( n  - 4t’+ 16m‘- 8)2 2 ( n  - 4t + 16m - 24)*. 

Thus, it suffices to show that 

(t’  - 4m”)3 2 ( n  - 4t‘ + 16m” - 8)’. (7)  

Let k = n1I3 .  We thus have t’ = k 2  and m“ = [ ( 4  + k 2 )  
- 6(4  + k 2 ) 2  - 4 ( k 3  + 1 0 ) ] / 4 .  Furthermore, we have 

(t’ - 4m”)3 = [ k 2  - ( 4  + k’) 

+ i ( 4  + k 2 ) 2  - 4 ( k 3  + l O ) I 3  

= ( k 4  + 8k2 - 4k3 + 24)  

X V(4 + k‘)2 - 4 ( k 3  + 10) 

- 12k4 + 48k3 - 96k2 + 224, 
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and 

( n  - 4t‘ + 16m” - 8)2 

= ( k 3  - 4k2 + 4(4  + k2)  

- 4V(4 + k2)2 - 4(k3 + 10) - 8)2  

= k 6  + 16k4 - 48k3 + 128k2 - 320 

- (8k3 + 64)V(4 + k 2 ) 2  - 4(k3 + 10). 

Letf(k) = (t’ - 4m”)3 - ( n  - 4t‘ + 16m“ - 8 ) 2 .  It 
follows that 

f ( k )  = (k4  + 4k3 + 8k2 + 88) 

X V(4 + k2)2 - 4(k3 + 10) 

- (k6  + 28k4 - 96k3 + 224k2 - 544). 

Since limk+m f (4  + k2)2  - 4(k3  + 10) /k2  = 1, it fol- 
lows that limk,, [f(k)]/k5 = O( 1). Thus,f(k) = O(k5).  
It means that there exists a large number M such that 
f( k )  2 0 for all k 2 M .  Hence, the inequality (7)  is satisfied 
for large n. Consequently, the lemma follows. 

Based on a detailed calculation in the proof of Lemma 
3, it can be shown that for n 2 729 we have (t’ - 4m”)3 
2 ( n  - 4t‘ + 16m” - S)’, and, obviously, (5 )  is satisfied. 
However, satisfaction of ( 5) for all n is to be sought. With 
the aid of a computer program, it can be verified that ( 5 ) 
is satisfied for n 2 397 when t = rn2/31 and m is the smallest 
integer that satisfies 4m2 - (8  + 2t)m + (10 + n )  I 0. 
Thus, we focus on n I 396 since reduction can be applied 
for n 2 397. We also note that (5 )  is satisfied for most 
cases of 1 I n I 396. In other words, choosing t = rn2/31 
for M,, then t - 4m + 4 is a feasible transmitting time 
for hf,-41+16,,-24 as well, except for some special cases. 
Examining the computer program output shown in Table 
I, the set of X of special cases of n that (5 )  cannot be 
satisfied is given as follows: X = { 8, 11, 35:52, 55:58, 63, 
64, 148:164, 167:172, 178:181, 189, 383:385, 395, 396}, 
where “a:b” represents a, a + 1, . . . , b. We define 

Q = X -  (8, 11, 35:45}. ( 8 )  

To eliminate the violation of (5 )  for these cases of n ,  we 
choose t = rn2/’1 + 2 instead of t  = rn2/31. The intuition 
is to increase the number of meshes to cover M,, and to 
enlarge the largest mesh used to cover M,,. We illustrate 
the intuition why we need “+2” in the definition o f t  by 
the following example: 

Consider n = 163 E Q ,  and let t = rn2I3l. Then, we 
have t = 30 and m = 4. Once m is determined, the re- 
maining mesh is of size 83 and the remaining time is 18 
for Ms3. But we have ( 18)3 < (83)2,  a violation of (5) .  

We thus increase t by 2 to 32. Though the increase o f t  
may decrease m,  we choose m to be the same as before, 
i.e., when t = 32, we still have m = 4. We put the meshes 
M63, M61, . . . , in the same places as in the case o f t  
= 30. Choosing t = 32, the remaining mesh has a size less 
than or equal to 83 and the remaining transmitting time 
is 20. Since (20)3 2 ( 83)2, t = 20 is a feasible transmitting 
time for Ms3.  

Based on the above discussion, we present our trans- 
mitting strategy in the following algorithm to find a trans- 
mitting scheme for M, with transmitting time rn2/31 or 
rn2/31 + 2, when n 2 46. For n I 45, we manually solve 
this transmitting problem with t = rn2/31 + 1 for n = 8, 
1 1, and t = rn2/’l otherwise; for an example, the solution 
for M45 is illustrated in Figure 4. 

Algorithm T A ( n ,  t)//Initial value o f t  is -a// 

If n I 0, STOP. 
If t = -a, calculate t = rn2/31. Moreover, if n I 45, 
we manually solve this transmitting problem with t 
= rn2I3l + 1 for n = 8, 1 I ,  and t = rn2/’l otherwise. 
Then STOP. 
If n I 45, we manually solve this transmitting prob- 
lem, and STOP. 
If 2t - 1 2 n ,  send a message to the processor at the 
center of M,, and STOP. 

Calculate m = “(4 + t )  - V(4 + t)2 - 4(n + 10)]/41 
and 2 = n - 4t + 16m - 24. 
If n E Q, set t to be t + 2. 
Arrange M2[- I ,  M21-3, . . . , M21-8m+9 into M,, accord- 
ing to the mesh arrangement strategy specified before. 
i = t - 4m + 4; call ~ ~ ( f i ,  i). 

A question may naturally arise whether or not the size 
of the remaining mesh f i  will fall in Q again when we 
choose the transmitting time as t = rn2/’l + 2 for n E Q. 
If yes, it implies the failure of induction on a reduction 
step based on Lemma 3, and, furthermore, the transmit- 
ting time can be rn2’31 + a, where a is a large constant. 
Since a = 0 or 2 is what we seek, we examine Table I 
more closely and have the following observations to ensure 
this: 

Observations: 

For n E Q, the size of the remaining mesh f i  will 
never fall in Q again. 
For n $! Q, the size of the remaining mesh f i  may 
fall in Q. But we have i 2 rfi2I3l + 2, which ensures 
the feasibility of the reduced problem on the mesh 
of size i .  Thus, we do not need to increase 2, and t 
is still feasible. 
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TABLE 1. Computer output for calculation of t, m, and f when n I 732. 

n t m i i  i n t r n i i  t n t m i i  t n t m i i  t 

n = 1-244 

- -  1 1  
2 2  - -  
3 3  
4 3  
5 3  - -  
6 4  - -  
7 4  - -  
8 4 + 1  2 - 
9 5  - -  

10 5 2 -  
1 1  5 + 1  2 - 

_ -  
- -  

12 6 
13 6 
14 6 
15 7 
16 7 
17 7 
18 7 
19 8 
20 8 
21 8 
22 8 
23 9 
24 9 
25 9 
26 9 
27 9 
28 10 
29 10 
30 10 
31 10 
32 11  
33 I I  
34 I 1  
35 1 1  
36 11  
37 12 
38 12 
39 12 
40 12 
41 12 
42 13 
43 13 
44 13 
45 13 

2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
2 -  
3 15 
3 12 
3 13 
3 14 
3 15 
3 16 
3 13 
3 14 
3 15 
3 16 
3 17 

46 1 3 + 2  3 18 
47 1 4 +  1 3 15 
48 1 4 +  1 3 16 
49 1 4 +  1 3 17 
50 1 4 + 2  3 18 
51 1 4 + 2  3 19 
52 14 + 2 3 20 
53 15 3 17 

62 16 3 22 8 123 25 
63 1 6 +  1 3 23 8 +  1 124 25 
64 16 + 1 3 24 8 +  1 125 25 
65 17 
66 17 
67 17 
68 17 
69 17 
70 17 
71 18 
72 18 
73 18 
74 18 
75 18 
76 18 
77 19 
78 19 
79 19 
80 19 
81 19 
82 19 
83 20 
84 20 
85 20 
86 20 
87 20 
88 20 
89 20 
90 21 
91 21 
92 21 
93 21 
94 21 
95 21 
96 21 
97 22 
98 22 
99 22 

loo 22 
101 22 
102 22 
103 22 
104 23 
105 23 
106 23 

5 + 2 107 23 
6 +  1 108 23 
6 + I 109 23 
6 +  1 110 23 
6 + 2  1 1 1  24 
6 + 2  112 24 
6 + 2  113 24 
7 114 24 

3 21 9 
3 22 9 
3 23 9 
3 24 9 
3 25 9 
3 26 9 
3 23 10 
3 24 10 
3 25 10 
3 26 10 
3 27 10 
3 28 10 
3 25 1 1  
3 26 I 1  
3 27 I 1  
3 28 1 1  
3 29 1 1  
3 30 I 1  
3 27 12 
3 28 12 
3 29 12 
3 30 12 
3 31 12 
3 32 12 
3 33 12 
3 30 13 
3 31 13 
3 32 13 
3 33 13 
3 34 13 
3 35 13 
3 36 13 
3 33 14 
3 34 14 
3 35 14 
3 36 14 
3 37 14 
3 38 14 
3 39 14 
3 36 15 
3 37 15 
3 38 15 
3 39 15 
3 40 15 
3 41 15 
3 42 15 
3 39 16 
3 40 16 
3 41 16 
3 42 16 

126 26 
127 26 
128 26 
129 26 
130 26 
131 26 
132 26 
133 27 
134 27 
135 27 
136 27 
137 27 
138 27 
139 27 
140 27 
141 28 
142 28 
143 28 
144 28 
145 28 
146 28 
147 28 

3 47 17 
3 48 17 
3 49 17 
3 46 18 
3 47 18 
3 48 18 
3 49 18 
3 50 18 
3 51 18 
3 52 18 
3 49 19 
3 50 19 
3 51 19 
3 52 19 
3 53 19 
3 54 19 
3 55 19 
3 56 19 
3 53 20 
3 54 20 
3 55 20 
3 56 20 
3 57 20 
3 58 20 
3 59 20 

184 33 4 92 21 
185 33 4 93 21 
186 33 4 94 21 
187 33 4 95 21 
188 33 4 96 21 
189 3 3 + 1  4 97 2 1 + l  
190 34 
191 34 
192 34 
193 34 
194 34 
195 34 
196 34 
197 34 
198 34 
199 35 
200 35 
201 35 
202 35 
203 35 
204 35 
205 35 
206 35 
207 35 
208 36 

148 28 + 2 4 76 16 + 2 209 36 
149 2 9 +  1 4 73 171- 1 210 36 
150 2 9 +  1 4 74 1 7 +  1 211 36 
151 2 9 +  1 4 75 17 + I 212 36 
152 2 9 +  1 4 76 17 + 1 213 36 
153 2 9 + 2  4 77 1 7 + 2  214 36 
154 2 9 + 2  4 78 1 7 + 2  215 36 
155 2 9 + 2  4 79 17 + 2  216 36 
156 2 9 +  1 4 80 1 7 + 2  217 37 
157 3 0 +  1 4 77 1 8 +  1 218 37 
158 3 0 +  1 4 78 18 + I 219 37 
159 3 0 +  1 4 79 1 8 +  1 220 37 
160 3 0 +  I 4 80 1 8 +  I 221 37 
161 3 0 +  1 4 81 1 8 +  1 222 37 
162 3 0 +  1 4 82 18 + 1 223 37 
163 3 0 + 2  4 83 18 + 2  224 37 
164 30 + 2 4 84 18 + 2 225 37 
165 31 4 81 19 226 38 
166 31 4 82 19 227 38 
167 31 + 1 4 83 19 + I 228 38 
168 31 + 1 4 84 19 + I 229 38 
169 31 + 1 4 85 1 9 +  I 230 38 
170 31 + 1 4 86 19 + 1 231 38 
171 31 + 1 4 87 19 + 1 232 38 
172 31 + 1 4 88 19+ 1 233 38 

234 38 173 32 4 85 20 
174 32 4 86 20 235 39 
175 32 4 87 20 236 39 

4 94 22 
4 95 22 
4 96 22 
4 97 22 
4 98 22 
4 99 22 
4 100 22 
4 101 22 
4 102 22 
4 99 23 
4 100 23 
4 101 23 
4 102 23 
4 103 23 
4 104 23 
4 105 23 
4 106 23 
4 107 23 
4 104 24 
4 105 24 
4 106 24 
4 107 24 
4 108 24 
4 109 24 
4 110 24 
4 111 24 
4 112 24 
4 109 25 
4 110 25 
4 111 25 
4 112 25 
4 113 25 
4 114 25 
4 115 25 
4 116 25 
4 117 25 
4 114 26 
4 115 26 
4 116 26 
4 117 26 
4 118 26 
4 119 26 
4 120 26 
4 121 26 
4 122 26 
4 119 27 
4 120 27 

Table I continues 
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TABLE 1. Continued 
~ ~~~~~~~~ ~~ ~ ~ ~ ~ 

n t m r i  i n t m r i  t n t m r i  t n t m i  t 

n = 1-244 (Continued) 

54 15 3 18 7 115 24 3 43 16 176 32 4 88 20 237 39 4 121 27 
55 1 5 + 1  3 19 7 + 1  116 24 3 44 16 177 32 4 89 20 238 39 4 122 27 
56 1 5 + 1  3 20 7 + 1  117 24 3 45 16 178 32 + 1 4 90 20 + 1 239 39 4 123 27 
57 15+ 1 3 21 7 f  1 118 25 3 42 17 179 3 2 +  1 4 91 2 0 +  1 240 39 4 124 27 
58 1 5 +  1 3 22 7 +  1 119 25 3 43 17 180 32 + 1 4 92 2 0 +  1 241 39 4 125 27 
59 16 3 19 8 120 25 3 44 17 181 3 2 +  1 4 93 2 0 +  1 242 39 4 126 27 
60 16 3 20 8 121 25 3 45 17 182 33 4 90 21 243 39 4 127 27 
61 16 3 21 8 122 25 3 46 17 183 33 4 91 21 244 40 4 124 28 

n = 245-488 

245 40 
246 40 
247 40 
248 40 
249 40 
250 40 
251 40 
252 40 
253 41 
254 41 
255 41 
256 41 
257 41 
258 41 
259 41 
260 41 
261 41 
262 41 
263 42 
264 42 
265 42 
266 42 
267 42 
268 42 
269 42 
270 42 
271 42 
272 42 
273 43 
274 43 
275 43 
216 43 
277 43 
278 43 
279 43 
280 43 
281 43 
282 44 
283 44 
284 44 
285 44 
286 44 
287 44 

4 125 28 
4 126 28 
4 127 28 
4 128 28 
4 129 28 
4 130 28 
4 131 28 
4 132 28 
4 129 29 
4 130 29 
4 131 29 
4 132 29 
4 133 29 
4 134 29 
4 135 29 
4 136 29 
4 137 29 
4 138 29 
4 135 30 
4 136 30 
4 137 30 
4 138 30 
4 139 30 
4 140 30 
4 141 30 
4 142 30 
4 143 30 
4 144 30 
4 141 31 
4 142 31 
4 143 31 
4 144 31 
4 145 31 
4 146 31 
4 147 31 
4 148 31 
4 149 31 
4 146 32 
4 147 32 
4 148 32 
4 149 32 
4 150 32 
4 151 32 

306 46 
307 46 
308 46 
309 46 
310 46 
311 46 
312 47 
313 47 
314 47 
315 47 
316 47 
317 47 
318 47 
319 47 
320 47 
321 47 
322 47 
323 48 
324 48 
325 48 
326 48 
327 48 
328 48 
329 48 
330 48 
331 48 
332 48 
333 49 
334 49 
335 49 
336 49 
337 49 
338 49 
339 49 
340 49 
341 49 
342 49 
343 49 
344 50 
345 50 
346 50 
347 50 
348 50 

4 162 34 
4 163 34 
4 164 34 
4 165 34 
4 166 34 
4 167 34 
4 164 35 
4 165 35 
4 166 35 
4 167 35 
4 168 35 
4 169 35 
4 170 35 
4 171 35 
4 172 35 
4 173 35 
4 174 35 
4 171 36 
4 172 36 
4 173 36 
4 174 36 
4 175 36 
4 176 36 
4 177 36 
4 178 36 
4 179 36 
4 180 36 
4 177 37 
4 178 37 
4 179 37 
4 180 37 
4 181 37 
4 182 37 
4 183 37 
4 184 37 
4 185 37 
4 186 37 
4 187 37 
4 184 38 
4 185 38 
4 186 38 
4 187 38 
4 188 38 

367 52 4 199 40 428 57 
368 52 4 200 40 429 57 
369 52 4 201 40 430 57 
370 52 4 202 40 431 58 
371 52 4 203 40 432 58 
372 52 4 204 40 433 58 
373 52 4 205 40 434 58 
374 52 4 206 40 435 58 
375 53 4 203 41 436 58 
376 53 4 204 41 437 58 
377 53 4 205 41 438 58 
378 53 4 206 41 439 58 
379 53 4 207 41 440 58 
380 53 4 208 41 441 58 
381 53 4 209 41 442 59 
382 53 4 210 41 443 59 
383 53 + 1 5 227 37 + 1 444 59 
384 53 + 1 5 228 37 + 1 445 59 
385 53 + 1 5 229 37 + 1 446 59 
386 54 5 226 38 447 59 
387 54 5 227 38 448 59 
388 54 5 228 38 449 59 
389 54 5 229 38 450 59 
390 54 5 230 38 451 59 
391 54 5 231 38 452 59 
392 54 5 232 38 453 59 
393 54 5 233 38 454 60 
394 54 5 234 38 455 60 
395 54 + 1 5 235 38 + 1 456 60 
396 54 + 1 5 236 38 + 1 457 60 
397 55 5 233 39 458 60 
398 55 5 234 39 459 60 
399 55 5 235 39 460 60 
400 55 5 236 39 461 60 
401 55 5 237 39 462 60 
402 55 5 238 39 463 60 
403 55 5 239 39 464 60 

465 61 404 55 5 240 39 
466 61 405 55 5 241 39 

406 55 5 242 39 467 61 
407 55 5 243 39 468 61 
408 56 5 240 40 469 61 
409 56 5 241 40 470 61 

5 256 41 
5 257 41 
5 258 41 
5 255 42 
5 256 42 
5 257 42 
5 258 42 
5 259 42 
5 260 42 
5 261 42 
5 262 42 
5 263 42 
5 264 42 
5 265 42 
5 262 43 
5 263 43 
5 264 43 
5 265 43 
5 266 43 
5 267 43 
5 268 43 
5 269 43 
5 270 43 
5 271 43 
5 272 43 
5 273 43 
5 270 44 
5 271 44 
5 272 44 
5 273 44 
5 274 44 
5 275 44 
5 276 44 
5 277 44 
5 278 44 
5 279 44 
5 280 44 
5 277 45 
5 278 45 
5 279 45 
5 280 45 
5 281 45 
5 282 45 

Table I continues 
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TABLE 1. Continued 

n t m i i  t n t m n  * t  n t m n  * t  n t m i  t 
n = 245-488 (Continued) 

288 44 4 152 32 349 50 4 189 38 410 56 5 242 40 471 61 5 
289 44 4 153 32 350 50 4 190 38 411 56 5 243 40 472 61 5 
290 44 4 154 32 351 50 4 191 38 412 56 5 244 40 473 61 5 
291 44 4 155 32 352 50 4 192 38 413 56 5 245 40 474 61 5 
292 45 4 152 33 353 50 4 193 38 414 56 5 246 40 475 61 5 
293 45 4 153 33 354 51 4 190 39 415 56 5 247 40 476 61 5 
294 45 4 154 33 355 51 4 191 39 416 56 5 248 40 477 62 5 
295 45 4 155 33 356 51 4 192 39 417 56 5 249 40 478 62 5 
296 45 4 156 33 357 51 4 193 39 418 56 5 250 40 479 62 5 
297 45 4 157 33 358 51 4 194 39 419 56 5 251 40 480 62 5 
298 45 4 158 33 359 51 4 195 39 420 57 5 248 41 481 62 5 
299 45 4 159 33 360 51 4 196 39 421 57 5 249 41 482 62 5 
300 45 4 160 33 361 51 4 197 39 422 57 5 250 41 483 62 5 
301 45 4 161 33 362 51 4 198 39 423 57 5 251 41 484 62 5 

5 302 46 4 158 34 363 51 4 199 39 424 57 5 252 41 485 62 
303 46 4 159 34 364 51 4 200 39 425 57 5 253 41 486 62 5 
304 46 4 160 34 365 52 4 197 40 426 57 5 254 41 487 62 5 
305 46 4 161 34 366 52 4 198 40 427 57 5 255 41 488 62 5 

283 
284 
285 
286 
287 
288 
285 
286 
287 
288 
289 
290 
29 1 
292 
293 
294 
295 
296 

45 
45 
45 
45 
45 
45 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 
46 

489 63 
490 63 
491 63 
492 63 
493 63 
494 63 
495 63 
496 63 
497 63 
498 63 
499 63 
500 63 
501 64 
502 64 
503 64 
504 64 
505 64 
506 64 
507 64 
508 64 
509 64 
510 64 
511 64 
512 64 
513 65 
514 65 
515 65 
516 65 
517 65 
518 65 
519 65 
520 65 
521 65 

5 293 47 
5 294 47 
5 295 47 
5 296 47 
5 297 47 
5 298 47 
5 299 47 
5 300 47 
5 301 47 
5 302 47 
5 303 47 
5 304 47 
5 301 48 
5 302 48 
5 303 48 
5 304 48 
5 305 48 
5 306 48 
5 307 48 
5 308 48 
5 309 48 
5 310 48 
5 311 48 
5 312 48 
5 309 49 
5 310 49 
5 311 49 
5 312 49 
5 313 49 
5 314 49 
5 315 49 
5 316 49 
5 317 49 

550 68 
551 68 
552 68 
553 68 
554 68 
555 68 
556 68 
557 68 
558 68 
559 68 
560 68 
561 69 
562 69 
563 69 
564 69 
565 69 
566 69 
567 69 
568 69 
569 69 
570 69 
571 69 
572 69 
573 69 
574 70 
575 70 
576 70 
577 70 
578 70 
579 70 
580 70 
581 70 
582 70 

5 334 52 
5 335 52 
5 336 52 
5 337 52 
5 338 52 
5 339 52 
5 340 52 
5 341 52 
5 342 52 
5 343 52 
5 344 52 
5 341 53 
5 342 53 
5 343 53 
5 344 53 
5 345 53 
5 346 53 
5 347 53 
5 348 53 
5 349 53 
5 350 53 
5 351 53 
5 352 53 
5 353 53 
5 350 54 
5 351 54 
5 352 54 
5 353 54 
5 354 54 
5 355 54 
5 356 54 
5 357 54 
5 358 54 

611 73 
612 73 
613 73 
614 73 
615 73 
616 73 
617 73 
618 73 
619 73 
620 73 
621 73 
622 73 
623 73 
624 74 
625 74 
626 74 
627 74 
628 74 
629 74 
630 74 
631 74 
632 74 
633 74 
634 74 
635 74 
636 74 
637 75 
638 75 
639 75 
640 75 
641 75 
642 75 
643 75 

5 375 57 
5 376 57 
5 377 57 
5 378 57 
5 379 57 
5 380 57 
5 381 57 
5 382 57 
5 383 57 
5 384 57 
5 385 57 
5 386 57 
5 387 57 
5 384 58 
5 385 58 
5 386 58 
5 387 58 
5 388 58 
5 389 58 
5 390 58 
5 391 58 
5 392 58 
5 393 58 
5 394 58 
5 395 58 
5 396 58 
5 393 59 
5 394 59 
5 395 59 
5 396 59 
5 397 59 
5 398 59 
5 399 59 

672 77 
673 77 
674 77 
675 77 
676 78 
677 78 
678 78 
679 78 
680 78 
681 78 
682 78 
683 78 
684 78 
685 78 
686 78 
687 78 
688 78 
689 79 
690 79 
691 79 
692 79 
693 79 
694 79 
695 79 
696 79 
697 79 
698 79 
699 79 
700 79 
701 79 
702 79 
703 80 
704 80 

5 420 61 
5 421 61 
5 422 61 
5 423 61 
5 420 62 
5 421 62 
5 422 62 
5 423 62 
5 424 62 
5 425 62 
5 426 62 
5 427 62 
5 428 62 
5 429 62 
5 430 62 
5 431 62 
5 432 62 
5 429 63 
5 430 63 
5 431 63 
5 432 63 
5 433 63 
5 434 63 
5 435 63 
5 436 63 
5 437 63 
5 438 63 
5 439 63 
5 440 63 
5 441 63 
5 442 63 
5 439 64 
5 440 64 

Table I continues 
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M g  

TABLE 1. Continued 

Ml We choose t = rn2’31 + 1 for n E A ,  and t = rn2/$  + 2 
for n E Q - A .  Thus, step (6 ) in Algorithm TA( n ,  t )  is M13 

t m i ?  i n t m i ?  i n t m n  * t  n t m i ?  i n 

M*5 
M21 

M 19 
MI, 

M23 
Ml, 

MI1 

n = 489-732 (Continued) 

replaced as follows (initial value offrag is 0): 

(6)  Ifflug = 0, set t to be t + 1 for n € A ,  and t + 2 for 

U M 3  

El 
+!I n E Q - A ;  setJlag = 1. 

Hence, we can conclude that the proposed algorithm 
gives a transmitting scheme with t = rn2131 + 1 for n 
€ A  U ( 8 ,  l l } ,  t = rn2131 + 2 for n E Q - A ,  and t 
= Tn2I3l otherwise. Thus, this transmitting problem is 
solved by the proposed transmitting scheme, though not 

522 65 
523 65 
524 65 
525 66 
526 66 
527 66 
528 66 
529 66 
530 66 
531 66 
532 66 
533 66 
534 66 
535 66 
536 66 
537 67 
538 67 
539 67 
540 67 
541 67 
542 67 
540 67 
544 67 
545 67 
546 67 
54‘7 67 
548 67 
549 68 

5 318 49 
5 319 49 
5 320 49 
5 317 50 
5 318 50 
5 319 50 
5 320 50 
5 321 50 
5 322 50 
5 323 50 
5 324 50 
5 325 50 
5 326 50 
5 327 50 
5 328 50 
5 325 51 
5 326 51 
5 327 51 
5 328 51 
5 329 51 
5 330 51 
5 331 51 
5 332 51 
5 333 51 
5 334 51 
5 335 51 
5 336 51 
5 333 52 

583 70 
584 70 
585 70 
586 71 
587 71 
588 71 
589 71 
590 71 
591 71 
592 71 
593 71 
594 71 
595 71 
596 71 
597 71 
598 71 
599 72 
600 72 
601 72 
602 72 
603 72 
604 72 
605 72 
606 72 
607 72 
608 72 
609 72 
610 72 

5 359 54 644 75 5 400 59 705 80 5 441 64 
5 360 54 645 75 5 401 59 706 80 5 442 64 
5 361 54 646 75 5 402 59 707 80 5 443 64 
5 358 55 647 75 5 403 59 708 80 5 444 64 
5 359 55  648 75 5 404 59 709 80 5 445 64 
5 360 55  649 75 5 405 59 710 80 5 446 64 
5 361 5 5  650 76 5 402 60 711 80 5 447 64 
5 362 5 5  651 76 5 403 60 712 80 5 448 64 
5 363 55 652 76 5 404 60 713 80 5 449 64 
5 364 55  653 76 5 405 60 714 80 5 450 64 
5 365 55  654 76 5 406 60 715 80 5 451 64 
5 366 55  655 76 5 407 60 716 81 5 448 65 
5 367 5 5  656 76 5 408 60 717 81 5 449 65 
5 368 55 657 76 5 409 60 718 81 5 450 65 
5 369 55 658 76 5 410 60 719 81 5 451 65 
5 370 55 659 76 5 411 60 720 81 5 452 65 
5 367 56 660 76 5 412 60 721 81 5 453 65 
5 368 56 661 76 5 413 60 722 81 5 454 65 
5 369 56 662 76 5 414 60 723 81 5 455 65 
5 370 56 663 77 5 411 61 724 81 5 456 65 
5 371 56 664 77 5 412 61 725 81 5 457 65 
5 372 56 665 77 5 413 61 726 81 5 458 65 
5 373 56 666 77 5 414 61 727 81 5 459 65 
5 374 56 667 77 5 415 61 728 81 5 460 65 
5 375 56 668 77 5 416 61 729 81 5 461 65 
5 376 56 669 77 5 417 61 730 82 5 458 66 
5 377 56 670 77 5 418 61 731 82 5 459 66 
5 378 56 671 77 5 419 61 732 82 5 460 66 

The calculation of rn2131 for M ,  is only calculated once 
as specified in step (2) .  Furthermore, based on the above 
observations, 2 is only added at most once to rn2131 to 
determine a feasible transmitting time of M,, i.e., in the 
later reduction steps, the transmitting times are always 

feasible for the reduced meshes. We also note that Q can 
be partitioned into two sets A and Q - A according to 
Table I, where 

A = { 47:49, 5 5 5 8 ,  63, 64, 149:152, 156:162, 

167:172, 178:181, 189, 383:385, 395, 396).  
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Theorem 5. The ratio of the proposed transmitting time 
to the optimal transmitting time is approximate to 1.1. 

Proof Algorithm TA ( n , t )  yields a feasible transmit- 
ting time t of rn2/31 + 1, rn2/31 + 2, or rn2/31, depending 
on n.  Let top' denote the optimal transmitting time for 
M,, and t* be the smallest integer satisfying $t* - i t *  
2 n2.  Obviously, we have top' 2 t*. When n is given, we 
have t* 2 t l ,  where t l  = r e n 2 / 3 1 ,  the smallest integer 
satisfying 2t: 2 n2.  Thus, the ratio of the proposed trans- 
mitting time to the optimal transmitting time is given as 
follows: 

Hence. the theorem follows. 

6. TRANSMITTING ON DE BRUIJN GRAPHS 

The (directed) de Bruijn graph BZ, called a d-ary n-di- 
mensional de Bruijn graph, is a directed graph having the 
vertex set V (  BZ) = { 0, 1, . . . , d" - 1 } . Each vertex v in 
B2 can be expressed as v = ( vnP2, . . . , vo ) ,  where 
OIU, I d -  1 f o r a l l O s i I n -  l , a n d v =  C F o v i d i .  
Each vertex is denoted by its label v or its n-tuple repre- 
sentation, which are used interchangeably. Each vertex v 
is connected to vertex u ,  denoted by (u ,  u ) ,  where u 
- ( ~ ~ - 2 ,  ~ " - 3 , .  . . , 210, a )  and 0 I a I d - 1. By conven- 
tion, when n = 1, BA is a complete directed graph on d 
vertices with self-loops. Each vertex of B$ has outdegree 
and indegree d .  

In this section, we give the optimal transmitting cost 
for BZ, which is given in the following theorem, and the 
optimal transmitting schemes can be found in the proof 
of the theorem. 

- 

Theorem 6. The optimal transmitting cost of BZ is ( 1, 1 ) 
when d = 1, (2, 1 )  when n = 1, ( n ,  2)  when d = 2, and 
( n  + 1, 1) when d 2 3. 

Proof It is trivial to verify the cases of d = 1 or n 
= 1. Now, we consider the cases that d 2 2 and n 2 2. 
Since BZ has outdegree d ,  it follows that for any vertex 
v and a nonnegative integer r I n we have I Nr( v )  I I 1 
+ d + d2 + -  - .+ d ' =  (dr+l  - l ) / ( d  - 1) .  Hence, 

Consider d 2 3. Since for any vertex v we have N,(v) 
= V (  BZ), we can give an ( n  + 1, 1 )-transmitting scheme 
as follows: The host sends a message to an arbitrary vertex 
in B j  and then idles. After n + 1 units of time, all pro- 
cessors in B: can receive the message. Suppose that the 
optimal transmitting time is t I n .  It follows that 

It means that not all the vertices in B: can receive the 
message in n time units, which is a contradiction. Thus, 
the ( n  + 1, 1 )-transmitting scheme is optimal for BZ when 
d 2  3. 

Consider d = 2. Let ( t* ,  s * )  be the optimal transmitting 
cost for B;. For all ( t ,  s)-transmitting schemes, it follows 
from(9)that IUf( i )EvNr- i ( f ( i ) ) l  1 2 " - n -  1 < 2 " i f t  
-I n - 1. Thus, we have t 2 n ,  and, in particular, t * 2 n . 
Suppose that t* = n and s* = 1. It follows that 

- 1 < 2",  which is a contradiction. Thus, if t* = n ,  we 
must haves* 2 2. We give an ( n ,  2)-transmitting scheme 
fas follows: f (  1 ) = 1 , f (  k )  = 0 for an arbitrary k satisfying 
2 I k I n ,  andf( i )  = v0 for all i # 1, k .  In other words, 
the host sends a message to vertex 1, i.e., (0, . . . , 0, 1 ), 
at the first time unit, and then to vertex 0, i.e., (0 ,  . . . , 
0) at the k-th unit of time, 2 I k I n .  For any vertex v 
- (vn-l, v n - 2 ,  . . . , vo), 2 I I 2" - 1, it is obvious that 
d(1, v )  I n - 1 since ui = 1 for some 1 I i I n - 1. 
Therefore, Nn-l ( 1 ) = V (  B2) - { 0 } . Thus, NnPl ( 1 ) 
U f ( k )  = NnPl(  1 )  U { 0} = V (  B:). Hence, the proposed 
( n ,  2)-transmitting scheme is optimal. The theorem 
follows. H 

IUf(;)EvNf--i(f( i))l  = INn-I(f(l))I I C:=i 21-l = 2" 

- 

7. CONCLUSION 

Linear arrays and (token) rings are of practical use in 
networks. Binary trees are also a useful topology for par- 
allel systems. We present optimal transmitting schemes 
on rings, linear arrays, complete binary trees, and star 
trees. In observing the solution method for star trees pre- 
sented in Section 4, we need more number theory results 
to solve optimal transmitting problems on starlike graphs. 
Not surprisingly, solving the optimal transmitting scheme 
for general trees is much more difficult. 

In transmitting on diagonal meshes, we can only give 
an approximation solution, not an optimal one. The proof 
for showing that the proposed function f is a transmitting 
scheme has already involved very complicated calcula- 
tions. It is even more difficult to give an optimal trans- 
mitting scheme on (conventional) meshes or tori. 

In the above discussion, the host is first assumed to 
have a link to every processor in the graph. However, 
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only s( G) links between the host processor and the pro- 
cessors in G are sufficient for transmitting purposes. 
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