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Abstract

This paper is concerned with the distributions of linear functions of independent U and F variates. The statistics
U, .nis defined as U =|Q,|/]Q, + Q,|, where @, and Q, are p x p random matrices and independently distributed as
W (Z, n)and W (Z, q), respectively. Useful and accurate approximations are considered for the linear combinations of two

independent U variates as well as the linear combinations of two independent F variates.

1. Introduction

This paper is concerned with the distributions of linear functions of independent U and F variates. The

statistic U, ,., is defined as

o
U=loir o

where @, and @, are pxp random matrices and independently distributed as W(Z, n) and W (Z, g),
respectively. The statistic is very well known in multivariate analysis and its distribution has been well
studied, see e.g. Krishnaiah and Lee (1980). When p =1 or 2, some functions of the U statistic have

1-U
(——U—-l“—) is F(g, n) and the

l.q,n

(1.1)

F distributions, see, e.g. Anderson (1971). Specifically, the distribution of F =

-1 -./U
distribution of F = (n = 1) = 2.a) is F(2¢,2(n — 1))
q 2,q,n
which p > 2 and g > p. However, there are occasions in which transformations of U will not be appropriate
for the problem at hand. Hence, we will consider p = 1 and 2 as well. Of course, we should also keep in mind
that the distribution of U, , , is the same as the distribution of U,

. Hence, we will mainly focus on the situation in

p.n—pt+q-
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Let U; and U, be two independent U variates, and a, and a, are two positive constants. The distributions
of a,U; + a,U, or their special cases a; F, + a,F, have been enountered repeatedly by Geisser (1970, 1963)
in dealing with Bayesian analysis of growth curve model and in multivariate analysis of variance for a special
covariance matrix. Morrison (1971) studied the distribution of a,F, + a,F,. However, he was concerned
with cases in which a, and a, are quite restricted. We intend to study the distributional problem for arbitrary
positive a; and a, in the distribution of a, F; + a,F,. For the distribution of a, U, + a,U,, we are not aware
of attempts to this problem. The approximation considered in this paper will prove to be useful in practice for
growth curve model prediction, for multivariate analysis of variance as well as for other occasions in which
the linear combination of independent U variates or F variates is a natural consequence of the theoretical
development.

Section 2 ts devoted to the study of an approximation to the linear combination of two independent
F variates. In Section 3, an approximation to the linear combination of two independent U variates is
proposed. Finally, some concluding remarks are given in Section 4.

2. The distribution of linear combinations of two independent F variates

Morrison (1971) considered the distribution of the linear compound

Y2 F(uy,u,) @.1)

2

u
W = v, F(vy,v5) + !

of two independent F variates with degrees of freedom vy,v, and uy,u,, respectively. When v, = n,
vy =N —n,u; =m, u; = N —m, Morrison (1971) showed that the density of W is

N
n) (m+n)/2 © F<?+]>

(o
R

2j+(m+n—2)/2

w

1 w N+2j
N

which is (1.7) of Morrison (1971). Due to the complication involved in (2.2), he also proposed to approximate
the distribution of W by #F (v, + u,,u) where the scale factor # and the second degree of freedom u are found
by equating the first two cumulants of that variate with those of W.

Some comments are in order. First of all, we note that the linear compound considered by Morrison is very
restricted in that the coefficient of F(u,, u,) is of a special form. The analytic result is for even stricter
situation. Also, the approximation proposed is a two-moment approximation with the new F variate having
a special restriction in one of the two degrees of freedom, i.e., the first degree of freedom is vy + u;.

In this paper we propose to relax these restrictions and consider an arbitrary linear compound

xj n" " !fcos™ 10cos?/20d9 2.2)
0

W =a, F(vy,v2) + a3 F(uy,u,) (2.3)

of two independent F variates with the degrees of freedom as indicated. Here a4, a, are arbitrary positive
constants, and hence there are no unnecessary restrictions on them. There are no restrictions on v, and u,
either. However, in order to ensure the existence of the 3rd moment, it is required that v, > 6 and u, > 6. We
now consider the approximation of the distribution of W by nF(w,, w,), where the parameters 7, w,, w, are
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obtained by equating the first three moments of this new statistic with those of W. In fact, these parameters
can be expressed in explicit forms in terms of a,, a,, v, v,, u,, and u,. Specifically,

242C — 24B?
= 2.4
"= A7B 1 34C — 4B%’ (242)
442C — 4AB?
_ 2.4b
Y11= Y4BT Z242C + BC’ (240)
2A42B + 6AC — 8B?
= 24
"2 4B ¥ AC - 2B (2:4¢)
where
%] u;
A—a102_2+a2u2_2,
vi(vy +2) U wiu, +2)
B=a} 21 + 2a.a 272 + a3 271 ,
Yo, =D —4) T 0 =2 —2)  ug(uy — 2) (uy — 4)
v2(vy + 2 (v, +4) V3uy(vy + 2)
C=a; 2L + 3a}a !
"2y — 2) (v, — 4) (v, — 6) 2 02— 2) (0 — ) (uz — 2)
+ 3007 023 ) o Ul +2) (s +4) )

a s
uy(vy —2) (uy —2) (u2 —4) z uf(uz —2)(uy —4) (u; —6)
and v, > 6, u, > 6.

Due to the explicit formula given in (2.4), the approximation proposed in this paper is very easy to use. In
order to assess the accuracy of this approximation, we compare our results with those of Morrison (1971) for
the special situations considered in his paper. These comparisons are summarized in Table 1. In the table, we
show the exact probabilities of exceeding the approximate upper 1% and 5% points of W by applying (2.2).
The approximations being compared are those of Morrison (1971) and the method proposed in this paper.
From the table it is clear that our approximation is better than that proposed by Morrison. Of course, our
method is much more general than Morrison’s approximation because of the restrictions imposed in his
study. For the general situations not applicable in Morrison (1971), we have also conducted an extensive
simulation study and the results are summarized in Table 2.

Table 1
Probabilities of Morrison’s and our approximations for upper 1% and
5% points

Linear compound Method o =0.01 o =0.05
Morrison’s 0.01025 0.04897

F1.9)~F(19) Ours 0.00980 0.05068
9 Morrison’s 0.00959 0.04836
F.9+3F28) Ours 0.00969 0.05088
27 Morrison’s 0.00866 0.04748
FUI+ZFGD oy 0.00974 0.05078
Morrison’s 0.00916 0.04817

QY +AFRY o0 0.00959 0.05092
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Table 2
The simulation probabilities of exceeding upper 1%, 5% and 10%
points for linear combinations of F variates

Linear compound o =0.01 o = 0.05 oa=0.10
1F(5,10) + 1 F(10,20) 0.010 0.048 0.099
1F(5,10) + 1 F(10,20) 0.010 0.046 0.100
1F(5,10) + 2F (10,20 0.009 0.049 0.100
F(1,9) + F(1,9) 0.009 0.051 0.099
5F(5,10) + 10F(10,10) 0.010 0.050 0.098
5F(5,10) + 5F(10,20) 0.010 0.049 0.100
5F(5,15) + £ F(10,20) 0.010 0.051 0.101
SF(5,15) + L2 F(10,40) 0.010 0.049 0.099

In the simulation, we have conducted 5000 runs for each linear combination and computed the probabilit-
ies of exceeding the approximate 1%, 5% and 10% points of W. From this table, we see that the
approximation is generally quite good.

From Tables 1 and 2, it is fair to conclude that the proposed approximation to the distribution of an
arbitrary linear combination of two independent F variates is quite adequate for practical purposes.

3. The distribution of linear functions of two independent U variates

In this section we will consider some approximations to the distributions of linear compound
V = a1U1 + azUZ (31)

of U; and U, which are independently distributed as U, ,, n, and U, p,.»,, respectively. For p = 1, we will
approximate the distribution of V by nU, ,, ., where #, m, and n are obtained by equating the first three
moments of this statistic with those of V. These new parameters are expressed in explicit forms in terms of
a, a,, p, my, my, 0y, and n,. More specifically,

_24°C — AB* — BC

~ A’B—2B*+ AC’ .
B 4(B* — AC)(A* — B)(C — AB) (3.2b)
™ =(A%C — AB® — BC)(A’B — 2B* + AC)’ '
44(B* — AC)
"=242C _4B* _BC’ 02
where

A = aEU, + bEU,,
B = a2EU? + 2abEU,EU, + b2EU2,
C = a®EU? + 3a*bEU2EU, + 3ab*EU,EU2 + b*EU2, (3.3)

) F<M+h>r<m_i>
EUt =[] 2 2

,-=1F<n1 +21 —l>r<m1 +n12+ 1 —l+h)’
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Table 3
The simulation probabilities of exceeding upper 1%, 5% and 10%
points for linear combinations of U, ,, , variates

Linear compound o =0.01 o = 0.05 o =010
U212 +3 U205 0.006 0.046 0.108
301212 +3U02.1s 0.009 0.049 0.107
$Ui212+3 U2 0.007 0.049 0.109
Ul.2.12 + U1,2_15 0007 0053 0.099
tUis10+3U1315  0.006 0.045 0.116
3Uis10+3Uisas 0006 0.045 0.113
$Uis00+3 U515 0.007 0.049 0.113
Uis0+ Uras 0.008 0.051 0.101
3Uia12 +3Uis0s 0009 0.044 0.105
LU 312+ 101345 0010 0.047 0.107
$Uis02 +3Uia0s 0.009 0.042 0.099
Uisiaz+Upsas 0.010 0.050 0.105
$Uisas +3 U050 0.010 0.044 0.102
3Uisas +3Uisas 0011 0.048 0.095
$Uisas + 30505 0.012 0.042 0.099
Uisas + Uisas 0.010 0.046 0.101
3Uisas + 301320 0012 0.043 0.115
%U1.3.15 +%U1,3.20 0.013 0.044 0.108
$Uisas +3 U320 0.012 0.043 0.117
Uisas + Uz 0.008 0.049 0.096

and

) F(%l—uh)F(%"zH_i)
EUS =]

i=1r<n2 +21 —i>r<m2+n22+ 1 —i+h>’

for h =1, 2, 3. In order to assess the accuracy of the above approximation, we have conducted a simulation
study and the results are summarized in Table 3. In the simulation, we have conducted 5000 runs for each
combination of the parameters and computed the probabilities of exceeding the approximate 1%, 5% and
10% points of V. From the table we see that the proposed approximation is quite reasonable.

We next consider the more general case of p = 2 in which the above approximation does not work. Instead
of the U, . , approximation to the distribution of V, we will approximate the distribution by the Pearson
type I distribution which is defined as

(3.4)

f)=[Bla+ 1L e+ Doy —ao) 1] Hx —060)* (6, — X)°, 0o<x<d;, xR (3.5)

With the first four moments of multivariate testing statistics, useful Pearson type I approximations have
been obtained by Krishnaiah et al. (1976), Krishnaiah and Lee (1980), among others. The usefulness of the
Pearson curves in density estimation has also been demonstrated by Solomon and Stephens (1978) and
others.
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We now need the first four moments of V. For given a, and a,, it is well known that

E(V*) = E(a Uy + a,U,)"

h
= ) Ciaias *EUEUY™*, h=1,23,4, {3.6)
k=0
where EUF are given in (3.4). Let 4 = E(V) and p, = E(V — p)*, for h = 2,3, 4 and B, = u2/u3, B, = ua/us.
Then the type I distribution requires that

6438, —28,>0, fy—fy—1>0. (3.7)

Instead of computing from the density directly, we will make use of the tables produced by Johnson et al.
(1963). In order to do so, we need the following double entry interpolation. Linear interpolation is often

possible for §5,, while second differences are needed for ./ f,. The procedure is to interpolate first for f,, at
each of the nearest four values of ./f;, to tabulate the nearest four values x_y, xq, x{, X, and then
interpolate for ./f;, using the formula

x(6) = (1 — 6)xo + 0x; —10(1 — 6) [6%x0 + 62x,], (3.8)

where 6 is the appropriate fraction of the tabular interval.

We next illustrate the approximation to the distribution of 2 U, 5.1, + 3 Us ».15. Using (3.4) and (3.6) we
obtain p; = 0.534017, /i, = 0.112554, /B, = 0.0373722 and f, = 2.74613. From the tables of Johnson
et al. (1963), we have Table 4 which will enable us to obtain the critical value from (3.8) with o = 0.01.

Using the interpolation formula (3.8) with \/E = 0.0373722, we obtain the upper 1% point as
Xo.01 = 2.27593. The upper 1% point of U is g + u3'?-x¢.01 = 0.790182. The simulation result of this
approximation will be reported later.

In order to assess the accuracy of the proposed approximation, we will conduct an extensive simulation
study. For the simulation, we recall that

194

Upon= , 39
P =70, + 04l G2
where @, and Q, are independently distributed as W,(Z, n) and W, (2, g), respectively. Furthermore,
01=> 227 (3.10)
a=1 "% ™*
and
q
0=> 227 (3.11)
a=1 "%~

Table 4
Table entries needed for the example

g VB 00 0.1

24 2.1207 2.2004
2.6 2.2068 2.2833
2.8 22737 2.3469

30 2.3263 2.3964
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Table 5
The simulation probabilities of exceeding upper 1%, 5% and 10%
points for linear combinations of U, ,, , variates

Linear compound o =001 o =005 o =010
U1z +3Us21s 0009 0.048 0.099
$Usz12+3Us21s  0.006 0.046 0.096
$Uszi2+3Usz1s 0009 0.048 0.093
Us 212 + Usz21s 0.009 0.049 0.098
1Uss10+3Uss15 0.010 0.052 0.101
$Ussio+3Usss 0010 0.053 0.099
$Ussp0+ % Uy sas 0.010 0.052 0.098
Us.s.10 + Us 3.1 0011 0.052 0.095
%U4,3.12 + % Ui 3,15 0.009 0.049 0.095
U3z +5Uss1s 0010 0.050 0.101
LU, 302+2U, 5.5 0010 0.049 0.099
Uiz + Us s 0011 0.099 0.101
U35 +3Us50s 0010 0.056 0.102
%U4.3.15 +%U4,3,15 0.012 0.051 0.103
YUssas +35Usa1s 0010 0.050 0.100
Ussis+ Usais 0.011 0.056 0.103
$Ussis +3Uss20 0007 0.048 0.105
% Uszas + % Us, 3,20 0.011 0.049 0.099
$Usss +3Us320 0008 0.047 0.098
Uss.1s + Ussz0 0.010 0.051 0.103

where Z ~ N,(0, X). Since the distribution of U, , , is independent of X, we will set Z = I in the simulation

study. For the values of other parameters in the simulation, we set p = 4, m; = 2, n; = 12, n, = 15. Finally,
the « levels are set at a = 0.01, 0.05, 0.10. Also, in the simulation, we conducted 10000 runs for each
combination of the parameters and computed the probabilities of exceeding the approximate 1%, 5% and
10% points of V. These results are summarized in Table 5. From this table, we see that the approximation is
generally quite reasonable.

4. Concluding remarks

It is clear that the proposed approximations to the distributions of linear combinations of two independent
U and F variates are quite good. No restrictions are imposed on the weights, although there is a minor
restriction on the second degrees of freedom for the F variates. Since the computations involved are not
heavy at all, these approximations should be very useful for practical purposes.
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