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Abstract 

This paper is concerned with the distributions of linear functions of independent U and F variates. The statistics 
Up,q,. is defined as U = [Q11/I QI + Q2 I, where Q1 and Q2 are p x p random matrices and independently distributed as 
W (Z, n) and W (Z, q), respectively. Useful and accurate approximations are considered for the linear combinations of two 
independent U variates as well as the linear combinations of two independent F variates. 

1. Introduction 

This paper  is concerned with the distributions of linear functions of independent  U and F variates. The 
statistic Up.q., is defined as 

IQll 
U - I Q1 + Q2I '  (1.1) 

where Q1 and Q2 are p × p  r a n d o m  matrices and independently distributed as W(Z, n) and W(Z ,  q), 
respectively. The statistic is very well known  in multivariate analysis and its distribution has been well 
studied, see e.g. Krishnaiah and Lee (1980). When  p = 1 or  2, some functions of  the U statistic have 

F distributions, see, e.g. Anderson (1971). Specifically, the distribution of  F = (1 - Ul.q,,) is F(q, n) and the 
Ul,q,n 

distr ibution of  F = (n - 1)(1 - ~ )  is F(2q, 2(n - 1)). Hence, we will mainly focus on the situation in 

which p > 2 and q >i p. However,  there are occasions in which t ransformations of  U will not  be appropr ia te  
for the problem at hand. Hence, we will consider p = 1 and 2 as well. Of  course, we should also keep in mind 
that  the distr ibution of  Up, q,, is the same as the distribution of  Uq.p.._p+q. 
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Let U~ and U 2 be two independent U variates, and a~ and a 2 are two positive constants. The distributions 
of al U~ + a2 U2 or their special cases alF~ + a2F2 have been enountered repeatedly by Geisser (1970, 1963) 
in dealing with Bayesian analysis of growth curve model and in multivariate analysis of variance for a special 
covariance matrix. Morrison (1971) studied the distribution of a~F~ + a2F2. However, he was concerned 
with cases in which a~ and a2 are quite restricted. We intend to study the distributional problem for arbitrary 
positive a~ and a 2 in the distribution ofa~F~ + a2 f  2. For  the distribution of al U~ + a2U2, we are not aware 
of attempts to this problem. The approximation considered in this paper will prove to be useful in practice for 
growth curve model prediction, for multivariate analysis of variance as well as for other occasions in which 
the linear combination of independent U variates or F variates is a natural consequence of the theoretical 
development. 

Section 2 is devoted to the study of an approximation to the linear combination of two independent 
F variates. In Section 3, an approximation to the linear combination of two independent U variates is 
proposed. Finally, some concluding remarks are given in Section 4. 

2. The distribution of linear combinations of two independent F variates 

Morrison (1971) considered the distribution of the linear compound 

Ul/) 2 
W = v lF(v l , v2 )  + F(ul ,u2)  (2.1) 

U2 

of two independent F variates with degrees of freedom vl,Vz and ul, u2, respectively. When vl = n, 
v2 = N - n, ul = m, u2 = N - m, Morrison (1971) showed that the density of W is 

N 

m N - n  .= . 

f~/2 w2J + (m + n - 2)/2 

x sinn- 1 0COSta- 10c°s2J2OdO I1 + 2(NW-- n----~)]lN+2~ (2.2) 

which is (1.7) of Morrison (1971). Due to the complication involved in (2.2), he also proposed to approximate 
the distribution of W by riF(vl + ul,  u) where the scale factor ~/and the second degree of freedom u are found 
by equating the first two cumulants of that variate with those of W. 

Some comments are in order. First of all, we note that the linear compound considered by Morrison is very 
restricted in that the coefficient of F(ul ,  u2) is of a special form. The analytic result is for even stricter 
situation. Also, the approximation proposed is a two-moment approximation with the new F variate having 
a special restriction in one of the two degrees of freedom, i.e., the first degree of freedom is v~ + u~. 

In this paper we propose to relax these restrictions and consider an arbitrary linear compound 

l ~  = a lF(Vl ,V2)  + a 2 F ( u l , u 2 )  (2.3) 

of two independent F variates with the degrees of freedom as indicated. Here a~, a 2 are arbitrary positive 
constants, and hence there are no unnecessary restrictions on them. There are no restrictions on vl and u~ 
either. However, in order to ensure the existence of the 3rd moment, it is required that v2 > 6 and u2 > 6. We 
now consider the approximation of the distribution of 1~ by rlF(wx, w2), where the parameters ~/, Wx, WE are 
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obtained by equat ing the first three moments  of  this new statistic with those of  if'. In fact, these parameters  
can be expressed in explicit forms in terms of  a l ,  a2,  v l ,  v2,  u l ,  and u2. Specifically, 

2 A 2 C  - 2 A B  2 

q - A 2 B  + 3 A C  - 4B 2'  (2.4a) 

4 A 2 C  - 4 A B  2 

w l  = A B  2 _ 2 A 2 C  + B C '  
(2.4b) 

2 A Z B  + 6 A C  - 8B 2 
w2 = A E B  + A C  - 2B 2 ' 

where 

1)2 u2 
h = al + a 2 - - ,  

v2 - 2 u2 - 2 

B = a 2 
v~(v l  + 2 )  

v l ( v 2  - 2) (v2 - 4) 

V2U2 
2axa2(v  2 --  2)(Uz -- 2) + az z 

+ 

v 3 ( v l  + 2)(vl + 4) 
C = a 3 v2(v  2 _ 2) (v2 - 4) (Vz - 6) + 3a2a2 

v2u2(ua +2) 

+ 3 a l a 2  ux(v2 - 2 )  (u2 - 2 ) ( u 2  - 4 )  

and v2 > 6, u2 > 6. 

U~(U 1 + 2 )  

u l ( u 2  - 2) (Uz - 4) '  

v~u2(vl +2) 
vt(vz - 2)(v2 - 4)(u2 - 2) 

+ a3 u3(ul +2)(Ul +4) 
2 u2(u2 --2)(u2 --4)(u2 --6)' 

(2.4c) 

(2.5) 

Due to the explicit formula  given in (2.4), the approximat ion  proposed  in this paper  is very easy to use. In 
order  to assess the accuracy of  this approximat ion,  we compare  our  results with those of  Morr i son  (1971) for 
the special situations considered in his paper. These compar isons  are summarized in Table 1. In the table, we 
show the exact probabilities of  exceeding the approximate  upper  1% and 5% points of  lg" by applying (2.2). 
The approximat ions  being compared  are those of  Morr i son  (1971) and the method  proposed  in this paper. 
F r o m  the table it is clear that  our  approximat ion  is better than that  proposed  by Morrison.  Of  course, our  
method  is much more  general than Morr ison ' s  approximat ion  because of  the restrictions imposed in his 
study. For  the general situations not  applicable in Morr i son  (1971), we have also conducted  an extensive 
simulation study and the results are summarized in Table 2. 

Table 1 
Probabilities of Morrison's and our approximations for upper 1% and 
5% points 

Linear compound Method ~ = 0.01 ~ = 0.05 

Morrison's 0.01025 0.04897 
F (1,9) --, F (1,9) Ours 0.00980 0.05068 

~ r ~  oj 9 ~,~,o~ Morrison's 0.00959 0.04836 F(1,9) + 
Ours 0.00969 0.05088 

F(1,9) + ~z F (3,7) Morrison's 0.00866 0.04748 
Ours 0.00974 0.05078 
Morrison's 0.00916 0.04817 

2F(2,8) + 2F(2,8) Ours 0.00959 0.05092 
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Table 2 
The simulation probabilities of exceeding upper 1%, 5% and 10% 
points for linear combinations of F variates 

Linear compound e = 0.01 e = 0.05 a = 0.10 

1F(5,10) + ½ F(10,20) 0.010 0.048 0.099 
½F(5,10) + ½F(10,20) 0.010 0.046 0.100 
½F(5,10) + {F(10,20) 0.009 0.049 0.100 
F(1,9) + V(1,9) 0.009 0.051 0.099 
5F(5,10) + 10F(10,10) 0.010 0.050 0.098 
5F(5,10) + 5F(10,20) 0.010 0.049 0.100 
5F(5,15) + ~F(10,20) 0.010 0.051 0.101 
5F(5,15) + ~4s F(10,40) 0.010 0.049 0.099 

In the simulation, we have conducted 5000 runs for each linear combination and computed the probabilit- 
ies of exceeding the approximate  1%, 5% and 10% points of l~. From this table, we see that the 
approximation is generally quite good. 

From Tables 1 and 2, it is fair to conclude that the proposed approximation to the distribution of an 
arbitrary linear combination of two independent F variates is quite adequate for practical purposes. 

3. The distribution of linear functions of two independent U variates 

In this section we will consider some approximations to the distributions of linear compound 

V = a l U  1 + a 2 U  2 (3.1) 

of U1 and U2 which are independently distributed as U v . . . . . .  and Up . . . . . . .  respectively. For  p = 1, we will 
approximate the distribution of V by flU v ......  where t/, m, and n are obtained by equating the first three 
moments  of this statistic with those of V. These new parameters are expressed in explicit forms in terms of 
a l ,  a2, p, m l ,  m2, nl, and n 2. More specifically, 

2 A 2 C  - A B  E -- B C  

q = A 2 B  - 2B 2 + A C  ' (3.2a) 

4(3 2 -- A C )  (A 2 - B) (C -- AB)  

m = (2A2 C _  A B  2 _ B C ) ( A 2 B -  2B 2 + A C ) '  (3.2b) 

4A(B 2 - AC)  
n - 2 A 2 C  _ A B  2 _ B C '  (3.2c) 

where 

A = aEU1 + bEU2,  

B = a z E U f  + 2 a b E U I E U 2  + b 2 E U  2, 

C = a 3 E U  3 + 3a2bEUEEU2 + 3 a b 2 EU,  EU~ + b 3 E U } ,  (3.3) 

f i  + h F mt 2 - -  i 
E U  h 

i = l F ( n l + l - - ( ) F ( m l + n l + l i  ) 2 + h  
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Table 3 
The simulation probabilities of exceeding upper 1%, 5% and 10% 
points for linear combinations of Ut . . . .  variates 

Linear compound ct = 0.01 ~ = 0.05 ct = 0.10 

1 ½ UI.zA2 + "~ U1,2.15 0.006 0.046 0.108 
1 ½ U1.2,12 + 3 U1,2.15 0.009 0.049 0.107 
2 ½ U1.2.12 2i- ~ U1.2.15 0.007 0.049 0.109 

U1.2.12 + U1.2.1s 0.007 0.053 0.099 
1 ½ U1,3,1o + ~ U1,3,15 0.006 0.045 0.116 

1 1 
] U1,3.10 "+ ~ U1,3.15 0.006 0.045 0.113 

2 ½ U1.3.1o + ~ U1,3.15 0.007 0.049 0.113 
Ul,3 .1o  + U1,3,15 0 . 0 0 8  0.051 0.101 

1 
½ U1.3,12 + ~ U1.3.15 0.009 0.044 0.105 

1 0.010 0.047 0.107 ½ U1,3,12 + 3 U1.3,15 
2 ½ U1,3,12 + 3 U1,3,15 0.009 0.042 0.099 

U1.3,1z + U1,3,15 0.010 0.050 0.105 
1 ½ U1,3A5 + ~ U1,3,15 0.010 0,044 0.102 

1 1 ~ U1,3,15 + 3 U1,3,1s 0.011 0.048 0.095 
1 2 ~ UL3,15 + ~ UL3,15 0.012 0.042 0.099 
U1,3,1~ + UL3A5 0.010 0.046 0.101 
1 1 ~ UL3.15 + ~ UL3,2 o 0.012 0.043 0.115 

1 ½ UL3,15 + 3 U1,3,2o 0.013 0.044 0.108 
2 ½ UL3A5 + 3 U~,a,2o 0.012 0.043 0.117 

UL3,1s + ULs,2o 0.008 0.049 0.096 
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and 

)(+n2+l) 
l£I + h F m2 2 --  i 

EU h (3.4) 

for h = 1, 2, 3. In order to assess the accuracy of the above approximation, we have conducted a simulation 
study and the results are summarized in Table 3. In the simulation, we have conducted 5000 runs for each 
combination of the parameters and computed the probabilities of exceeding the approximate 1%, 5% and 
10% points of V. From the table we see that the proposed approximation is quite reasonable. 

We next consider the more general case ofp/> 2 in which the above approximation does not work. Instead 
of the ~lUp . . . .  approximation to the distribution of V, we will approximate the distribution by the Pearson 
type I distribution which is defined as 

f ( x ) = [ f l ( o e + l , e +  1 ) ( a l - a o )  ~ + ~ + l ] - l ( x - c r o )  ~ ( a l - x )  ~, a o ~ < x ~ < a l ,  ~ e R .  (3.5) 

With the first four moments of multivariate testing statistics, useful Pearson type I approximations have 
been obtained by Krishnaiah et al. (1976), Krishnaiah and Lee (1980), among others. The usefulness of the 
Pearson curves in density estimation has also been demonstrated by Solomon and Stephens (1978) and 
others. 
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We now need the first four moments of V. For  given al and a2, it is well known that 

E(V  h) = E(alU1 + a2U2) h 

h 
h k _ h - k r T r r k r T r r h - k  

= C k a l t 2 2  E,  L J l E ,  LJ 2 , h - - - -  1 , 2 , 3 , 4 ,  (3.6) 
k = O  

where EU k are given in (3.4). Let p = E(V)  and Ph = E(V  -- p)h, for h = 2, 3, 4 and fix = p]/#3, fiE = P4/I~ 2. 
Then the type I distribution requires that 

6 + 3fll - 2fl2 > 0, f12 -/~1 - 1 > 0. (3.7) 

Instead of computing from the density directly, we will make use of the tables produced by Johnson et al. 
(1963). In order to do so, we need the following double entry interpolation. Linear interpolation is often 

possible for flz, while second differences are needed for v /~l .  The procedure is to interpolate first for f12, at 

each of the nearest four values of w/-~l, to tabulate the nearest four values X-l ,X0, Xl, x2 and then 

interpolate for ~/fl-~, using the formula 

x(O) = (1 - O)xo + Oxl - 10(1 - 0) [-62Xo + •2Xl] , (3.8) 

where 0 is the appropriate fraction of the tabular interval. 
We next illustrate the approximation to the distribution of ½ U4.2,12 + ½ U4,2,15. Using (3.4) and (3.6) we 

obtain #1 -- 0.534017, ~ = 0.112554, ~ = 0.0373722 and f12 = 2.74613. From the tables of Johnson 
et al. (1963), we have Table 4 which will enable us to obtain the critical value from (3.8) with ~ = 0.01. 

Using the interpolation formula (3.8) with ~ = 0.0373722, we obtain the upper 1% point as 
Xo.ol = 2.27593. The upper 1% point of U is p + p~/2.Xo.ol = 0.790182. The simulation result of this 
approximation will be reported later. 

In order to assess the accuracy of the proposed approximation, we will conduct an extensive simulation 
study. For  the simulation, we recall that 

JOll 
U,,q,, = ]Q1 + Q21' (3.9) 

where Q1 and Q2 are independently distributed as Wp(£, n) and Wp(S, q), respectively. Furthermore, 

Qt = i z z '  (3.10) 

and 

q 

Q 2 -  ~ Z Z '  (3.11) 
~t = 1 ~ct ~ct 

Table 4 
Table entries needed for the example 

f12 ~ 0.0 O. 1 

2.4 2.1207 2.2004 
2.6 2.2068 2.2833 
2.8 2.2737 2.3469 
3.0 2.3263 2.3964 
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Table 5 
The simulation probabilities of exceeding upper 1%, 5% and 10% 
points for linear combinations of U4 .... variates 

Linear compound ct = 0.01 ct = 0.05 ct = 0.10 

½ U4,2,12 + 1 U4,2.15 0.009 0.048 0.099 
1U4.2,12 +½U4.2.1s 0.006 0.046 0.096 
1 U4,2,12 + 2 U4,2, I5 0.009 0.048 0.093 
U4.2,12 + U4,2.15 0.009 0.049 0.098 
1 U4,3,10 -[- 1 U4,3,15 0.010 0.052 0.101 
½ U4,3,10 + ½ U,,a, ls 0.010 0.053 0.099 

2 ½ Ua,aA0 + ~ U4,3,15 0.010 0.052 0.098 
/-/4,3,1o + U4.3,15 0.011 0.052 0.095 
½ U,,3,~2 + ½ U,,3,~5 0.009 0.049 0.095 

1 
½ U4,3,12 -[- 3 U4,3,15 0.010 0.050 0.101 

2 ½ U4,3,12 + 3 U4,3,15 0.010 0.049 0.099 
U4,3A2 + U4,3.15 0.011 0.099 0.101 

1 ½ U4.3.1s + ~ U,.a.15 0.010 0.056 0.102 
1 ½ U~,3,15 + ~ U4,3As 0.012 0.051 0.103 

1 2 ~ U4,3,,s + ~ Ua,3,,5 0.010 0.050 0.100 
Ua,3,15 + U4,3,15 0.011 0.056 0.103 

1 ½ U4,3.15 "[- ~ U4, 3,20 0.007 0.048 0.105 
1 ½ U,*,3As +3/-/*,3,20 0.011 0.049 0.099 
2 ½ U4,aA5 + ~ U*,3,20 0.008 0.047 0.098 

U4.a,ls + U4,3,2o 0.010 0.051 0.103 
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where  Z ~ Np(0, S). Since the d i s t r ibu t ion  of  Up,q,, is i ndependen t  of  X, we will set 2~ = I in the s imula t ion  

study.  F o r  the values of  o ther  pa r ame te r s  in the s imula t ion ,  we set p = 4, m t =  2, nl = 12, n2 = 15. Final ly ,  
the 0t levels a re  set a t  ct = 0.01, 0.05, 0.10. Also,  in the s imulat ion,  we conduc ted  10000 runs  for each 
c o m b i n a t i o n  of  the pa r ame te r s  and  c o m p u t e d  the p robab i l i t i e s  of  exceeding the a p p r o x i m a t e  1%, 5% and  
10% po in t s  of  V. These  results  are summar i zed  in Table  5. F r o m  this table,  we see tha t  the a p p r o x i m a t i o n  is 
genera l ly  qui te  reasonable .  

4. Concluding remarks 

It  is c lear  tha t  the p r o p o s e d  a p p r o x i m a t i o n s  to the d i s t r ibu t ions  of  l inear  combina t ions  of  two independen t  
U and  F var ia tes  are  qui te  good.  N o  res t r ic t ions  are  imposed  on the weights, a l though  there is a m i n o r  
res t r ic t ion on  the second  degrees of  f reedom for the F variates.  Since the c o m p u t a t i o n s  involved  are  not  
heavy  at  all, these a p p r o x i m a t i o n s  should  be very useful for prac t ica l  purposes .  
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