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ABSTRACT 

Given two graphs G = (V(G), QG)) and H = (V(H), €(H)), the sum of G and H, G + H, 
is the disjoint union of G and H. The product of G and H, G X H, is the graph with the 
vertex set V(G x H) that is the Cartesian product of V(G) and V(H), and two vertices 
(gl, hl) ,  (92, h2) are adjacent if and only if [ g l ,  921 E €(G) and [ h l ,  h2] E €(I+). Let Cj  
denote the set of all graphs. Given a graph G, the G-matching function, YG, assigns 
any graph H E Cj  to  the maximum integer k such that kG is a subgraph of H. The 
graph capacity function for G, PG : Cj  - 8, is defined as PG(H) = limW,[y~(Hn)]'/", 
where H" denotes the n-fold product of H X H X . . .  x H. Different graphs G may 
have different graph capacity functions, all of which are increasing. In this paper, we 
classify all graphs whose capacity functions are additive, multiplicative, and increasing; 
all graphs whose capacity functions are pseudo-additive, pseudo-multiplicative, and 
increasing; and all graphs whose capacity functions fall under neither of the above 
cases. 0 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Most of the graph definitions used in this paper are standard (see, e.g., [l]). A graph G = ( V ,  E )  
consists of  a finite set V and a subset E of ([u, u]lu # u ,  [u, u ]  is an unordered pair of  elements 
of V } .  We call V = V ( G )  the vertex set of G and E = E(G)  the edge set of G. Let Cj  be the 
set of all graphs. Graph H is a subgraph of graph G ,  denoted by H V ( H )  and 
E ( H )  C E(G) .  For S C V ,  the inducedsubgruph GIs of  G is the subgraph that has S as vertex 

G ,  if V ( G )  
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set and contains all edges of G having two vertices in S. Graph GI is isomorphic to graph G2, 
denoted by GI G2, if there exists a one-to-one mapping 4, called an isomorphism, from 
V(G1)  onto V(G2) such that 4 preserves adjacency and nonadjacency, i.e., [u ,u]  E E(G1) 
if and only if [t$(u).c$(u)] E E(G2). A graph G is vertex transitive if for any two different 
vertices u and u of G there exists an isomorphism 4 : G - G such that +(u) = u. We use K,, 
to denote the complete graph with n vertices and C,, to denote the g c l e  graph with n vertices. 

Let G = (X ,  E )  and H = ( Y ,  F )  be two graphs. A function 4 from X into Y is a homomor- 
phism from G into If if [u, u ]  E E implies [r$(u), $(u)] E F .  The sum of G and H is defined 
as the graph G + H = (W,B) with W = XI U Y I ,  B = El U F I ,  where G I  = ( X I , E I )  = 
G ,  H I  = ( Y I ,  F I )  H .  and XI fl Y I  = 0. The product of G and H is defined as the graph 
G X H = (Z, K), where vertex set 2 = X X Y ,  the Cartesian product of X and Y ,  and edge 
set K = ([(XI,YI),(X~,YZ)]I[XI,X~] E E and [y1,y2] E F}. The adjacency matrix of G + H 
is actually the direct sum of the adjacency matrix of G and the adjacency matrix of H, and the 
adjacency matrix of G X H is actually the tensor product of the adjacency matrix of G 
and the adjacency matrix of H. Let kG denote G + G + + G (k times) and Gk denote 
G X G X ... X G (k times). For example, K?.z = K2.2 + K1.4, where Km,,, denotes the 
complete bipartite graph having two partitioned sets V I ,  V2 with IVll = m and lV2l = n.  

Let f be a real-valued function defined by G. The function f is additive if f(G + H) = 
f(G) + f(H) for any G, H E G, and f is pseudo-additive if f(G + H) = f ( G )  + f(H) 
for any G, H E G such that f(G) f 0 and f(H) P 0. The function f is multiplicative if 
f(G X H )  = f(G) - f(H) for any G, H f GI and f is pseudo-multiplicative if f(G X H) = 
f(G) - f ( H )  for any G, H E G such that f ( G )  # 0 and f ( H )  # 0. The function f is 
increasing if f(G) 5 f(H) whenever G is a subgraph of H .  A graph function f is MI 
if it is additive, multiplicative, and increasing. A graph function f is PAMI if it is pseudo- 
additive, pseudo-multiplicative, and increasing. Obviously, if a graph function f is Ah4I then 
f is PAMI. It is interesting to attempt to classify all multiplicative increasing graph functions. 
However, this problem is still unsolved [3,4,5,10]. 

Given a graph G, we define the G-murchingfrcnction, yc,  that maps G into a nonnegative 
integer. To be specific, let G be a fixed graph. For any graph H ,  ~ G ( H )  is defined as the 
maximum integer k such that kG is isomorphic to a subgraph of H. Note that ~ K ? ( H )  is the 
edge independence number of the graph H .  For example, y ~ ~ ( K 1 . 2 )  = 1 and y~~(Kt.2)  = 3. 
It was proved in [3] that lim,,,,[yKz(K~Z)]l'n = 2=. Generalizing this concept, we define the 
capucifyfwrcn'on for G .  PG : G - 3, as P G ( H )  = hn- .cs~") 'G(H")]~/"-  Different graphs G 
will yield different graph capacity functions. 

Given two graphs GI and G2, let {Hi, j l l  I j I y ~ ( G i ) .  1 5 i 5 2) form a set of disjoint 
subgraphs of Gi such that Hi,j EZ H for every i and j .  Then the set {H1,k X H r l l l  5 
k 5 ~ " ( G I ) ,  1 I 1 5 y~(G2)) forms a set of disjoint subgraphs of GI X G2 such that each 

X H2.r contains a subgraph isomorphic to H. Thus, y ~ ( G 1  X Gz) 2 y~(G1) - y ~ ( G z ) .  
Since we have 0 I ~ G ( H " )  5 IV(H)I" for any graph G ,  it follows that supn+m[yG(~n)]'" 

exists. Fekete's Theorem states that if a sequence of numbers {ai}?-l is sub-additive 
(i.e., a,+n I a, + a,,), then lim,,,a,/n = inf,,-a,/n. Let a,, = -log yG(Hn).  Then 
{an};=] is a sub-additive sequence, because ~ G ( H " ' + " )  2 yc(Hm) * ~G(H") and -log 
~ G ( H " ' + " )  5 (-log yc(H"')) + (-log yc(H")). It follows from Fekete's Theorem that 
hn-mlog(yG(f?n))l'n = lOg(')'G(H"))'/". Hence P G ( H )  always exists. It is easy to 
verify that every graph capacity function PG is increasing. 

The study of these capacity functions is interesting for several reasons. First, observe that 
gaph capacity functions are similar to the Shannon capacity function [l 11, but defined on 
a different product. Second, the author has studied a conjecture posed by LovaSz [9] on the 
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classification of multiplicative increasing graph functions. It was observed in [3] that some 
graph capacity functions can be viewed as lower bounds for multiplicative increasing graph 
functions. Later, it was proved in [5] that some capacity functions are not only multiplicative 
increasing, but also additive. However, not all  graph capacity functions are necessarily so well- 
behaved, From a mathematical point of view, it is interesting to classify capacity functions for 
graphs. In this paper, we classify all graphs whose capacity functions are AMI, PAMI, and non- 
PAMI. respectively. For convenience, we say graph G is MI ( P M I ,  non-PMI, respectively) 
if and only if PG is AMI ( F ! ! ,  non-PAMI, respectively). 

Graph G is an (m,n)-graph if clique number o ( G )  = m and chromatic number x(G)  = n. 
Mycielski [lo] proved that the possible (o (G) ,  ,y(G)) are (1,l) and those (m,n)  with 
2 5 m 5 n. The following theorems from [5,6,7] will be useful in the discussion below. 

Theorem 1.1. 

Theorem 1.2. 

If PG = P H ,  then ( o ( G ) , z ( G ) )  = ( o ( H ) , , y ( H ) ) .  

(1) If K is a subgraph of H then PH 5 PK. 

(2) PHt = PH for any positive integer k. 
(3) PG = PH if and only if H" C G' C H"' for some n, t, m E N. 

Theorem 1.3. The following statements am equivalent: 

(1) PG 2 PH. 
(2) There exists some integer t such that G C H'. 
(3)  For any two distinct vertices u and u of G ,  there exists a homomorphism 4 : G - H 

such that d;(u) # +(v) .  

2. SOME PROPERTIES OF GRAPH CAPACITY FUNCTIONS 

In [5], Hsu et al. defined a class of so-called uniform graphs. The definition of uniform graphs is 
rather abstract. However, these graphs include all vertex transitive graphs. It was proved in [5] 
that every uniform graph is PAMI. A proper subset of uniform graphs called primary uniform 
graphs, which include complete graphs, odd cycles, and the Petersen graph, was also defined 
in [5], and it was proved that every primary uniform graph is AMI. The formal definition of 
uniform graphs is stated below. 

Let G and H be two graphs with V(G)  = {xl,x2,. . . , x u }  and V(H) = { yl, y2,. . . ,yv}. For 
any positive integer m let z' = ( z l , ~ ~ , .  . . ,zm) be a vertex in H m .  Then a' = ( u I , ~ ,  . . . ,av), 
where ai = I{zj(zj = yi ,  1 5 j 5: m}l/rn, is called the distribution of Z. Let D ( H )  = 
{(al ,  (12,. . . , a,))ai 2 0, I:=, ui = 1). We define a u-ary relation &(H) on D(H) as follows. 
We say (a',, &, . . .,a',,) E RG(H),  with a'i E D(H),  if and only if (GI, 62,. . .. &) satisfies one 
of the following two conditions. 

(a) There exists a positive integer m such that in H"' we can find X'l, 4,. . . ,su E V(H")  
with the distribution of i'i to be a'i for every i and the induced subgraph of (21.22,. . . , &} 
in H"' contains a subgraph isomorphic to G with 2i corresponding to xi for every i .  

(b) There exists a sequence { ( S i , l , Z i , ~ , .  ..,a'i,u)}:=l in &(H) that satisfies the above 
condition such that lim(a'i. 1, a'i.2,. . . , &,J = ((11, (12.. . . , &). 

A graph G i s  uniform if it satisfies the following condition: For any graph H, if (21, 
a'2, . . . , Z,,) is in &(H) and satisfy the condition (a) then E:=l a'i/~,z:=~ &/u, .  . . , 

- -  

z i / u , )  (u  times) is also in & ( H )  and satisfy the condition (a). 
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In [6], it is proved that every vertex transitive graph is uniform. We are not able to prove 
that every uniform graph is vertex transitive. However, we know by the following theorem 
that the capacity function for any uniform graph is equal to the capacity function for some 
vertex transitive graph. 

Theorem 2.1. There exists a vertex transitive graph T such that PG = PT if G is uniform. 

Proof. Assume that IV(G)l = u .  Let 21 = (l,O,O,. . .,O,O), & = (0,1,0,. . .,O,O),. . ., 
Z,, = (O,O, 0, .  . . ,O, 1) be elements in D(G) .  Let a' = ( l / u ,  l /u , .  . . , l /u) (u times). Obviously, 
a' = Zi/u, e';/u). Since G is a subgraph of G1(= G),  we have 
(;I, &, . . . , z v )  is in R c ( G )  and satisfies the condition (a). Because G is uniform, (a',;,. . .,a') 
is in &(G) and satisfies the condition (a). Thus, there exists a positive integer m such that 
in Gm we can find a copy of G, say GI, such that the distribution of each vertex of G' is 
a'. Let T denote the subgraph of Gm induced by the set {; E V(Gm)l the distribution of x' is 
a'}. Obviously T is vertex transitive. Since G = G' Gm, it follows from Theorem 1.2 
that PG = P T .  

In [6], it was proved that PG is PAM1 if C is uniform. The above theorem shows that 
{PGIG is uniform} = {PTIT is vertex transitive}. One might ask whether for any PAM1 graph 
G there exists a vertex transitive graph T such that PG = PT.  The answer is No, and a 
counterexample will be given later in this section. 

Let us define a real-valued function E on D ( H )  by assigning E ( ; )  = nyEl a i n i ,  where a' = 
( a l , a z , .  . .,a,). Let Ic(H) = {a' E D(H)l ( ; ,  6,. . . , 6) ( u  times) is in R c ( H ) } .  Since ZG(H) is 
compact and E is continuous, there exists c' in I c ( H )  such that ~ ( c ' )  = max{E(a')la' E Zc(H)} .  
Hsu et al. [5] proved the following theorem. 

Theorem 2.2. If G is uniform, then 

Zi/u,.  . . , 

T 

P G ( H )  = max min{e(Gl), E ( & ) ,  . . . , e(&)} = max €(a ' ) .  
fn" . ~ ~ , - . . . & ) E R G ( X )  & E ~ G ( H )  

Definition 2.1. Let G be a graph with V(G) = { X I ,  x2,. . . , x u }  and let rl, 1-2,. . . , r,, be positive 
integers. Let F = ( r l ,  1-2,. . . , r,,). We use Gi to denote the graph with V(Gi) = {xi,,ll 5 i 5 
u ,  1 I j 5 r ; }  and ( x ; , , , x ~ , J )  E E(G') if and only if (x i ,  X k )  E E(G) .  Assume c1, c2, .  . . , c,, 
are positive integers. We use G'1 to denote the graph Gi with ri = CI for every i .  Moreover, 
if V ( G )  = CI U C2, we use G'f'Z to denote the graph Gi with c1 corresponding to every 
vertex u in C1 and c2 corresponding to every vertex u in Cz. Similarly, we can define G'lt2-'n 
analogously. 

Lemma 2.1. Assume that G is a vertex transitive graph with u vertices. Let r1, 1 2 , .  . . , r,, 
be positive integers and let = ( r l ,  1 2 , .  . . , r,,). Then Pc(Gi) = u * n;=, r; . 

Let c' = (c1,1, C I , ~ ,  . . . , qr,, c,,~, , . . , c,,,~") be the vector in Zc(Gi) with each c;, ,  
corresponds to the vertex xi, ,  such that Pc(Ci) = ~ ( c ' ) .  Since the graph G is vertex transitive 
and the function E is concave, we have x;=l c, , j  = l / u  for every i .  By the symmetry among 
xi,  1 , x i , 2 , .  . . ,x ; ,~ , ,  we have c; , j  = (ur;)-' for every i and J .  Thus, Pc(G') = u * n:==, ri . 
I 

A graph e is a homomorphic image of another graph G if there exists a homomorphism 
@ : G - 6 which is onto and if for every ( i t ,  222) E E(&) there exists (ul, u2) E E(G)  such 
that @ ( u ; )  = C i ,  i = 1 ,  2.  A graph G is primary if for any homomorphic image 6 of G there 
exists a positive integer k such that G is a subgraph of Gk. A graph G is primary uniform 
if it is primary and uniform. 

llu 

Proof. 

llu 
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It was proved in [5 ]  that complete graphs, odd cycles, and the Petersen graph are primary 
uniform. However, a uniform graph is not necessarily primary. It is easy to check that C4 has 
K2 as a homomorphic image but C4 is not a subgraph of K i  for every n E N. Thus, C4 is 
uniform but not primary. 

Lemma 2.2. PG 2 Pi;i for any homomorphic image 6 of G. 

Proof. Obviously, for any two distinct vertices u and u in G there exists a homomorphism 
(p : G - @ such that 4 ( u )  # 4 ( u ) .  By Theorem 1.3, PC 2 P e i .  1 
Theorem 2.3. Let 6 be a homomorphic image of G such that PC 2 P G .  If H is any graph 
such that P c ( H )  # 0, then P G ( H )  = Pi;(H).  Furthermore, G is PAMI if (? is PAMI. 

Let V ( C )  = { x l , x z , .  . . , xu} ,  V ( 6 )  = { y1,y2,.  . . , y v } ,  and 4 be a homomorphism 
from G onto 6.  Since P G ( H )  # 0, there exists a positive integer f such that a subgraph GI 
of H' is isomorphic to C. Let 21, 2 2 , .  . . ,2" be vertices of GI with 2, corresponding to x,. 
There are y d ( H m )  disjoint 6 ' s  in Hm for every m. Let (?I, 6 2 , .  . . , ( ? y C ; ( H m )  be such disjoint 
G's in Hm and let V ( 6 . i )  = { j ; , y , , j ; , y 2 , .  . . , j i ,yu! with 5;,y, corresponding to y,. For every 
1 5 i 5 yc(H"9, (21, ji,@(q)), (22, ?i, g(x2)) ,  . . . , (xu,  j i , & ( x v ) )  induce a subgraph Gi in H m f '  
isomorphic to G. Then GI,  Gz,. . . , GYi;(Hmn) are mutually disjoint, because el ,  G2,.  . . 
are mutually disjoint. We have Y G ( H ~ + ' )  2 ye(H") .  Thus 

Proof. 

Since P d ( H )  2 P G ( H ) ,  we have P c ( H )  = P d ( H ) .  1 
Corollary 2.1. Let G be an (n, n)-graph and H be a graph such that P G ( H )  # 0. We have 
P c ( H )  = P K .  ( H ) .  Therefore, G is PAMI for any (n, n)-graph. 

Let 6 = K,,. Since x ( G )  = n, 6 is a homomorphic image of G .  Since w ( G )  = 

n ,  6 is a subgraph of G. By Theorem 1.2, Pi; 2 P G .  By Theorem 2.3, the corollary holds. 1 
Example 1. 

Proof. Since C4 is a vertex transitive graph, C4 is PAMI and Pc, (C4) = 4. By Corollary 2.1, 
PK2(C4) = Pc4(C4) = 4 follows. Since C4 is not a subgraph of K; for every n E 
N ,  Pc4(K2)  = 0. By the increasing property of Pc4, Pc4(K2 + C4) > 0 and Pc4(K2 X C4) = 
Pc4(2C4) > 0. By Corollary 2.1 and the AM1 property of P K ~ ,  we have Pc4(K2 + C4) = 
P K * ( K ~  + C4) = 6 and Pc4(K2 X C4) = P ~ ~ ( 2 c 4 )  = 8. Thus, C4 is not AMI. 

Example 2. By Corollary 2.1, the graph H in Figure 1 is PAMI. But there is no vertex 
transitive graph T such that P H  = P T .  

Proof: Suppose that there is a vertex transitive graph T such that P H  = P T .  It follows 
from Theorem 1 . 1  that w ( T )  = 3. Let IV(T)I = n. By Theorem 1.3, T C H" for some 
integer m. n u s ,  there exist = ( g l . I , g l , 2 , . . . , g 1 . , ) ,  i 2  = ( g z , l , g 2 , 2 , . .  ., g2.m) ....,in = 
(g,,, 1,  g n , 2 , .  . . , g,,,) E V ( H m )  that induce a T. Since T is vertex transitive, the size of the 
maximum clique containing ii in T is 3 for every i. Thus, the size of the maximum clique 
containing g i , ,  is at least 3 for every i and J .  Candidates for all possible gi , ,  are those vertices 
in H such that the size of the maximum clique containing them is at least 3.  Such vertices 
in H are {x1,x2,x3}. These vertices generate a K3. Therefore, we have K3 C T C K T .  This 

Proof. 

C4 is PAMI but not AMI. 

1 
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FIGURE 1. Graph H is PAMI, but there is no vertex transitive graph T such that PH = PT. 

implies P4 = PT = PH. It follows from Theorem 1.3 (3) that there exists a homomorphism 
4 from H into K3 such that 44x7) f +(xg). 

On the other hand, let V(K3)  = {yl .yz.y3} and let 4 be any homomorphism from H into 
K3. Since { X I ,  XZ, x3) generates a K3 in G ,  without loss of generality we assume that +(x i )  = yi 
for i = 1, 2, 3. Since x4 is adjacent to XI, 44x4) # y1. Therefore, 4(x4) E { y2,y3}, +(xs) E 
{ yi,y3}.  and +(x6) E { y l , y z } .  For this reason, there is no homomorphism &, from H into K3 
for which 4(x7) # &,(xg), and we have a contradiction. 

Thus, there is no vertex transitive graph T such that PT = P H .  
From the above discussion, we know that some graphs are PAMI: vertex transitive graphs 

and (n, n)-graphs. However, not all graphs are PAMI. In the following section, we s h d  give 
an example of a non-PAMI graph. 

I 

3. AN EXAMPLE OF A NON-PAMI GRAPH 

Given two graphs G and H, it is obvious that o(C X H) = min(o(G),o(H)} and 
,y(G X H) I minh(G),,y(H)}. Note that Hedetniemi [2] conjectured that ,y(G X H )  = 

minCu(G), x(H)I. 
Theorem 3.1. Let G be an (m,  n)-graph and H be a (p, q)-graph. If G X H is an ( r ,  s)-graph 
then r = min{m, p} and s 5 min{n, q}. In particular, G 2  is an (m, n)-graph. 

Proof. From above, ,y(C2) 5 ,y(G). Since G C G2, x ( G )  I x(GZ). Thus ,y(G2) 5 

Lemma 3.1. If G is an (m, n)-graph and H is a (p, q)-graph with m < p I q < n, then 
yc(G' X H') = yn(Gi X H') = 0 for any positive integers i and k. 

Since ,y(H') = x(H) for any positive integer k ,  ,y(Gi X H') I q.  If YG(G' X 
H') # 0, then G C G' X H'. Thus, x(G' X H c )  2 ,y(G') = ,y(G) = n. This contradicts 
Theorem 3.1. Thus, yc(Gi X H') = 0. 

Similarly, since o ( G ' )  = o ( G )  for any positive integer i ,  o(G' X H') = m. If ~ H ( G '  X 
H') # 0, then H Gi X H'. Thus, o(G' X H') 2 w(H') = o ( H )  = p. Again, this con- 
tradicts Theorem 3.1. Thus, yH(Gi X H') = 0. 

Theorem 3.2. If G is a connected PAMI (m, n)-graph and H is a connected PAMI (p, 4)- 
graph such that m < p 5 q < n, we have PG+H(uG + b H )  = r n i n { a P ~ ( G ) , b P ~ ( H ) } .  

X W .  I 

Proof. 

I 
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proof. Since G and H are PAMI, we have PG(uG) = uPG(G) and P&H) = ~PH(H). 
By Lemma 3.1, yc(G' X H k W i  ) = 0 for every 0 5 i 5 k - 1 and ~ H ( G '  X Hk-')  = 0 for 
every 1 5 i 5 k. Since both G and H are c o ~ e ~ t e d ,  we may apply the Binomial Theorem 

bH)') = min{yc(akGk), yH(bkHk)}. Hence 
to Obrain YG((UG + bH)') = yc(~'G')), ~ H ( ( u G  + bH)') = y~(b'H') ,  and YG+H((UG + 

PG+H(uG + b H )  = ~ ~ , [ ~ G + H ( ( u G  + bH)')]''' 
= min{b-ra[I'~(a k G k )I Ilk , b + = [ y ~ ( b  k H k )I Ilk } 

= min{PG(nG), p ~ ( b H ) }  = min{&'G(G), bp~(H)}. 

Given two positive integers n and k, we construct a graph G,,k as follows. The vertices of 
Gn,k are the n-subsets of {1,2,. . . ,2n + k }  and two of the vertices are joined by an edge if 
and only if they disjoint. These graphs are called Kneser's graphs. It is obvious that G n , k  is 
vertex transitive. In [8], LovasZ proved that m(G,,k) = [(2n + k)/nl and ,y(Gn,k) = k + 2. 

Example 3. Let G be the Kneser graph G3.2 and H be the cube of K3, Ki. Then G + H 
is non-PAMI. In particular, we have 

PG+H((~G + H) + (G + 3H)) # P G + H ( ~ G  + H) + PG+H(G + 3H); 

and 

proof. Obviously, G is a connected vertex transitive (2,4)-graph. By Lemma 2.1, PG (G) = 
56. Since K3 is vertex transitive, H is a connected vertex transitive (3,3)-graph with P&) = 
27. It follows from Theorem 3.2 that 

P G + H ( ~ G  + H) = min(3Pc(G),P~(H)} = 27; 
PG+H(G + 3H) = min{PG(G),3PH(H)} = 56; 

and 

P G + H ( ~ G  + 4H) = min{4Pc(G),4P~(H)} = 108 I 

Thus PG+H((~G + H) + (G + 3H)) f P G + H ( ~ G  + H) -k PG+H(G + 3H). 
Similar to the proof of Theorem 3.2, P G + H ( ( ~ G ~  + 10G X H + 3H2)) = min{3Pi(G), 

3Pi(H)}. Thus 

Hence PG+H((~G + H )  X (G + 3H)) # ~ ' G + H ( ~ G  + H) * PG+H(G 4- 3H). I 
Thus, G3.2 + K: is a non-PAM1 graph with 83 vertices. It is interesting to find the smallest 

non-PAMI graph. In the following section, we will prove that the 5-wheel graph, W5, is the 
smallest non-PAMI graph. 
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4. THE SMALLEST NON-PAMI GRAPH 

Let W5 be the 5-wheel graph shown in Figure 2. The vertex o is called the center ver- 
tex of W5. Let k ,  rl .  r2,. . . , r5 be positive integers and W5(k, r l ,  r2,. . . , r5) be the graph 
obtained from W5 by copying o ,  X I ,  x 2 , .  . . ,x5,  the vertices of W5,  k ,  r l ,  r2,. . . , r5 times, 
respectively. More precisely, V(Ws(k ,  r1, r2,. . . , r5)) = ( 0 1 . 0 2 , .  . . , o k }  U {Xi,jll C: i C: 5 and 
1 5 j 5 r;) ,  and H W 5 ( k ,  r l ,  r2,. . ., 5))  = {[oi,xn,lll for every i ,  k ,  1 )  U { [ ~ , , ~ , ~ ~ , ~ l l l ~  - 
rnl = l(mod 5)) .  In other words, Ws(k , r l , r2 , .  . . , r5) )  = (WS)', where = { k , r l ,  1-2 , .  . . ,r5}. 
The set ( 0 1 . 0 2 , .  . . , o k }  is called the center of W5(k, r l ,  r2, . . . , r5). Let C5(rl, r 2 , .  . . , ' 5 )  denote 
the subgraph of W5(k, r1, r2,. . . , r5) induced by all x ; , j ' s .  We call C5(rl, r2,. . . , r5) the outside 
of W d k ,  r1, r2, .  . . ,r5). 

Theorem 4.1. Pw5(W5(k, r l ,  r2,. . ., r5)) = min{k,5 * ( l I ; = ~ r ; ) " ~ } .  

Proof: Let G = W5(k,  rl ,  r2,. . . , r5). We claim that the center of each copy of W5 in G" is 
in the center of G " ,  i.e., A = { ( y l ,  y 2 , .  . . , y n ) l y j  E {o1,02,. . . , ok} for every j } .  If not, there 
exists a copy C' in G" with its center not in A .  Then G' induces an isomorphism f from 
W5 to G'. We have f(o) = ( z ~ , z z , .  . . ,z,) with z ;  @ {01,02,.  . . , ok} for some i .  Let i be 
the index such that zi @ ( 0 1 ~ 0 2 , .  . . , ok} and let f; be the ith projection of f .  Then f, is a 
homomorphism and its image is a subgraph of K: = K4 - e .  This contradicts the fact that 
x(W5)  = 4 and x(K4)  = 3. 

Again, every vertex in A is adjacent only to those vertices in (C5(rl, r2,. . . , 1-5))". Hence 
yw5(G")  = min{k", YC5((C5(rl, r2,. . ., r5))")). Thus P w , ( G )  = min{k ,P~ , (Gh , r2 , .  . . , r5)). 
BY Lemma 2.1, ~ c , ( ~ s ( r l , r 2 , .  . ., r5)) = 5 - ( I I ; = = , T ~ ) ~ ~ ~ .  

Theorem 4.2. Let A = W5(k,r l ,  12,. . ., r5) and C = W5;(rn,sl,s2,. . . ,s5). Then Pw,(A X 
C )  = min{krn,5 - 5 ( I I ; - - ~ ~ ; ) ~ ~ .  

Let B = Cg(r1, r 2 , .  . . , r5)  and D = C5(sl,s2, .  . .,s5). Using arguments similar to 
the proof of Theorem 4.1, we have yw,( (A X C)") = min{(krn)", yc5((B X D)")}. Hence 
Pw,(A X C) = min{krn,Pc,(B X D)}. Since Pc, is multiplicative, we have Pw,(A X C) = 
min{krn,Pc,(B) . P ~ , ( D ) )  = min{krn,5 - ( l1z=~r , ) l /5  - 5 * (r1;-,~~)1/5}. 

I 

Proof: 

I 
Using Theorem 4.1 and Theorem 4.2, we have 

Pw,(W5(6, 1,1,1,1,1)) = min{6,f'c5(Cd1, 1,1,1,1))) = 5, 
P~,(Ws(l,2,1,1,1,1)) = min{l,Pc,(C&, I , ] ,  1,1))} = 1 ,  

Xl n 

FIGURE 2. The smallest non-PAMI graph, W , .  
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and 

Pw5(W5(6, 1,1,1,1,1) X (W5(1,2,1,1,1,1)> = min{6,5 - 5 . 2l") = 6 .  

But P c ( ( H  + K ) 2 )  = P $ ( H  + K) = ( P ( H )  + P ( K ) ) 2  = & ( H )  + 2Pc(H) X P c ( K )  + 
P i ( K ) .  We have PG(H X K) = Pc(H)Pc(K). 

Theorem 4.4. W, is a non-PAM1 graph for every odd integer n 5: 5. In particular, W5 is 
the smallest non-PAM1 graph. 

By a discussion similar to that above, it is easy to see that every odd wheel graph 
W, with n 2 5 is  a non-PAM1 graph. Since any graph with at most 5 vertices is either C5 or 
a graph with its clique number equal to its chromatic number, such a graph is PAMI. Thus 
W=, is the smallest non-PAM1 graph. 

1 
Therefore, Pw, is not pseudo-additive. 

Proof. 

5. CLASSIFICATION OF PAMI GRAPHS 

From the above discussion, we know that some graphs are AMI, some PAMI but not AMI, 
and some non-PAMI. In this and the following sections, we shall classify these graphs. 

Let G = ( V ,  E )  be any graph. The homomorphism digraph G* = ( V * ,  E*) of G is the 
directed graph with V *  = V and (a, b )  E E" if there is a homomorphism 4 from G into itself 
such that + ( a )  = b. Obviously, ( v , u )  E E* for every u E V .  Let S be a subset of V .  The 
out-neighborhood of S is the set r(S) = { y ( ( x , y )  E E* with x E S}. Thus, S r(S) for 
every 0 # S S 
and (2) there is no proper subset S' of S such that T(S') C S'. It is easy to see that there 
exists a closed set for every graph. 

Lemma 5.1. Suppose that S is a closed set of a graph G and D is a subset of S. The induced 
directed subgraph G * ~ D  in G* is a complete digraph. 

First, we prove that G*lo is strongly connected. Suppose not. Then there exists a 
proper subset D' of D such that r(D') n D C D'. Let X = {xlx E S - D and there exists 
a homomorphism f : G - G such that f ( x )  E D - D'}. 

V .  A nonempty subset S of V is called a closed set of G if (1) r(S) 

Proof. 
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Suppose that there exists a homomorphism g : G + G for which g ( y )  E X for some y E 
D'. Since g( y) is in X, there exists a homomox@km h : G - G such that h(g( y)) E D - D'. 
Then h 0 g is a homomorphism mapping the element y in D' to an element in D - D'. This 
contradicts r ( D f )  f l  D C D'. Thus, there is no homomorphism g from G into itself such that 
g ( y )  E X for some y E D'. 

It follows from the above discussion that the set Y = (S - D )  - X U D' is a proper 
subset of S such that r(Y) C Y. This contradicts the fact that S is a closed set. Thus, G*ID 
is strongly C O M I X ~ ~ ~ .  

Since the composite of homomorphic functions is again a homomorphism, G * ~ D  forms a 
complete digraph. I 

CornMary 5.1. For any two different closed sets S1 and S2 of G. S1 n S2 = 0. 

proof. The proof follows from the fact that G'ls is a complete digraph for every closed 
set of S. I 

Lemma 5.2. Let S be a closed set of a graph G and f be any homomorphism from G into 
itself. There is exactly one closed set B of f(G) contained in S n f(G). Moreover, f(S) is 
a subset of B. 

proof. We prove this lemma through the following steps. 

(1) Let s be any element in S n f(G) and g be any homomorphism from f(G) into itself. 
Since S is a closed set, g(s) E S n f(G). Thus, the out-neighborhood of S n f(G) in f(G)' 
is a subset of S fl f(G). Thus, there exists at least one closed subset B of f(G) in S f l  f(G). 

(2) Let B be any closed set of f(G) in S n f(G) and x be any element of B. Obviously, 
f l f ( ~ )  is a homomorphism from f(G) into itself. Since B is a closed set, f ( x )  E B C S. Thus, 
the set f(S) n B contains at least the element y(= f ( x ) ) .  

(3) Let z = f ( w )  with w E S be any element of f(S). By Lemma 5.1, there exists a 
homomorphism h : G - G such that h( y) = w .  Then f 0 h l f ( ~ )  is a homomorphism from 
f(G) into itself such that f 0 h ( f ( ~ ) ( y )  = f(w) = z .  Since B is a closed set, z is an element 
of B. Thus, f(S) C B. 

(4) It follows from Corollary 5.1 that there is exactly one closed set B of f ( G )  contained 
in S n f(G). I 

Later, we wil l  prove that a graph G is PAMI if and only if G has exactly one closed set. 
To prove this statement, we need the following discussion. Let G = (V(C),  E(G)) be a graph. 
A nonempty subset C of a closed set S is called a core if (1) there exists a homomorphism 
Q : G - G satisfying Q(S) = C and (2) there is no proper subset C' of C such that there 
exists a homomorphism Q' : G - G satisfying #(S) = C'. Again it is easy to see that there 
exists a core for every closed set. A graph G is called a corn graph if V(C) is a core for G .  

Lemma 53. Let C be a core of G for some closed set S. The subgraph Glc in G induced 
by C is vertex transitive. 

proof. We prove this lemma through the following steps. 

(1) Let Q by any homomorphism of G such that Q(S) = C. We claim that the restriction 
of Q on C, Qlc, is an isomorphism for C. First, we prove that Q(C) = C. Suppose not. Q(C) 
is a proper subset of C. Since Q(S) = C, Q2(S) = Q(C). In other words, Q(C) is a proper 
subset of C having a homomorphism Q2 such that Q2(S) = Q(C). This contradicts the fact 
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that C is a core of S. Hence +(C) = C. Since C is a finite set, 4 is also one to one h m  C 
onto C .  Thus, 4lc is an isomorphism on C .  

(2) From step 1, we know that 4;' is an isomorphism from C onto itself. Let f be any 
homomorphism from G into itself. Then f 0 $lC'(C) S because S is a closed set Therefore 
4 0 f 0 4 IC'(C) c C .  we claim that 4 0 f 0 4 12' is again an isomorphism on C. suppose 
no tThen4  0 f o dilc'(C)isapropersubsetofC.Sincecblc'(C) = C, 4 of(C)isaproper 
subset of C .  Note that 4 0 f 0 4 ( S )  = 4 0 f(C). Thus, 4 0 f(C) is a proper subset of C such 
that there exists a homomorphism namely 4' = 4 0 f 0 4, satisfying @(S) = 4 0 f(C). 
 his contradicts the fact that c is a core. n u s ,  4 0 f 0 41;' is an isomorpssm on c for 
every homomorphism f : G - G .  

(3) Let a and b be any two vertices of C. Since 41;' is an i&morphism on C, we can find 
u' and b' in C such that &(a') = a and t#J(b') = b. By Lemma 5.1, we h o w  that there exists 
a homomorphism f : G - G such that f(u') = b'. Then 4 0 f o $1;' is an isomorphism 
on C such that 4 0 f o 41c1(a) = b. I 

Thus G ( c  is vertex transitive. 

Lemma 5.4. If G is a graph with only one closed qt, then G is PAMI. 

proof. Let C be a core of G for the closed set S of G. Since there is only one closed 
set in G, Glc is a homomorphic image of G. Since Glc is a subgraph of G, it follows from 
Theorem 1.2 that PclC 2 Pc. By Lemma 5.3, Glc is vertex transitive. Hence Glc is PAMI. 
By Theorem 2.3, G is PAMI. I 

A graph G is called an n-core graph if G has exactly n closed sets C1, C2, . . . , C,, with 
V ( G )  = C1 U C2 U - - -C,, such that C; is a core for every i. For example, the graph 
G3.2 + K3 and the 5-wheel graph Ws are 2-core graphs. Observe that there is no edge 
connection between the two cores of G3.2 + K3. On the other h a d ,  all the edge connections 
between the two cores of W5 form a complete bipartite graph. These properties play vital 
roles in the proof that G3,2 + K3 and WS are non-PAMI. However. not all 2-core graphs have 
these properties. 

Lemma 55. Let G be a graph with n closed sets. G contains an n-core subgraph 6 as a 
homomorphic image of G. 

ZhoJ 
Let GO = G. If there is no homomorphism f : GO - GO such that f(Go) C GO, the 

sequence terminates. If there exists a homomorphism fo : GO - GO such that f(G0) C Go, 
set G1 = f(G1). Continue in this way. Let Gi be the newly constructed graph. If there is no 
homomorphism f : Gi - Gi such that f (Gi )  C Gi, then the sequence ter . s . If there is 
a homomorphism fi : Gi - Gi such that f i (G;)  C Gi, then set G;+l = fi(Gi). Since G is a 
finite graph, the sequence rerminates at some Gk- Let f = fk-1 Q f k - 2  0 - - - 0 fo. Then, f is 
a homomorphism from G onto the subgraph of G, Gk. It follows from Lemma 5.2 that Gk is 
a graph with n closed sets. Since there is no homomorphism from Gk into a proper subgraph 
of itself, G k  is an n-core graph. 

We being with the simplest case, 2-core graphs, to prove that those graphs with two or more 
closed sets are non-PAMI. Let G be a 2-core graph with C1 and C2 as its two cores. From 
Lemma 5.3, the induced subgraph Glc, is vertex transitive for i = 1, 2. By Lemma 5.1, for 
every u, u E Ci there exists an isomorphism 4 in G such that +(u) = II. From the 2-core 
graph G, we are going to construct another graph G, whose prowes we will then discuss. 

We construct a sequence of graph GO, GI, .  . . , Gk as follows: 

. 

4 
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Let n be a positive integer, lCll = C I ,  and IC2l = c2. Set r = c2n and s = q n .  Then 
= C{ and c2 = Ci with 1c11 = 1c21 = c1c2n = r s /n  and 

U 6 2 .  Let Ai denote the induced subgraph Glc,. Then Ai is a vertex transitive 
with i = 1, 2 there exists an isomorphism 

G = Gii has two closed sets 
V ( G )  = 
graph for i = 1, 2. Moreover, for every u, u E 
4 in G such that 4 ( u )  = u.  

Lemma 5.6. For any positive integer x ,  Pc(G") = xrs /n .  

Proof. Since C,  is a closed set for i = 1, 2, every isomorphism from G into (e''), 
maps t i  into (2)"'. Hence y ~ ( ( @ ' ) ~ )  I min{yA,((A:)")(i = 1,2}. Thus Pc(Gii) 5 

min{PA,(A;)li = 1,2}. Since A ;  is vertex transitive for every i, by Lemma 2.1 we obtain 
the following equation: 

- *  

Let c1 = { u 1 , u 2 , .  . .,urs/,,} and E 2  = { V I , U ~  ,... ,ursln}. Then C; = {u;,;ll 5 i I 
r s /n ,  1 I j I x }  and C," = {ui , j l l  I i I r s /n ,  1 I j I x } .  We can set a one-to-one 
correspondence r ]  from c; to cf by assigning ~ ( u ; , ; )  = ui,; for every i, j .  We can then extend 
q to v', which maps from (At)'" into (A?)"' by v ' (x1 ,x2 , .  . . , X m )  = i ~ b ~ ) ,  7](xd9.. . , V(xrn)). 
Obviously, v' is one-to-one and onto. Let M I  = {Ai 11 I i S y~~ ( (At ) , ) }  be a set of maximum 
mutually disjoint copies of A l ' s  in (A$rn. Then the set M2 = {,'(Al)IAi E M I }  forms a set 
of mutually disjoint A2's in (A;) , .  Moreover, the induced subgraph (6i~)mli ,uvy~,~ induces a 
subgraph isomorphic to G. Hence y ~ ( ( 6 ~ ' ) " ' )  1 yA,( (A;) , ) .  We have the following equation: 

- -  

Combining (1) and (2) proves the lemma. I 
Corollary 5.2. For any positive integers x and y ,  Pc((?'j) = min{xrs/n,yrs/n}.  

Proof. 
lemma, we have 
eii is a subgraph of @!. We have Pc(@T) 1 Pc(@-) = xrs /n .  The corollary follows. 

Corollary 5.3. 

Similar to the proof of Lemma 5.6, we have y~( (G"~GY")" )  5 y ~ , ( ( A j A i ) " )  and 
PG (GXYGyx) I P A l  (At A?).  Since P A ~  is pseudo-multiplicative, PA, (AqAi) = PA] (A:)PA, 
(A:) = (xrs /n)  ( y r s / n )  = xyr2s2/n2  follows. 

Let ~f = {ul,,ll 5 i 5 r s /n ,  1 s j I x } ,  C I  = {ul,,ll 5 i I rs/n,  1 5 j 5 y } ,  Ci = 

{ui,,I1 5 i 5 r s / n ,  1 I j I x } ,  and C2 = {v:,,ll 5 i 5 r s /n ,  1 5 j I x } .  We can set a 
one-to-one correspondence T from ft U & to ci U ci by assigning ~ ( u , , , )  = ul,l and 
q(ui,,) = u:,,. We can then extend r ]  to q', which maps from (AtA;," into (A;A;)"' 
by q / (x l ,x2 , .  . . , x,) = ( ~ ( x l j ,  q(x2),  . . . , ~ ( x , , , ) ) .  Obviously, q1 is one-to-one and onto. Let 
M I  = {A,ll 5 i 5 Y ~ , ( ( A ~ A : ) ~ ) }  be a set of maximum mutually disjoint copies of Al's  
in (AqAf),. Then, the set M2 = {q'(,&)lff, E MI} forms a set of mutually disjoint A2's in 

2A2)'". Moreover, the induced subgraph (G''), la, ug,(~^,) induces a subgraph isomorphic to 

Without loss of generality, we assume that x I y .  Similar to the proof of the above 
5 y ~ ] ( ( A i ) " ' ) .  Hence Pc(6';) 5 P A ~ ( A ~ )  = xrs /n .  However, 

I 
I -- - 1- 

For any positive integers x and y ,  Pc(GXYGyX) = xyr2s2/n2 .  
- -- -.- 

Proof. 
-* - - -  

-Y I - -  
-; 

(Ai i 
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- +.. _..* i i m  - - -  - - -  c. Hence rc( (GxYGyx)m)  2 Y A ! ( ( A ~ A I )  ). We have P G ( G ~ Y G Y ~ )  2 PA,(AiA!) = xyr2s2/n2. 
The corollary is proved. 

Theorem 5.1. A graph G is PAMI if and only if G has exactly one closed set. 

ProoJ From Lemma 5.4, a graph G is PAMI if it has exactly one closed set. Hence, we 
need to prove that a graph G is non-PAM1 if G has two or more closed sets. We first prove 
the case where G has exactly two closed sets through the following steps. 

(1) It follows from Lemma 5.5 that G contains a 2-core subgraph 6 as a homomorphic 
image. By Lemma 2.2 and Theorem 1.2, Pei 5 PG 5 Pi;. 

(2) Let C 1  and CZ be the two cores of e. Assume that ICI~  = c1, IC2l = c2, r = 2c2, and 
s = 2cl. Let G = 6';. Since G2 is a subgraph of G', Pei 2 Pi;. By Theorem 1.3, P6i 5 P G .  
We have Pi;? = PG.  

(3) Let H be any graph such that Pi;i(H) # 0. From step 1, 6 is a homomorphic image of 
e2 and Pi: 2 Pei .  By Theorem 2.3, P e ( H )  = Pi;i(H).  

(4) Let x and y be any two positive integers with x 5 y. Obviously, G2 C e'y. We have 
Pei(@y) # 0. By steps 2 and 3, P&(e'y) = Pei(G") = P G ( @ ) .  Since Pci 5 PC 5 P e ,  
P c ( @ ~ )  = - ** PG(@) .  _ - -  By Corollary 5.2, P G ( @ )  = xrs/2. Similarly, P ~ ( e 7 ' )  _ - -  = _ - -  xrs/2, 
and P G ( G ~ Y G Y ~ )  = xyr2s2/4. Hence P G ( @ ~ )  = PG(G?') = xrs/2 and P G ( G ~ Y G " ~ )  = 

xyr2s2/4. Therefore, PG is not pseudo-multiplicative. By Theorem 4.3, G is non-PAMI. 
Now, we prove the case where G has exactly three closed sets. As in step 1, G contains a 

3-core subgraph & as a homomorphic image. We have P6i 5 PG I P e .  Let CI,  C2, and C3 
be the cores of G. Assume that lCll = c1, IC21 = c2. and IC31 = c3. We set r = 2 ~ 2 ~ 3 ,  s = 

2c1c3, and t = 2 ~ 1 ~ 2 .  Let = G"'. As in step 2, we have Pi;s =- Pc. Let x 5 y 5 z be three 
positive integers. As in steps 3 and 4, we have PG(@?)  = Pc(Gyzx)  = PG(@") = xrs t /2 ,  
and P G ( G ~ Y * G ~ ~ ~ G ~ ~ ~ )  = xyzr3s3t3/8. Hence, G is non-PAMI. 

Now, we discuss the general case where G has exactly n (n 2 2) closed sets. As in the 
above cases, we can construct H I ,  H2,.  . . , Hn and find that P G ( H I ) P G ( H ~ ) .  . . P c ( H n )  f: 
P G ( H , H ~ - . , H , ) .  Thus, G is non-PAMI. 

_ + * *  _ + * *  _ - - +  

6. CLASSIFICATION OF AM1 GRAPHS 

In the above section, we classified PAMI graphs. A graph G is PAMI if and only if it has 
exactly one closed set. Obviously, a graph G is PAMI if it is AMI. As mentioned earlier, not all 
PAMI graphs are AMI. Therefore the classification of AM1 graphs is also an interesting topic. 

Theorem 6.1. A PAMI graph G is AM1 if and only if (1) PG = Pclc,  where C is a core in 
the unique closed set in G ,  and (2) G l c  is primary. 

Suppose graph G is PAMI, such that (1) PG = Pclc ,  where C is a core in the unique 
closed set in G, and (2) GIc is primary. Obviously Glc is vertex transitive and primary. Thus 
PclC is AMI. Since PG = Pclc,  G is AMI. 

Assume G is AMI. Let C be a core in the unique closed set in G .  We use A to denote 
the induced subgraph G(c.  Since A is a subgraph of G ,  PG 5 PA.  On the other hand, 
G is a subgraph of A G ,  because A is a homomorphic image of G .  Thus P c ( A G )  # 0. 
Since G is AMI, PG(AG) = Pc(A)Pc(G)  # 0. We have P c ( A )  # 0. Thus G A' for 
some integer t .  By Theorem 1.3, PG 2 PA.  Hence PG = PA.  NOW, we prove that A is 
primary. Let B be a homomorphic image of A.  We have PA(AB) # 0, because A C AB. Since 

Proof. 
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PA(AB)  = PA(A)PA(B), P A @ )  # 0 follows. Thus A is a subgraph of Bk for some integer k .  
The graph A is primary. 

With the above theorem, all AM1 graphs are classified. The author tested several examples 
of AM1 graphs, and all the examples tested indicate that condition (2) above is redundant. We 
therefore have the following conjecture. 

Conjecture 1. Every core graph is primary. 

I 

7. RADICAL GRAPHS AND NON-RADICAL GRAPHS 

In this, the final section, we discuss another property of graph capacity functions. In light of 
Theorem 1.2 (2), it is very natural to ask if P k H  = PH. This statement is not true in general. 
Let us call a graph G a radical graph if PG(G) = 1 and a non-radical graph otherwise. A 
vertex u in graph G is called a &ed point if f ( u )  = u for every homomorphism f from G 
into itself. Obviously, K1 is a radical graph and its only vertex is a fixed point. 

Theorem 7.1. A graph G is radical if and only if G has at least one fixed point. 

Proof. Let V ( G )  = { x I , x 2 , .  . . , xu} .  Assume that G has no fixed points. We can find a 
homomorphism 4; : G - G such that + i ( x i )  # xi for every i .  Let j i  = ( X j , X i r . .  . , x i )  (1.4 + 
1 times) and 2; = (x i ,  $1(x;). 4 2 ( x i ) ,  . . . , $ u ( x i ) )  for i = 1, 2 , .  . . , u that are vertices in GU+' .  
It is easy to check that { ;I, ;2,. . . , F u }  and { 2 1 , ? 2 , .  . . ,2,} induce two disjoint G's in GU+I.  
Hence y ~ ( G ' + l )  2 2. We have PG(G)  2 ( y ~ ( G ~ + l ) ) ~ / ~ + l  > 1. 

Assume G has a fixed point, say XI. Let G' be any copy of G in G" with V(G')  = 
{ ;I, ;2,. . . , iU}, where ;; = ( yi, 1, y i ,2 , .  . . , yiJ corresponds to xi  for every i. We can define 
m homomorphisms $1, $ 2 , .  . . , from G into itself by $, (x i )  = y i , j  for every i and j. 
Since x1 is a fixed point, y ~ , ,  = XI for every j. Each copy of G in G" contains the vertex 
$1 = (XI,XI,. . . ,XI) (rn times) in common. Thus, YG(G") 5 1 for every m. Since G C G" 
for every m, we have ~ G ( G " )  = 1. Therefore Pc(G)  = 1. 

With the above theorem, it is easy to check that all odd wheel graphs W,, with n L 5 ,  
and the Grotzsch-Mycielski graph are radical and that all the (n,n)-graphs, with n 2 2, are 
non-radical. Moreover, the graph G2 is non-radical for any graph G. It can be proved that 
there exists a radical (m,n)-graph for all integers m and n with 1 < m < n. 
Lemma 7.1. 

Proof. 

I 

P ~ H ( G )  = PH(G)  if PH(G)  > 1 and P ~ H ( G )  = 0 if PH(G)  5 1. 

It is easy to see that y 2 ~ ( G )  = 1; ~ H ( G ) ]  for any graph G. We have (1; 
Y ~ ( G " ) I ) ~ ' "  = ( ~ ~ H ( G " ) ) I ' ~ .  Thus, P ~ H ( G )  = P H ( G )  if P H ( G )  > 1 and PzH(G) = 0 if 
PH(G)  5 1. I 

With the above lemma, we have the following theorem. 

Theorem 7.2. 
If H is a radical graph, then PkH(G) = PH(G)  for P H ( G )  # 1 and PkH(G) = 0 otherwise. 

Let k be an integer greater than 1. If H is a non-radial graph, then PkH = P H .  
I 
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