DECIMALIZATION, TRADING
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The impact of changes in trading costs, due to decimalization, on
informed trading and speed of information transmission between
exchange-traded funds (ETFs) and their corresponding index futures is
examined. ETFs began to trade in decimals on January 29, 2001, and
index futures continued to trade in their original tick sizes. The focus is on
whether the decrease in the minimum tick size of ETFs influences the rel-
ative performances of these two types of index instruments in the price-
discovery process. It is found that for ETFs, the trading activity increases,
but the market depth drops significantly after decimalization. The spreads
for ETFs generally decrease, but the adverse selection component of ETF
spreads increases. Furthermore, after decimalization, ETFs start to lead
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index futures in the price-discovery process and its share of information
also increases. Although index futures still assume a dominant role in
information discovery, the information content of the ETFs’ prices
improves significantly after decimalization. © 2006 Wiley Periodicals, Inc.

Jrl Fut Mark 26:131-151, 2006

INTRODUCTION

The recent move to a decimal system in quoting bid and ask prices at
$0.01 increments in the U.S. equity markets has generated a great
amount of interest. Both the New York Stock Exchange (NYSE) and the
American Stock Exchange (AMEX) switched to the decimal pricing sys-
tem on January 29, 2001. Exchange-traded funds (ETFs) listed on the
AMEX started to trade in decimals on this date, but their corresponding
index futures continued to trade in their original tick sizes. This offers an
opportunity to test the impact of changes in tick size empirically.

ETFs are index funds or trusts that are listed and traded intraday on
an exchange. In contrast to the traditional open-end mutual funds, ETFs
allow for intraday trading and authorized participants can either create
or redeem ETFs by delivering or receiving its index component stocks. In
this study three actively traded ETFs are used as samples, which include
the Standard & Poor’s Depositary Receipts (S&P 500 ETFs), the
Nasdaq-100 Index Tracking Stock (Nasdaq-100 ETFs), and the unit
investment trust of the Dow Jones Industrial Average (DJIA ETFs).

The corresponding index futures contracts include the S&P 500 E-
mini futures, the Nasdaq-100 E-mini futures, and the regular Dow Jones
Industrial Average (DJIA) Futures.' Both the S&P 500 E-mini index
futures and the Nasdaq-100 E-mini index futures are traded on
GLOBEX, an electronic trading system operated by the Chicago
Mercantile Exchange (CME). The DJIA futures contracts are traded on
an open-outcry system of the Chicago Board of Trade (CBOT).

The relative changes in spreads, adverse selection, and information
transmission between ETFs and their corresponding futures surround-
ing decimalization is examined. The study provides several valuable con-
tributions to the existing literature. First, the impact of decimalization
on the trading costs and liquidity of index instruments; that is, ETFs and
index futures is examined. This is an area that receives relatively little
attention in the literature. Bollen, Smith, and Whaley (2003) examine

'E-mini futures are more actively traded than the regular futures and thus are less influenced by the
nonsynchronous trading problem. Because the E-mini version of DJIA futures started trading on
May 1, 2002, it was not available surrounding the date of decimalization. Regular DJIA futures are
used instead.
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the effect of an increase in tick size of S&P 500 futures. They find
increases in the S&P 500 futures bid—ask spreads, but the spreads
remain low relative to those of S&P 500 ETFs, which is consistent with
the empirical results here. DeJong and Donders (1998) examine the rela-
tions between futures, options, and index levels, and find that futures
significantly lead options and index returns. It is known that index
returns are likely to be affected by the nonsynchronous trading problem;
thus ETFs, which are traded index instruments and are less likely to be
affected by the nonsynchronous trading problem, are examined.

The second contribution is a test of which index instrument
informed traders tend to exploit for their information advantage. Other
things being equal, the potential profits of information trading are higher
for futures because of their higher leverage effects (Kawaller, Koch, &
Koch, 1987). Decimalization makes the minimum tick size of ETFs rela-
tively smaller than that of the index futures. Informed traders now have
more incentives to trade ETFs because of lowered costs. Beaulieu,
Ebrahim, and Morgan (2003) study lead—lag relations between the
Toronto Stock Exchange (TSE) 35 Index futures and the TSE 35 Index
Participation Units before and after a decimal pricing system is imple-
mented. They find that ETFs start to lead futures after their tick size is
reduced. Similar results are found in this study, but in addition to testing
of the lead—lag relations between futures and ETFs, the size of adverse
selection components and information shares is also examined to provide
additional evidence on the impact of decimalization on informed trading.

The third contribution is to test the impact of changes in trading
costs on the price-discovery process. Fleming, Ostdiek, and Whaley
(1996) argue that the relative rates of price discovery in the stock,
futures, and options markets are due to differences in trading costs,
which they refer to as the trading-cost hypothesis. They show that mar-
kets with lower trading costs tend to lead those with higher trading costs
in price discovery. Decimalization of ETFs offers another opportunity to
test the trading-cost hypothesis.

The empirical results indicate that, consistent with the literature on
equity securities, both spreads and depth of ETFs decline significantly
after decimalization, while trading activities of ETFs and index futures
generally increase. The adverse selection component for ETFs increases,
indicating that after decimalization, informed traders seem to trade ETFs
more intensively. Furthermore, ETFs start to lead index futures in the
price-discovery process and the information shares of ETFs also tend to
increase after decimalization. Overall, decimalization improves the quality
of the ETFs market, in terms of trading costs and information efficiencies.
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The rest of this article is organized as follows. The data and research
methodology are described. Empirical results are presented, followed by
a conclusion.

DATA

The trade and quote prices of ETFs are retrieved from the Trade and
Quote (TAQ) database published by the NYSE. The index futures trade
prices are obtained from the Tick Data Inc. The sample period starts on
October 29, 2000 and ends on April 28, 2001, which spans 3 months
before and after the ETFs’ decimalization date. The ETFs data include the
tick-by-tick trade and quote prices, trade volume, and quote size behind
the best bid and offer (BBO) prices.” The minimum tick size for ETFs is
$1/16 before decimalization and $0.01 after decimalization. Throughout
the entire sample period, the minimum tick sizes for S&P 500 E-mini and
Nasdaq-100 E-mini futures contracts are 0.25 and 0.5 index points,
respectively, and the minimum tick size for DJIA futures is 1 index point.
For index futures, only the tick-by-tick trade prices are available.?
This poses a problem for measuring quoted spreads and trading activity
of index futures. For index futures, two implicit spread measures are
used instead in estimating the bid—ask spreads, and trading activity is
measured by number of trades. The first implicit spread measure is the
Roll’s (1984) implied spread. The second implicit measure is the estima-
tor suggested by Wang (1994) and is also used by the Commodity
Futures Trading Commission (CFTC) in estimating futures spreads.*

RESEARCH METHODOLOGY

Trading costs, trading activity, information transmission, and informa-
tion shares for ETFs and index futures are computed and compared.
These measures are explained in the following sections.

Measures of Trading Costs

Spreads are common measures for trading costs. The relative quoted
spread (QS) is calculated as

(Ait B Bit)
Qs;, = T (1)

*Ideally, the quote size beyond the BBO needs to be tested before a definite conclusion about market
depth can be drawn. Nevertheless, such information is generally unavailable from public databases.
3This is also the case for most other futures studies.

*All futures prices used in this study are those of the nearby contracts. The rollover of each contract
is made on the ninth day before the last trading day to avoid any expiration effects.
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where A, (B;,) is the quoted ask (bid) price for stock i at time ¢, and M,, is
the midpoint of the quoted ask and bid prices.

Relative quoted spreads are likely to be biased estimators of trad-
ing costs, because trades do not always occur at the posted quotes.
The relative effective spread (ES) measures the difference between
the actual traded price and the midpoint of the quoted bid and ask
prices and provides a better measure of the actual trading costs. It is

ES. =2 <|Pit - Mit|) (2)
1t Mit

calculated as:

where P, is the transaction price for stock i at time ¢ and M,, is the midpoint
of the bid and ask prices of the quotes immediately prior to the transaction.
The quote is required to be at least 5 seconds before the trade.’

Because quotes of index futures are not available, quoted and effec-
tive spreads can only be estimated for ETFs. Two more implicit spread
measures are applied in estimating the spreads for index futures, as well
as for ETFs. The first implicit spread measure is the Roll's (1984)
implied spread. Roll suggests a simple procedure to estimate the effec-
tive spread based on the observed return covariance. However, as has
been documented in the literature, it is not uncommon for the Roll’s
method to generate negative spread estimates.® A simple regression
framework that does not require discarding negative spread estimates is
applied.” The regression equation is:

rt:a+%s.AQt+ut (3)

where « is an intercept term and Q, is a trade indicator that is +1(—1) if
the trade is buyer (seller) initiated.® By running this regression, it is not
necessary to drop any negative spread estimates.

The second implicit spread measure is suggested by Wang (1994),
and is also employed by CFTC. It is calculated as the average opposite

*Lee and Ready (1991) note that trades are often reported with a delay. They recommend using the
quotes that are time stamped at least 5 seconds before the current trades.

°See Amihud and Mendelson (1987), Hasbrouck and Ho (1987), and Kaul and Nimalendran (1990)
for evidence of a positive autocorrelation in short-term asset returns. George, Kaul, and
Nimalendran (1991) suggest that a positive covariance may be due to partial price adjustments as
dealers attempt to smooth price changes, or due to time-varying expected returns. Furthermore, the
order-splitting strategy by institutional traders may also induce a positive autocorrelation in stock
returns.

"This approach is similar in spirit to those used in Neal and Wheatley (1998), and Van Ness, Van
Ness, and Warr (2001), in modifying the covariance methods of spread decompositions.

8When classifying trade signs, the Lee and Ready algorithm for ETFs and the tick rule for index
futures are used, because the index futures’ quote data are not available.
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direction absolute price change. Price changes in the same direction as
the preceding price change are discarded so as to reduce the impact of
changes in the underlying futures price unrelated to the bid—ask bounce.
This measure is to proxy for the average magnitude of the bid—ask spread.

Decomposition of the Bid—Ask Spreads

Gibson, Singh, and Yerramilli (2003) show that, for a sample of S&P 500
stocks, the percentage adverse selection component increases signifi-
cantly after decimalization. They conclude that a smaller tick size
increases traders’ incentives to gather information. To test whether
informed traders are more willing to trade ETFs, relative to index futures
after decimalization, four methodologies—Glosten and Harris (1988)
(hereafter, GH); George, Kaul, and Nimalendran (1991) (hereafter,
GKN); Huang and Stoll (1996) (hereafter, HS), and Madhavan,
Richardson, and Roomans (1997) (hereafter, MRR)—are used to
decompose the adverse selection component of ETF spreads.

GH express the adverse selection component and the combined
order-processing and inventory-holding component as linear functions of
transaction volume. The model is

APt = COAQt + CIAQtVt + ZOQt +z,Q,V, t e (4)

where P, is the observed transaction price at time ¢, Q, is the trade
indicator signed by the Lee and Ready algorithm, V, is the trading volume,
and e, is the residual term. The adverse selection component is Z, =
2(zy t z,V,) and the order-processing and inventory-holding component
is C, = 2(c, + ¢,V,), which sum up to the bid—ask spread. An estimate for
the proportional adverse selection component of the spread is

2(zg + z,V)

2= 2(cy + ¢,V) + 2(zy + z,V) )

where V is the average trading volume.

GKN show that the difference between transaction returns and bid
returns can filter out the serial dependence in returns. The resulting esti-
mate of the adverse-selection component is expressed as:

2RD, = ms, AQ, + u, (6)

where RD, is the difference between transaction return and bid-to-bid
return immediately following the transaction return at time t, 7 is the
order-processing component, 1 — 7 is the adverse selection component,
s, is the percentage quoted bid—ask spread, Q, is the trade indicator
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defined by the Lee and Ready algorithm, and u, is the disturbance term.
Adding an intercept to the above equation and relaxing the assumption
that s, is constant lead to:

2RD, = m, + ms, AQ, + u, (7)

Following HS, the after-trade price reversals are measured as the
market-making revenue net of losses to better-informed traders, that is,
the order-processing component. The adverse selection (AS) and order-
processing components (OP) are calculated as

ASit = Qit(Pit+n - Mit)/Mit (8)
OPit = Qit(Pit - Pit+n)/Mit (9)

where Q, is the trade indicator signed by the Lee and Ready algorithm and
P, is the first trade price at least 5 minutes after the trade at time t.

MRR show that u,, the posttrade expected value from their model’s
price generation process, can be expressed as

Uy =P = Pe—1 — (¢+6)xt+ (¢+p0)xt*l (10)

where p, is the trade price at time t and x;, is a trade indicator. x, = 0 if a
trade takes place within the prevailing bid and ask prices. 0 is the adverse
selection component, ¢ is the cost of order processing, A is the probabil-
ity that a trade takes place inside the spread, and p is the autocorrelation
of order flow. As in MMR, the generalized method of moments (GMM)
is used to identify the parameters and a constant drift « implied by the

model
R xtzp
x| = (1 =)
E u, —a (11)
(u, — a)x,
(u, — a)x,_,

To obtain the proportional adverse selection and order processing
components, 6 and ¢ are estimated in dollar terms and divided by the
mean effective half spreads for each ETF during the sample period.

Robustness Check of Changes in Spreads

As arobustness check, the changes in spreads surrounding decimalization
are reexamined by controlling for other variables that are known to affect
spreads. It has been documented that bid—ask spreads might be affected
by the securities’ prices, volatility, and trading volumes (Stoll, 2000). In
addition, the trading volume may also change due to decimalization.
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Wang, Yau, and Baptiste (1997) find that volume and bid—ask
spreads are jointly determined. First the Hausman (1978) test is con-
ducted to investigate whether bid—ask spreads and volume are endogenous
variables. The results of the Hausman test indicate that bid—ask spreads
and volume are endogenously determined, and thus the two-stage least-
squares method (2SLS) is employed to estimate the following regression
model of the impact of decimalization on spreads:

m, = ay + ad, + B, logp, + B,logo;, + B;logV, + &, (12)

where m,, is the average spread measures of ETFs and of index futures at
Day t, V,, is the average daily trading volume for ETFs and the average
daily tick volume for index futures, respectively, o, is the daily volatility
estimator, and p,, is the price at Day t divided by the average price.

The Parkinson (1980) extreme value estimator is applied as a proxy
for the daily volatility, which is calculated as o, = 0.361 X [log(H,/L,)]?,
where H, and L, denote the high and low prices of Day t, respectively.’
The instrumental variables for the trading-volume variable include the
daily 3-month T-bill rate, the daily volatility, and the open interest for
index futures at Day t — 1, which is applied to index futures only. The
dummy variable d,, is equal to 1 for the postdecimalization period and is
0 for the predecimalization period. In general, a negative coefficient of
@, in the bid—ask spread equation would indicate reductions in spreads
after decimalization.

Information Transmission Test

Although the major approach for analyzing the lead—lag relation is based
on the vector error-correction model (VECM), there are various other
methods available in the literature. Fleming, Ostdiek, and Whaley
(1996), for example, employ a multivariate regression approach with
explanatory variables including the lead and lag variables and error-
correction terms. There are many cases wherein high-frequency intraday
data may contain missing observations because of unevenly spaced
transaction data. DeJong and Nijman (1997) propose an estimator that
takes into account the problem of missing observations. Their estimator
has been applied in many studies, such as DeJong and Donders (1998);
DeJong, Mahieu, and Schotman (1998); and Beaulieu et al. (2003).
However, the irregularly spaced data problem does not seem a serious

°Alizadeh, Brandt, and Diebold (2002) show that such a range-based estimation of volatility is not
only a highly efficient volatility proxy, but also robust to microstructure noises, such as the bid—ask
bounces.
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issue for the index instruments in this study, as the S&P 500, Nasdagq-
100, and DJIA index instruments all display relatively superior liquidity.
Hence, the analysis is based on the information-share approach that
requires the estimation of the VECM model.

The process of price discovery is further analyzed by using the
Hasbrouck (1995) model, which calculates information shares as relative
contributions of the variance of a security in the variance of innovations
of the unobservable efficient price. According to Hasbrouck, the efficient
price v, follows a random walk: v, = v,_, + u,. The observed prices of
several cointegrated markets contain the same random-walk component
and components incorporating effects of market frictions.

The method relies on the estimation of the VECM:

k
Apt = M + EAi Apt—i + Y Zi—1 + & (13)

i=1
where p, is an n X 1 vector of cointegrated prices, A; are n X n matrices
of autoregressive coefficients, k is the number of lags, z,_, = a'p,_, is an
(m — 1) X 1 vector of error-correction terms, y is an n X (n — 1) matrix
of adjustment coefficients, and ¢, is an n X 1 vector of price innovations.
The coefficients 7y of the error-correction term measure the price reac-
tion to the deviation from the long-term equilibrium relationship. In the
present VECM, Ap, = (AF,AS,)’, where F, and S, are the prices of corre-
sponding index futures and ETFs, respectively.

Hasbrouck (1995) shows that the following vector moving average

model (VMA) can be derived from the VECM:
Ap, = W(L)e, (14)

where W (L) is a polynomial in the lag operator. The VMA coefficients
can be used to calculate the variance of the underlying efficient price:

o2 = VOV’ (15)

where V is a raw vector composed of VMA coefficients and () = var(e,).

With the use of the Cholesky factorization to transform () into a
lower triangular matrix F, () = FF’, the information share of market j is
calculated as:

I = ! (16)

where (VF)) is the jth element of the row matrix WF. A market’s contri-
bution to price discovery is measured as the market’s relative contribution
to the variance of the innovation in the common trend. Baillie, Booth, Tse,
and Zabotina (2002) show an easier method of calculating information
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shares directly from the VECM results without obtaining the VMA repre-
sentation. The present calculation of the information share is based on
their method.

The results of information shares typically depend on the ordering of
variables in the Cholesky factorization of the innovation covariance
matrix. The first (last) variable in the ordering tends to have a higher
(lower) information share, and this discrepancy may be large if the series’
innovations are highly and contemporaneously correlated. Thus, the
order of ETFs and index futures are alternated in the calculation and treat
the resulting estimates as the upper bound (lower bound) of an instru-
ment’s information share, when it is treated as the first (second) variable.

EMPIRICAL RESULTS

Changes in Spreads and Trading Activity

Table I shows the changes in spreads and trading activity for ETFs sur-
rounding decimalization. The total numbers of the pre- and postdecimal
tick-by-tick observations are 75,643 and 109,434 for S&P 500 ETFs,
182,796 and 202,233, for Nasdaq-100 ETFs, and 35,945 and 56,909 for
DJIA ETFs, respectively. The ¢ statistics are adjusted for heteroskedas-
ticity and serial correlation with the use of the Newey and West (1987)
procedure.

Spreads of ETFs generally decrease in the postdecimal period,
which is similar to the findings for equity securities in the tick size
change literature. (Bessembinder, 2003; Chakravarty, Wood, & Van
Ness, 2004; Chung, Charoenwong, & Ding, 2004; Goldstein &
Kavajecz, 2000; and others) For S&P 500 ETFs, the Roll's and CFTC
spreads decrease significantly. For Nasdaq-100 ETFs, all spread meas-
ures except for the effective spreads decrease significantly. For DJIA
ETFs, all spread measures drop significantly after decimalization.

For all ETFs, the quoted size at BBO decreases significantly after dec-
imalization, which indicates that market depth at BBO decreases.
However, except for the S&P 500 ETFs, the average volume per trade
increases. This, combined with an overall increase in the average daily
trading volume, shows that the trading activity of ETFs does not seem to
be adversely affected by decimalization, albeit the market depth seems to
be thinner. The variances of all ETF returns do not change significantly.
No significant changes are found in the volatilities of ETFs after decimal-
ization. Similarly, other studies have found inconsistent results of changes
in volatility after decimalization. For example, Chakravarty et al. (2004)
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TABLE |
Changes in Spreads and Trading Activity of ETFs

Predecimal Postdecimal Difference

Panel A: S&P 500 ETFs
Quoted spread (%) 0.1066 0.1084 0.0018
Effective spread (%) 0.0902 0.0881 —0.0021
Roll’s spread (%) 0.0823 0.0781 —0.0042
CFTC spread (%) 0.0630 0.0534 —0.0096**
Volume per trade (shares) 4492.1243 4059.2229 —432.9013*
Average daily volume (million shares) 2.8893 3.6655 0.7762*
Quote size (100 shares) 5931.2431 3604.1456 —2327.1075**
Variance (xX107°) 3.9956 3.6183 -0.3773
Observations 75,643 109,434

Panel B: Nasdaq 100 ETFs
Quoted spread (%) 0.2155 0.1773 —0.0383*
Effective spread (%) 0.1643 0.1541 —0.0101
Roll’s spread (%) 0.1086 0.0876 —0.0210**
CFTC spread (%) 0.0956 0.0763 —0.0193**
Volume per trade (shares) 9905.3743 11871.8943 1966.5200"
Average daily volume (million shares) 16.2394 20.2452 4.0058**
Quote size (100 shares) 134.7429 124.0707 —-10.6722
Variance (X107) 26.8635 21.1293 —5.7362
Observations 182,796 202,233

Panel C: DJIA ETFs
Quoted spread (%) 0.1476 0.1408 —0.0068
Effective spread (%) 0.1208 0.1100 —0.0109*
Roll’s spread (%) 0.1127 0.0966 -0.0161**
CFTC spread (%) 0.0883 0.0735 —0.0148**
Volume per trade (shares) 2351.7649 2675.8846 324.1197
Average daily volume (million shares) 0.7496 1.3540 0.6044~
Quote size (100 shares) 1286.7614 901.4723 —385.2892**
Variance (X107°) 3.1742 3.3071 0.1329
Observations 35,945 56,909

Note. The predecimal sample period is from October 29, 2000 to January 28, 2001, and the postdecimal sam-
ple period is from January 29, 2001 to April 28, 2001. All variables are the tick-by-tick measures. Quoted spreads
are calculated from the posted quotes and effective spreads are calculated from the signed trades and their cor-
responding quoted midpoint by the Lee and Ready algorithm. Roll (1984) spreads are calculated by a modified
regression framework: r, = « + 35 - AQ, + u,, where « is an intercept term and Q, is a trade indicator. The CFTC
spread measure, as suggested by Wang (1994), is calculated as the absolute value of the opposite changes in
prices, which is employed by the CFTC. Volume per trade is the average number of shares per trade. Quote size
is in round lots (100 shares) and is calculated as the sum of the quote sizes of the best bid and offer prices. The
t statistics are adjusted for heteroskedasticity and serial correlation with the use of the Newey and West (1987)
procedure.

*Significance level of 5%.

**Significance level of 1%.

find significant increases in volatility, but Bessembinder (2003) and
Chung et al. (2004) document significant decreases in volatility.

From Table II, the total numbers of the pre- and postdecimal tick-
by-tick observations for index futures are 1,714,422 and 2,294,999 for
S&P 500 E-mini, 2,451,703 and 3,207,581 for Nasdaq-100 E-mini, and
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TABLE Il
Changes in Effective Spreads and Trading Activity of Index Futures

Predecimal Postdecimal Difference

Panel A: S&P 500 E-mini
Roll’s spread (%) 0.0205 0.0217 0.0012
CFTC spread (%) 0.0200 0.0214 0.0014*
Daily tick changes 28105.2787 36428.5556 8323.2769**
Variance (X1078) 2.1990 2.4979 0.2989
Observations 1,714,422 2,294,999

Panel B: Nasdaq 100 E-mini
Roll's spread (%) 0.0338 0.0345 0.0007
CFTC spread (%) 0.0298 0.0324 0.0026*
Daily tick changes 40191.8525 50913.9482 10722.1317**
Variance (X1078) 9.9299 7.1804 —2.7495
Observations 2,451,703 3,207,581

Panel C: DJIA Futures
Roll’s spread (%) 0.0442 0.0446 0.0004
CFTC spread (%) 0.0408 0.0413 0.0005
Daily tick changes 1142.3279 1440.6826 298.3547*
Variance (X1078) 23.5692 21.9794 —1.5898
Observations 69,682 90,763

Note. The predecimal sample period is from October 29, 2000 to January 28, 2001, and the postdecimal sam-
ple period is from January 29, 2001 to April 28, 2001. Roll (1984) spreads are calculated by a modified regres-
sion framework: r, = « + 35+ AQ, + u,, where « is an intercept term and Q, is a trade indicator. The CFTC
spread measure, as suggested by Wang (1994), is calculated as the absolute value of the opposite changes in
prices, which is employed by the CFTC. The daily tick changes are the average trade price changes in a trading
day. The t statistics are adjusted for heteroskedasticity and serial correlation with the use of the Newey and West
(1987) procedure.

*Significance level of 5%.
**Significance level of 1%.

69,682 and 90,763 for DJIA futures, respectively. The Roll’s spreads
generally increase and the increase is significant for the S&P 500 E-mini
futures. The CFTC spreads are significantly larger for S&P E-mini and
Nasdaq E-mini futures. Thus, after decimalization, only the spreads of
ETFs decrease, but those for the index futures do not. This may impact
the price dynamics between ETFs and index futures. Similar to those of
the ETFs, the variances of futures returns also do not change signifi-
cantly surrounding decimalization.

It is interesting to note that the spreads of the index futures remain
low relative to those of the ETFs, even after decimalization. As will be seen
in later sections, this is likely one of the reasons why the index futures still
assume a dominant role in the price-discovery process, although the ETFs
gain some improvement in price efficiency. The phenomenon is consistent
with the trading-cost hypothesis of Fleming et al. (1996).
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Adverse Selection

The changes in trading costs due to decimalization may influence the
instruments by which the informed traders trade. Four models of spread
decompositions are extensively examined in order to determine directly
whether informed traders trade ETFs more intensively after decimaliza-
tion. The analyses in Table 111 are based on tick-by-tick observations and
the sample sizes are the same as those in Table 1. Panel A of Table III
shows that the adverse selection component increases significantly for
Nasdaq-100 ETFs and DJIA ETFs by the GH approach. From the GKN
approach in Panel B, both the S&P 500 ETFs and the DJIA ETFs expe-
rience significant increases in adverse selection. From the HS approach
in Panel C of Table 111, the adverse-selection component of S&P 500
ETFs and the DJIA ETFs increase significantly. Finally, from Panel D,

TABLE 11l
Decomposition of ETF Spreads

Adverse selection Order processing

Predecimal  Postdecimal Difference Predecimal Postdecimal Difference

Panel A: GH model

S&P 500 ETFs 0.2544 0.2504 —0.0040 0.7456 0.7496 0.0040

Nasdaqg 100 ETFs 0.2950 0.3243 0.0293* 0.7050 0.6757 —0.0293*

DJIA ETFs 0.2098 0.2312 0.0214* 0.7902 0.7688 —0.2140*
Panel B: GKN model

S&P 500 ETFs 0.3023 0.3283 0.0260* 0.6977 0.6717 —0.0260*

Nasdaqg 100 ETFs 0.5350 0.5402 0.0052 0.4650 0.4598 —0.0052

DJIA ETFs 0.3207 0.3967 0.0760** 0.6792 0.6033 —0.0760**
Panel C: HS model

S&P 500 ETFs 0.6156 0.6206 0.0050** 0.0299 0.0238 —0.0061**

Nasdaqg 100 ETFs 0.1572 0.1466 —0.0106 0.0082 0.0040 —0.0042

DJIAETFs 0.0748 0.0796 0.0048* 0.4635 0.4504 —0.0131*
Panel D: MRR model

S&P 500 ETFs 0.2467 0.2743 0.0276** 0.6196 0.5728 —0.0468**

Nasdaqg 100 ETFs 0.3941 0.4191 0.0250** 0.1942 0.1606 —0.0336™*

DJIA ETFs 0.2012 0.2068 0.0056 0.6468 0.5516 —0.0952**

Note. The predecimal sample period is from October 29, 2000 to January 28, 2001, and the postdecimal sample period is
from January 29, 2001 to April 28, 2001. The analyses are based on tick-by-tick observations and the sample sizes are the
same as those in Table |. Four methodologies—Glosten and Harris (1988) (GH); George, Kaul, and Nimalendran (1991)
(GKN); Huang and Stoll (1996) (HS); and Madhavan, Richardson, and Roomans (1997) (MRR)—are used to decompose
the adverse selection component of ETF spreads. The t statistics are adjusted for heteroskedasticity and serial correlation
with the use of the Newey and West (1987) procedure.

*Significance level of 5%.
**Significance level of 1%.
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the MRR model also shows a general increasing pattern of the adverse-
selection component of ETFs after decimalization. Consistent with
expectations and with Gibson et al. (2003), the percentages of adverse-
selection components of ETFs tend to increase after decimalization.

From the columns of the order-processing cost in Table II1, it can be
seen that the order-processing component generally decreases after
decimalization. These results point to a general increase in the adverse-
selection component and a decrease in the order-processing component
of the ETFs’ spreads. This provides evidence showing that informed
traders are now trading ETFs more intensively, because of reduced min-
imum tick size and lowered trading costs.

Another interesting observation from Table III is that according to
the GH, GKN, and MRR models, the Nasdaq-100 ETFs have the largest
proportion of adverse selection component, and the S&P 500 and DJIA
ETFs have smaller and roughly equal proportions of adverse selection
components.'® This is to be expected, because the Nasdaq-100 index is
narrower than the S&P 500, and its component stocks are also mostly

smaller in size than those of the DJIA and S&P 500 indexes.

Robustness Check of Changes in Spreads

As a robustness check, structural models are used to examine whether
the postdecimalization changes in bid—ask spreads are robust. First the
simultaneity of spreads and volume is examined. The spread measures
employed here are the average daily CFTC spreads with a total of 124
observations.'' Panel A of Table IV presents the Hausman test results.
Except for the bid—ask spread equation of the DJIA ETFs, all test statis-
tics are statistically significant at the 5% level, which indicates that vol-
ume and bid—ask spreads are simultaneously determined. Hence, a
simultaneous equation model similar to that of Wang et al. (1997) is
conducted to analyze the impact of decimalization on the bid—ask spread
of ETFs and index futures.

Panel B of Table IV presents the estimation results of the 2SLS
method for the volume and the spread equations. To be concise, only
results of the bid—ask spread equation are reported, as the particular inter-
est here is on the relative changes in the trading costs after decimalization.

'"The adverse selection component of the HS model cannot be compared across different types of
ETFs, as it is not calculated as a proportion of the spreads.

""For ETFs, the same analysis is also conducted with quoted and effective spreads. The results are
qualitatively similar.
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TABLE IV

Regression Results of the Hausman Test and Changes in Spread Measures

Nasdagq Nasdagq
S&P 500 100 DJIA S&P 500 100 DJIA
E-mini E-mini futures ETFs ETFs ETFs
Panel A: Hausman test results
Volume equation  —237.700 —71.230 —37.210 6.991 6.818 —6.291
(0.001) (0.012) (0.001) (0.032) (0.001) (0.043)
Bid—ask spread —0.002 —0.006 —0.011 0.005 0.019 —0.003
equation (0.031) (0.001) (0.002) (0.047) (0.001) (0.059)
Panel B: 2SLS estimation results of changes in bid—ask spread
ag 0.279 0.406 1.271 1.619 1.116 0.698
(0.001) (0.043) (0.001) (0.043) (0.081) (0.060)
oy —0.002 —0.003 —0.001 —0.016 —0.022 —0.021
(0.127) (0.161) (0.471) (0.012) (0.009) (0.056)
log p; —0.026 —0.025 —0.107 —0.209 —0.053 —0.086
(0.112) (0.001) (0.001) (0.050) (0.001) (0.062)
log o 0.0013 0.004 0.008 0.028 0.024 0.011
(0.001) (0.002) (0.001) (0.045) (0.003) (0.101)
log V; —0.003 —0.016 —0.024 —0.083 —0.051 —0.009
(0.067) (0.010) (0.003) (0.087) (0.085) (0.175)
Observations 124 124 124 124 124 124

Note. This table reports the Hausman test and the 2SLS estimation results of the spread equation for the period of
October 30, 2000 to April 28, 2001. The 2SLS equation is:

my= ay + a,dy + By logp, + B, logo, + B; logVy + &

where m, is the CFTC bid—ask spreads of ETFs and index futures at Day t. V, is the average daily trading volume for ETFs
and tick volume for index futures, o is the daily volatility estimator, p, is the price at Day t divided by the average price, «,
is the intercept, a, measures the effect of the dummy variable, and d; is an indicator variable, which equals 1 for the post-
decimalization period and O for the predecimalization period. Numbers in the parentheses are p values.

The three control variables are shown to have a significant impact on the
bid—ask spreads of ETFs and index futures, and have commonly expected
signs (Chung, Charoenwong, & Ding, 2004; Gibson et al., 2003; and oth-
ers) The coefficients of the dummy variables representing the decimaliza-
tion effect are all negative for ETFs. The estimated coefficients of S&P 500
ETFs and Nasdaq-100 ETFs are negative and significant at the 5% level.
In contrast, the spreads of index futures do not change significantly after
decimalization.

To summarize, the results in Table IV show reductions in trading
costs for ETFs after other variables likely to affect the spread size are
controlled for. It is important to note that there is no evidence showing
changes in the bid—ask spreads of index futures, which confirms the
results in Table I.
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Information Transmission

According to the trading-cost hypothesis, securities with lower trading
costs will lead in the price discovery process. From previous sections, it
can be seen that after decimalization the trading costs of ETFs decrease
significantly relative to those of index futures. This section tests whether
ETFs assume a more important role in the price-discovery process.

Given the time-series nature of the data, an initial step in the infor-
mation transmission analysis is to test whether each price series is stationary.
For transmission tests, 5-minute interval data are retrieved from the
tick data of ETFs and index futures. The total numbers of 5-minute obser-
vations for all ETFs and futures are 4,819 and 4,977 during the pre- and
postdecimal periods, respectively. The traded prices of ETFs are generally
scaled down by the exchange from their respective index levels, so that
their prices per share are comparable to those of other stocks. To make the
prices of ETFs comparable to those of index futures, the prices of ETFs are
multiplied by an adjusting factor, and the adjusting factors for the S&P
500, Nasdaq-100, and DJIA ETFs are 10, 40, and 100, respectively.

The results of the Phillips-Perron (1988) unit root test for price
levels indicate that the existence of unit roots cannot be rejected for all
index instruments.'> The VECM results show that for each group of
the index instruments, the error-correction term is significant for the
ETFs, but not for the index futures. Although this result does not seem to
change after decimalization, the coefficients of the ETFs’ error-correction
terms decrease relative to those of the index futures. The changes in the
short-run lead—lag relationship after decimalization are the most signifi-
cant for the Nasdaq-100 and S&P 500 ETFs, which indicate that the rel-
ative strength of information transmission from ETFs to E-mini futures
seems to increase after decimalization. The fact that the Nasdaq-100 and
S&P 500 ETFs are the ones that exhibit the most significant improve-
ment in the information leading role is also expected, because they both
have much higher liquidity than the DJIA ETFs as shown previously in
Table 1.

Table V presents the information share of ETFs and index futures
for the pre- and postdecimal periods. The column labeled “Upper bound”
(“Lower bound”) is the information share when the security is treated as
the first (second) variable in the calculation, and the column labeled
“Midpoint” reports the average of the upper bound and the lower bound
of the information shares.

2To save space, the estimation results of unit-root tests and VECM are omitted, and they are
available upon request.
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TABLE V
Contributions to Price Discovery

Information share

Upper bound Lower bound Midpoint Observations

Panel A: S&P500 E-mini

Predecimal 0.9845 0.8671 0.9258 4,819

Postdecimal 0.9706 0.9266 0.9486 4,977
Panel B: Nasdaq 100 E-mini

Predecimal 0.9827 0.7849 0.8838 4,819

Postdecimal 0.9213 0.7030 0.8122 4,977
Panel C: DJIA Futures

Predecimal 0.9909 0.6462 0.8186 4,819

Postdecimal 0.9493 0.5586 0.7539 4,977
Panel D: S&P 500 ETFs

Predecimal 0.1329 0.0155 0.0742 4,819

Postdecimal 0.0734 0.0294 0.0514 4,977
Panel E: Nasdaq 100 ETFs

Predecimal 0.2151 0.0173 0.1162 4,819

Postdecimal 0.2970 0.0787 0.1878 4,977
Panel F: DJIA ETFs

Predecimal 0.3538 0.0091 0.1814 4,819

Postdecimal 0.4414 0.0507 0.2461 4,977

Note. The predecimal sample period is from October 29, 2000 to January 28, 2001, and the postdecimal sample period is
from January 29, 2001 to April 28, 2001. Information shares of index futures and ETFs are calculated by the Hasbrouck
(1995) model, which shows that the following vector moving average model (VMA) can be derived from the VECM:
Ap; = ¥ (L)e;, where W(L) is a polynomial in the lag operator. The VMA coefficients can be used to calculate the variance
of the underlying efficient price: 02 = ¥QW’, where W is a raw vector composed of VMA coefficients and ) = var(e;). With
the use of the Cholesky factorization to transform () into a lower triangular matrix F, ) = FF, the information share of market j
is calculated as: /; = (‘I’F)f/aﬁ, where (VF)j is the jth element of the row matrix WF. A market’s contribution to price
discovery is measured as the market’s relative contribution to the variance of the innovation in the common trend. The
column labeled “Upper bound” (“Lower bound”) refers to the information share when the instrument is treated as the first
(second) variable in the model, and the column labeled “Midpoint” reports the average of the upper bound and the lower
bound of the information shares.

From Table V, the midpoints of the information share of index
futures are much higher than 50% in both subperiods, which indicates
that index futures dominate in price discovery. Similar results have been
found in the literature, and it is generally argued that futures contracts
lead in price discovery, because of their lower trading costs and higher
leverage effects. The E-mini index futures of S&P 500 and Nasdaq 100
have higher information shares than the regular index futures of D]JIA,
and this further shows that instruments with higher liquidity and lower
trading costs are more likely to assume leading roles in price discovery.
The results are consistent with Ates and Wang (2004), who show that the
S&P 500 and Nasdaq-100 E-mini futures assume dominant roles in price
discovery.
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After decimalization, all the upper bounds of the index futures’
information shares decrease and all the lower bounds of the ETFs’ infor-
mation shares increase. Except for S&P 500 ETFs, the midpoint and the
upper-bound information shares of ETFs increase after decimalization.
Consistent with other findings in previous sections, the efficiency of
ETFs has increased, because after decimalization, there is a general
increase in the relative contribution of ETFs to the price-discovery
process. These results support the trading-cost hypothesis by Kawaller
et al. (1987) and Fleming et al. (1996).

A dominant role of index futures in price discovery is still observed,
despite their decreased information shares after decimalization. The dom-
inant role of the index futures in price discovery is expected, as E-mini
index futures still possess many trading advantages, such as a high lever-
age effect. Furthermore, ETFs market makers sometimes make bids and
offers based on the price movements observed from the index futures.

SUMMARY AND CONCLUSION

The impact of reduction in trading costs due to decimalization on the
price-discovery process between ETFs and index futures has been studied.
ETFs started to trade in decimals on January 29, 2001, and index futures
continued to trade in their original tick sizes. Because both ETFs and
index futures are index instruments, the decrease in the minimum tick
size of ETFs may have changed the price dynamics between ETFs and
index futures. In order to provide additional evidence on the impact of
changes in trading costs on the information transmission processes, index
instruments that are informationally linked are studied. Furthermore, this
study sheds lights on the influences of trading costs on how and where
informed traders choose to exploit their information advantages.

Consistent with the decimalization literature of equity securities, it
is found that for ETFs, the trading activity increases, but the market
depth drops after decimalization. The spreads for ETFs generally
become smaller, indicating that the implicit trading costs of ETFs
decrease. Due to the trading-cost hypothesis, this is likely to induce
informed traders to switch their trades from index futures to ETFs. This
conjecture is confirmed by estimating four models of spread decomposi-
tions and show that the adverse selection components of ETFs generally
increase significantly after decimalization. The adverse selection compo-
nent is also found to be the largest for the Nasdaq-100 ETFs.

Based on these results, tests are conducted to determine whether
the price-discovery process changes due to changes in spreads and their
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components. It is found that ETFs start to lead index futures after deci-
malization, a phenomenon that is not observed before the event.
Moreover, a general increase in the information share of ETFs is also
found. Overall, ETFs experience decreases in trading costs and increases
in information trading, and these in turn lead to an improvement in the
role of ETFs in the price-discovery process. These results provide further
support for the trading-cost hypothesis.

Finally, although decimalization improves the general informational
efficiency of ETFs, its impact might be different for different types of
market participants.'® Further studies on how different types of market
participants are affected by decimalization will reveal more information
on the merit of decimalization. For example, a potential research topic
related to the issue is how decimalization would impact the profitability
of index futures arbitrages. This is a topic left for future research.
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