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ABSTRACT

It is shown in Chou (2005). Journal of Money, Credit and Banking, 37,

561–582that the range can be used as a measure of volatility and the

conditional autoregressive range (CARR) model performs better than

generalized auto regressive conditional heteroskedasticity (GARCH) in

forecasting volatilities of S&P 500 stock index. In this paper, we allow

separate dynamic structures for the upward and downward ranges of asset

prices to account for asymmetric behaviors in the financial market. The

types of asymmetry include the trending behavior, weekday seasonality,

interaction of the first two conditional moments via leverage effects, risk

premiums, and volatility feedbacks. The return of the open to the max of

the period is used as a measure of the upward and the downward range is

defined likewise. We use the quasi-maximum likelihood estimation

(QMLE) for parameter estimation. Empirical results using S&P 500

daily and weekly frequencies provide consistent evidences supporting the

asymmetry in the US stock market over the period 1962/01/01–2000/08/

25. The asymmetric range model also provides sharper volatility forecasts

than the symmetric range model.
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1. INTRODUCTION

It’s known for a long time in statistics that range is a viable measure of the
variability of random variables. In the recent two decades, applications to
finance issues discovered that ranges were useful to construct efficient vol-
atility estimators; e.g., see Parkinson (1980); Garman and Klass (1980);
Beckers (1983); Wiggins (1991); Rogers and Satchell(1991); Kunitomo
(1992); Rogers (1998); Gallant, Hsu, and Tauchen (1999); Yang and Zhang
(2000); and Alizadeh, Brandt, and Diebold (2002). In Chou (2005), we pro-
pose the conditional autoregressive range (CARR) model for range as an
alternative to the modeling of financial volatilities. It is shown both the-
oretically and empirically that CARR models are worthy candidates in
volatility modeling in comparison with the existing methodologies, say the
generalized auto regressive conditional heteroskedasticity (GARCH) mod-
els. Empirically, the CARR model performs very satisfactory in forecasting
volatilities of S&P 500 using daily and weekly observations. In all four cases
with different measures of the ‘‘observed volatility’’, CARR dominates
GARCH in the Mincer/Markovtz regression of forecasting evaluations. It’s
a puzzle (see Cox & Rubinstein, 1985) that despite the elegant theory and
the support of simulation results, the range estimator has performed poorly
in empirical studies. In Chou (2005), we argue that the failure of all the
range-based models in the literature is due to its ignorance of the temporal
movements of the range. Using a proper dynamic structure for the condi-
tional expectation of range, the CARR model successfully resolves this
puzzle and retains its superiority in empirical forecasting powers.

This paper focuses on an important feature in financial data: asymmetry.
Conventionally, symmetric distributions are usually assumed in asset pricing
models, e.g., normal distributions in CAPM and the Black/Sholes option
pricing formula. Furthermore, in calculating various measures of risk,
standard deviations (or equivalently, variances) are used frequently, which
implicitly assume a symmetric structure of the prices. However, there are
good reasons why the prices of speculative assets should behave asymmet-
rically. For investors, the more relevant risk is generated by the downward
price moves rather than the upward price moves; the latter is important in
generating the expected returns. For example, the consideration of the value-
at-risk only utilizes the lower tail of the return distribution. There are
also models of asset prices that utilize the third moment (an asymmetric
characteristic feature), for example, Levy and Markowitz (1979). Further-
more, asymmetry can arise in a dynamic setting in models considering time-
varying conditional moments. For example, the ARCH-M model of Engle,
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Lilien, and Robbins (1987) posits a linkage between the first sample moment
and past second sample moments. This model has a theoretical interpretation
in finance: the risk premium hypothesis (See Malkiel, 1978; Pindyck, 1984;
Poterba & Summers, 1986; Chou, 1988). The celebrated leverage effect of
Black (1976) and Christie (1982) is cast into a dynamic volatility model in the
form of the linkage between the second sample moment and past first sample
moments; See EGARCH of Nelson (1991) and NGARCH of Engle and Ng
(1993). Furthermore, the asymmetry can arise in other forms such as the
volatility feedback of Campbell (1997). Barberis and Huang (2000) give an
example of loss aversion and mental account that would predict an asymmetric
structure in the price movements. Tsay (2000) uses only observations of the
downward, extreme movements in stock prices to model the crash probability.

Chou (2005) incorporated one form of asymmetry, the leverage effect,
into the CARR model and it appeared to be more significant than reported
in the literature of GARCH or Stochastic Volatility models. The nature of
the CARR model is symmetric because range is used in modeling which
treats the maximum and minimum symmetrically. In this paper, a more
general form of asymmetry is considered by allowing the dynamic structure
of the upward price movements to be different from that of the downward
price movements. In other words, the maximum and the minimum of price
movements in fixed intervals are treated in separate forms. It may be rel-
evant to suspect that the information in the downward price movements are
as relevant as the upward price movements in predicting the upward price
movements in the future. Similarly, the opposite case is true. Hence it is
worthy to model the CARR model asymmetrically.

The paper is organized as following. It proposes and develops the Asym-
metric CARR (ACARR) model with theoretical discussions in section 2. In
addition, discussions are given about some immediate natural extensions of
the ACARR model. An empirical example is given in section 3 using the S&P
500 daily index. Section 4 concludes with considerations of future extensions.
2. MODEL SPECIFICATION, ESTIMATION, AND

PROPERTIES

2.1. The Model Specification, Stochastic Volatilities, and the Range

Let Pt be the logarithmic price of a speculative asset observed at time t,
t ¼ 1; 2; . . .T : Pt is a realization of a price process {Pt}, which is assumed to
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be a continuous processf.1 We further assume that within each time interval, we
observe Pt at every fixed time interval dt. Let n denote the number of intervals
between each unit time, then dt ¼ 1=n: There are hence, n+1 observations
within each time interval between t�1 and t. Let Po

t ; Pc
t ; PHIGH

t ; PLOW
t ; be the

opening, closing, high and low prices, in natural logarithm, between t�1 and t.
The closing price at time t will be identical to the opening price at time t+1 in
considerations of markets that are operated continuously, say, some of the
foreign exchange markets. Further, define UPRt, the upward range, and
DWNRt, the downward range as the differences between the daily highs, daily
lows, and the opening price respectively, at time t, in other words,

UPRt ¼ PHIGH
t � Po

t

DWNRt ¼ PLOW
t � Po

t ð2:1Þ

Note that these two variables, UPRt and DWNRt, represent the maximum and
the minimum returns respectively, over the unit time interval (t�1, t). This is
related to the range variable in Chou (2005) that Rt, defined to be

Rt ¼ PHIGH
t � PLOW

t (2.2)

It’s clear that the range is also the difference between the two variables, UPRt,
and DWNRt, in other words,

Rt ¼ UPRt � DWNRt (2.3)

In Chou (2005) we propose a dynamic model, the CARR model, for the range.
It’s a conjecture that the extreme value theory can be used to show that the
conditional range, or equivalently the disturbance term, has a limiting distri-
bution that is governed by a shifted Brownian bridge on the unit interval.2 In
this paper, we propose a model for the one-sided range, UPRt, and DWNRt, to
follow a similar dynamic structure. In particular,

UPRt ¼ lu
t �

u
t

DWNRt ¼ �ld
t �

d
t

lu
t ¼ ou þ

Xp

i¼1

au
i UPRt�i þ

Xq

j¼1

bu
j l

u
t�j

ld
t ¼ od þ

Xp

i¼1

ad
i DWNRt�i þ

Xq

j¼1

bd
j l

d
t�j

�u
t � iid f u

�ð Þ; �d
t � iid f d

�ð Þ ð2:4Þ



Modeling the Asymmetry of Stock Movements Using Price Ranges 235
Model (2.4) is called the asymmetric conditional autoregressive range
(Asymmetric CARR or ACARR, henceforth) model. In the following discus-
sions, we will disregard the super-scripts when there is no concern of confusion.
In (2.4), lt is the conditional mean of the one-sided range based on all in-
formation up to time t. The distribution of the disturbance terms et of the
normalized one-sided-range, or OSRtð¼ UPRt or DWNRt; Þ; �t ¼ OSRt=lt;
are assumed to be identically independent with density function fi( � ), where
i ¼ u or d. Given that both the one-sided ranges UPRt and �DWNRt, and
their expected values lt are both positive hence their disturbances et, the ratio
of the two, are also positively valued.

The asymmetric behavior between the market up and down movements
can be characterized by different values for the pairs of parameters,
ðou; odÞ; ðau; ad Þ; ðbu; bd

Þ; and from the error distributions ðf u
�ð Þ; f d

�ð ÞÞ:
The equations specifying the dynamic structures for lt’s characterize the

persistence of shocks to the one-sided range of speculative prices or what is
usually known as the volatility clustering. The parameters o, ai, bj, char-
acterize respectively, the inherent uncertainty in range, the short-term im-
pact effect and the long-term effect of shocks to the range (or the volatility
of return). The sum of the parameters

Pp
i¼1ai þ

Pq
j¼1bj ; plays a role in

determining the persistence of range shocks. See Bollerslev (1986) for a
discussion of the parameters in the context of GARCH.

The model is called an asymmetric conditional autoregressive range
model of order (p,q), or ACARR(p,q). For the process to be stationary, we
require that the characteristic roots of the polynomial to be out side the unit
circle, or

Pp
i¼1ai þ

Pq
j¼1bjo1: The long-term range denoted o-bar, is cal-

culated as o=ð1� ð
Pp

i¼1ai þ
Pq

j¼1bjÞÞ: Further, all the parameters in the
second equation, are assumed positive, i.e., o; ai; bj40:

It is useful to compare this model with the CARR model of Chou (2005):

Rt ¼ lt�t

lt ¼ oþ
Xp

i¼1

aiRt�i þ
Xq

j¼1

bjlt�j

�t � iid f ð:Þ ð2:5Þ

Ignoring the distribution functions, the ACARR model reduces to the
CARR if all the parameters with superscript u and d are identical pair-wise.
Testing these various types of model asymmetry will be of interest because
asymmetry can arise in varieties, e.g., size of the range, i.e., level of the
volatility (o� bar ¼ o/ð1� a� bÞ), the speed of mean-reversion (a+b),
and the short-term (a) versus long-term (b) impact of shocks.
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Eq. (2.4) is a reduced form for the one-sided ranges. It is straight forward
to consider extending the model to include other explanatory variables,
Xt�1,l that are measurable with respect to the information set up to time t�1.

lt ¼ oþ
Xp

i¼1

aiRt�i þ
Xq

j¼1

bjlt�j þ
XL

l¼1

glX t�1;l (2.6)

This model is called the ACARR model with exogenous variables, or
ACARRX. Among others, some important exogenous variables are trading
volume (see Lamoureux & Lastrapes, 1990; Karpoff, 1987), the lagged re-
turns measuring the leverage effect of Christie (1982), Black (1976) and
Nelson (1990) and some seasonal factor to characterize the seasonal pattern
within the range interval.

Note that although we have not specified specifically, all the variables and
parameters in (2.4) are all dependent on the parameter n, the number of
intervals used in measuring the price within each range-measured interval. It
is clear that all the range estimates are downward biased if we assume the
true data-generating mechanism is continuous or if the sampling frequency
is lower than that of the data generating process if the price is discrete. The
bias of the size of the one-sided-range, whether upward range (UPRt) or
downward range (DWNRt), like the total range, will be a a non-increasing
function of n. Namely, the finer the sampling interval of the price path, the
more accurate the measured ranges will be.

It is possible that the highest frequency of the price data is non-constant
given the heterogeneity in the trading activities within each day and given
the nature of the transactions of speculative assets. See Engle and Russell
(1998) for a detailed analysis of the non-constancy of the trading intervals,
or the durations. Extensions to the analyses of the ranges of non-fixed
interval prices will be an interesting subject for future research.3 However,
some recent literature suggest that it is not desirable to work with the
transaction data in estimating the price volatility given the consideration of
microstructures such as the bid/ask bounces, the intra-daily seasonality,
among others. See Andersen, Bollerslev, Diebold, and Labys, (2000); Bai,
Russell, and Tiao (2000), and Chen, Russell, and Tsay (2000).

As is the case for the CARR model, the ACARR model mimics the ACD
model of Engle and Russell (1998) for durations between trades. Nonethe-
less, there are important distinctions between the two models. First, dura-
tion is measured at some random intervals but the range is measured at fixed
intervals, hence the natures of the variables of interest are different although
they share the common property that all observations are positively valued.
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Second, in the ACD model, the distribution of the disturbances is usually
chosen arbitrarily – a feature also shared by all GARCH models. The
ACARR model, on the contrary, has some natural choices from the results
of extreme value theories in statistics.4
2.2. Properties of ACARR: Estimation and Relationships with Other

Models

Given that the ACARR model has exactly the same form as the CARR
model, all the statistical results in CARR apply to ACARR. Furthermore,
the ACARR model has some unique properties of its own. We illustrate
some of the important properties in this subsection. Given that the upward
and the downward range evolutions are specified independently, the esti-
mation can hence be performed separately. Further, consistent estimation of
the parameters can be obtained by the quasi-maximum likelihood estima-
tion (QMLE) method. The consistency property follows from the ACD
model of Engle and Russell (1998) and Chou (2005). It indicates that the
exponential distribution can be used in constructing the likelihood to con-
sistently estimate the parameters in the conditional mean equation.

Specifically, given the exponential distribution for the error terms, we can
perform the QMLE. Using Rt, t ¼ 1; 2; . . . ;T as a general notation of UPRt

and DWNRt, the log-likelihood function for each of the one-sided range
series is

L ai; bj; R1; R2; . . . ; RT ;
� �

¼ �
XT

t¼1

log ltð Þ þ
Rt

lt

� �
.

The intuition of this property relies on the insight that the likelihood func-
tion in ACARR with an exponential density is identical to the GARCH
model with a normal density function with some simple adjustments on the
specification of the conditional mean. Furthermore, all asymptotic proper-
ties of GARCH apply to ACARR. Given that ACARR is a model for the
conditional mean, the regularity conditions (e.g., the moment condition) are
in fact, less stringent then in GARCH.

Note that although QMLE is consistent, it is not efficient. The efficiency
can be obtained if the conditional density function is known. This leads us
to the limiting distribution of the conditional density of range. The discus-
sion will require a far more complicated theoretic framework, which is
worthy of pursuing by an independent work. We hence do not pursue this
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route in this paper and follow the strategy of Chou (2005) in relying on the
QMLE.5 Again, it is an empirical question as to how substantial in efficiency
such methods can generate. Engle and Russell (1998) reported that devi-
ations from the exponential density function do not offer efficiency gain
sufficiently high in justifying the extra computation burdens.

It is important to note that the direct application of QMLE will not yield
consistent estimates for the covariance matrix of the parameters. The
standard errors of the parameters are consistently estimated by the robust
method of Bollerslev and Wooldridge (1992). The efficiency issue related to
these estimates is a subject for future investigation.

Another convenient property for ACARR (due to its connection with
ACD) is the ease of estimation. Specifically, the QMLE estimation of the
ACARR model can be obtained by estimating a GARCH model with a
particular specification: specifying a GARCH model for the square root of
range without a constant term in the mean equation.6 This property is
related to the above QMLE property by the observation of the equivalence
of the likelihood functions of the exponential distribution in ACARR and
ACD and of the normal density in GARCH. It indicates that it is almost
effortless to estimate the ACARR model if a GARCH software is available.

It will be interesting and important to investigate whether the ACARR
model will satisfy a closure property, namely, whether the ACARR process
is invariant to temporal and cross-sectional aggregations. This is important
given the fact that in financial economics, aggregates are frequently en-
countered, e.g., portfolios are cross-sectional aggregates and monthly,
weekly returns are temporal aggregates of daily returns. It is also a property
that is stressed in the literature of time series econometrics.7

Another interesting property of the CARR model is the encompassing
property. It is interesting that the square-root-GARCH model turns out to
be a special case of CARR, and in fact, the least efficient member of
the CARR model. This property does not apply to ACARR since there are
no analogies of the open to maximum (minimum) in the GARCH model
family.
2.3. Robust ACARR

It is suggested in statistics that range is sensitive to outliers. It is useful
hence, to consider extension of ACARR to address such considerations. We
consider robust measures of range to replace the standard range defined as
the difference between the max and the min. A simple naive method is to use
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the next-to-max for max and the next-to-min for min. By doing so, the
chance of using outliers created by typing errors will be greatly reduced. It
will also reduce the impact of some true outliers.

A second alternative is to use the quantile range, for example, a 90%
quantile range is defined as the difference between the 95% percentile and
the 5% percentile. A frequently adopted robust range is the interquartile
range (IQR) which is a 75% quantitle and it can be conveniently obtained
by taking the difference of the medians of the top and lower halves of the
sampling data. In measuring a robust maximum or minimum likewise, we
can use the 75% quantile in both the upward price distribution and the
downward price distribution.

Similarly other types of robust extreme values can be adopted like the
next-ith-to-max (min) and the average of the top 5% observations and the
bottom 5% observations, et.al. There are several important issues relevant
in considerations such as the efficiency loss, e.g., the IQR discards 50% of
the information while the next-to-max approach discards very little. An-
other issue is the statistical tractability of the new range measures. For
example, the quantile range will have a more complicated distribution than
the range and the statistical property for the next-ith-to-extreme approach is
less known than the quantile range. Another consideration is the data fea-
sibility. In most cases, none of the information other than the extreme
observations are available. For example, the standard data sources such as
CRSP, and the Wall Street Journal, the Financial Times only report the
daily highs and lows. As a result, the robust range estimators are infeasible
unless one uses the intra-daily data. Nonetheless, the robust range estima-
tors are feasible if the target volatility is measured at lower frequency than a
day. This is obvious since there are 20 some daily observations available in
each given month hence the monthly volatility can be measured by a robust
range if the outlier problem is of concern. Given the existence of intra-daily
data, daily robust range model is still an important topic for future research.
3. AN EMPIRICAL EXAMPLE USING THE S&P 500

DAILY INDEX, 1962/01/03–2000/08/25

3.1. The Data Set

The daily index data of the Standard and Poor 500 (S&P 500) are used for
empirical study in this paper to gauge the effectiveness of the ACARR
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model. The data set is downloaded from the finance subdirectory of the
website ‘‘Yahoo.com’’. The sample period covered in this paper is 1962/01/
03–2000/08/25. The models are estimated by using this daily data set, com-
parisons are made for various volatility models on the accuracy of the vol-
atility predictions.

Table 1 gives the summary statistics of RANGE, UPR, and DWNR for
the full sample and two sub-sample periods. Sub-samples are considered
because there is an apparent shift in the level of the daily ranges roughly on
the date 1982/04/20. As is shown in Table 1, the averaged range level was
reduced by almost a half since this particular date. Reductions in the level of
similar magnitude are seen for the max and min as well. It’s likely an in-
stitutional change occurred at the above-mentioned date. From a telephone
conversation with the Standard and Poor Incorporated, the source of this
structural change was revealed. Before this stated date, the index high and
index low were compiled by aggregating the highs and lows of individual
firm prices for each day. This amounts to assume that the highs and lows for
all 500 companies occur at the same time in each day. This is clearly an
incorrect assumption and amounts to an overestimate of the highs and an
underestimate of the lows. As a result, the ranges are over-estimated. The
compiling process was corrected after April 1982.8 The company computes
the index value at some fixed (unknown to me, say, 5min) intervals within
each day and than select the maximum and minimum price levels to be the
index highs and index lows.9

Figs. 1–4 give the plots of the daily max and min price movements. It is
interesting that the upward and downward range are roughly symmetric
from the closeness of summary statistics and the seemingly reflective nature
of Fig. 1. Another interesting observation (see Figs. 2–4) is that excluding
the outlier of the 1987 crash, the two measures have very similar uncon-
ditional distributions. Careful inspection of the Figures and Tables however,
reveals important differences in these two measures of market movements in
the two opposite directions. For example, although both one-sided ranges
(henceforth OSRs) have clustering behaviors but their extremely large val-
ues occur at different times and with different magnitudes. Further, as
Table 1 and Fig. 5 show, the magnitudes of the autocorrelation at some lags
for the UPR seem to be substantially different from that of the DWNR
indicating different level of persistence. This can be viewed as a primitive
indicator of the difference in the dynamic structure of the two processes. The
true comparison of the dynamic structures of the two range processes will be
made in the next section.



Table 1. Summary Statistics of the Daily Range, Upward Range, and Downward Range of S&P 500 Index,
1/2/1962–8/25/2000.

Nobs Mean Median Max Min Std Dev r1 r2 r12 Q(12)

Full Sample

RANGE 1/2/62-8/25/00 9700 1.464 1.407 22.904 0.145 0.76 0.629 0.575 0.443 30874

UPR 1/2/62-8/25/00 9700 0.737 0.636 9.053 0 0.621 0.308 0.147 0.172 3631

DWNR 1/2/62-8/25/00 9700 �0.727 �0.598 0 �22.9 0.681 0.326 0.181 0.162 4320

Before structural shift

RANGE 1/2/62-4/20/82 5061 1.753 1.643 9.326 0.53 0.565 0.723 0.654 0.554 21802

UPR 1/2/62-4/20/82 5061 0.889 0.798 8.631 0 0.581 0.335 0.087 0.106 1199

DWNR 1/2/62-4/20/82 5061 �0.864 �0.748 0 �6.514 0.559 0.378 0.136 0.163 2427

After structural shift

RANGE 4/21/82-8/25/00 4639 1.15 0.962 22.904 0.146 0.818 0.476 0.414 0.229 11847

UPR 4/21/82-8/25/00 4639 0.572 0.404 9.053 0 0.622 0.189 0.089 0.125 651

DWNR 4/21/82-8/25/00 4639 �0.578 �0.388 0 �22.9 0.767 0.247 0.147 0.101 994

Note: Summary statistics for the three variables, RANGE, UPR and DWNR, defined to be the differences between the max and min, the max

and open, and the min and open of the daily index prices in logarithm are described. The structural shift refers to the day April 20, 1982, at

which the Standard and Poor Inc. changed the ways of constructing the daily max and daily min prices. r1; r2 and r12 are autocorrelation

coefficients for lags 1, 2, and 12 respectively, and Q(12) is the Ljung–Box statistics of lag 12.
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Fig. 1. Daily UPR and Daily DWNR, S&P 500, 1962/1–2000/8.
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3.2. Estimating Results

We use QMLE to estimate the ACARR and ACARRX models with dif-
ferent dynamic specifications and exogenous variables. The exogenous var-
iables considered are lagged return, rt�1, for the leverage effect, a Tuesday
(TUE) and a Wednesday dummy (WED), for the weekly seasonal pattern, a
structural shift dummy (SD, 0 before 1982/4/20 and 1 otherwise) for cap-
turing the shift in the data compiling method. We also include the lagged
opposite range variable, i.e., DWNR in the UPR model and UPR in the
DWNR model. This is for the consideration of the volatility clustering
effect. Tables 2 and 3 give respectively, the model estimating results for UPR
and for DWNR.

It is interesting that for both OSRs, a ACARR(2,1) clearly dominates the
simpler alternative of ACARR(1,1) model, which is in contrast of the result
in Chou (2005) using CARR to estimate the range variable.10 This is shown
clearly by the difference in the values of the log-likelihood function (LLF)
reported for the two models, ACARR(1,1) vs. ACARR(2,1). The
ACARR(2,1) model is consistent with the specification of the Component
GARCH model of Engle and Kim (1999), in which the volatility dynamics is
decomposed into two parts, a permanent component and a temporary
component.



Table 2. QMLE Estimation of ACARR Using Daily Upward Range of S&P 500 Index 1/2/1962–8/25/2000.

ACARR(1,1) ACARR(2,1) ACARRX(2,1)-a ACARR(2,1)-b ACARR(2,1)-c

LLF �12035.20 �12011.86 �11955.78 �11949.64 �11950.32

Constant 0.002[3.216] 0.001[3.145] �0.002[�0.610] �0.003[�0.551] �0.004[�0.973]

UPR(t�l) 0.03[8.873] 0.145[10.837] 0.203[14.030] 0.179[11.856] 0.186[12.845]

UPR(t�2) �0.126[�9.198] �0.117[�9.448] �0.112[�8.879] �0.115[�9.245]

l(t�1) 0.968[267.993] 0.978[341.923] 0.903[69.643] 0.871[48.426] 0.877[52.942]

r(t�l) �0.057[�8.431] �0.018[�1.959] �0.023[�2.734]

TUE 0.058[3.423] 0.059[3.475] 0.059[3.481]

WED 0.02[1.271]

SD 0.0000[0.201] �0.003[�1.647]

DWNR(�l) 0.046[4.868] 0.042[4.803]

Q(12) 184.4[0.000] 22.346[0.034] 22.304[0.034] 20.282[0.062] 20.503[0.053]

UPRt ¼ lt�t

lu
t ¼ ou þ

Pp

i¼1

au
i UPRt�i þ

Pq

j¼1

bu
j l

u
t�j þ

PL
l¼1

glX
l
t�1

�t � iid f �ð Þ

Note: Estimation is carried out using the QMLE method hence it is equivalent to estimating an exponencial ACARR(X) (p,q) or and

EACARR(X) (p,q) model. Numbers in parentheses are t-ratios (p-values) with robust standard errors for the model coefficients (Q statistics).

LLF is the log-likelihood function.
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Table 3. QMLE Estimation of ACARR Using Daily Downward Range of S&P500 Index 1/2/1962–8/25/
2000.

ACARR(1,1) ACARR(2,1) ACARRX(2,1)-a ACARRX(2,1)-b ACARRX(2,1)-c

LLF �11929.39 �11889.61 �11873.54 �11868.55 �11870.14

Constant 0.014[5.905] 0.004[4.088] 0.017[4.373] 0.017 [3.235] 0.017[4.417]

DWNR(t-l) 0.084[l1.834] 0.229[16.277] 0.252[16.123] 0.233[14.770] 0.239[16.364]

DWNR(t-2) �0.195[�13.489] �0.189[�12.811] �0.185[�12.594] �0.186[�12.897]

l(t�1) 0.897[101.02] 0.961[199.02] 0.927[87.639] 0.906[61.212] 0.911[63.893]

r(t�1) 0.023[4.721] �0.009[�1.187]

TUE �0.008[0.503]

WED �0.051[�3.582] �0.053[�3.617] �0.052[�3.587]

SD �0.002[�2.124] 0.001[0.904]

UPR(�1) 0.037[4.164] 0.028[5.084]

Q(12) 192.8[0.000] 18.94[0.009] 22.227[0.035] 14.422[0.275] 14.774[0.254]

DWNRt ¼ lt�t

ld
t ¼ od þ

Pp

i¼1

ad
i DWNRt�i þ

Pq

j¼1

bd
j l

d
t�j þ

PL
l¼1

glX
l
t�1

�t � iid f �ð Þ

Note: Estimation is carried out using the QMLE method hence it is equivalent to estimating an Exponential ACARR(X)(p,q) or and

EACARR(X)(p,q) model. Numbers in parentheses are t-ratios(p-values) with robust standard errors for the model coefficients (Q statistics).

LLF is the log-likelihood function.
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Another conjecture for the inadequacy of the (1,1) dynamic specification
is related to the volatility clustering effect. It is known that volatility clusters
over time and in the original words of Mandelbrot (1963), ‘‘large changes
tend to be followed by large changes and small by small, of either signy’’.
Given that range can be used as a measure of volatility, both UPR and
DWNR can be viewed as ‘‘signed’’ measure of volatility. It is hence not
surprising that a simple dynamic structure offered by the ACARR(1,1)
model is not sufficient to capture the clustering effect. This conjecture is
supported by the result of the model specification of ACARRX(2,1)-b where
the opposite OSR are included and the coefficients significantly different
from zero.

The dynamic structures for the UPR and DWNR variable are different as
is revealed in comparing the values of the coefficients. The coefficient of b1,
measuring the long-term persistence effect, is (0.927, 0.906, 0.911) respec-
tively, for the three different ACARRX specifications for DWNR in
Table 3. They are all higher than their corresponding elements (0.903, 0.871,
0.877) in the ACARRX models for UPR in Table 2. This suggests that
volatility shocks in the downside are more long-lived than in the upside.
Further the impact coefficient a1 is equal to (0.252, 0.233, 0.239) in the
DWNR models and is (0.203, 0.179, 0.186) in the UPR models. Volatility
shock effects in the short-run are also higher for the downside shocks than
for the upward surges. Both of these findings are new in the literature of
financial volatility models as all existing literatures do not distinguish the
shock asymmetry in this fashion.

Another interesting comparison between the two OSR models is on the
leverage effect. This coefficient is statistically negative (positive) for the
ACARRX(2,1)-a specifications for the UPR (DWNR). It is however, less
significant or insignificant in models ACARRX(2,1)-b and ACARRX(2,1)-c,
when the lagged opposite OSR is included. My conjecture is that the opposite
sided ranges are correlated with the returns and hence multicollinearity re-
duces some explanatory power of the leverage effect. It remains, however, to
be explained why such a phenomenon is more severe for the DWNR model
than the UPR models. We leave this issue for future studies.

A different weekly seasonality also emerges from the comparison of the
estimation result of the two OSRs. For reasons unknown to me, a positive
Tuesday effect is found for the upward range while a negative Wednesday
effect is present for the downward range. The dummy variable SD, meas-
uring the effect of the structuring change in the data compiling method, are
not significant for UPR models but are negatively significant for one of the
DWNR models. It is not clear why there should be such difference in the
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results. Again leave these as empirical puzzles to be explored in future
studies.

Model specification tests are carried out in two ways, the Ljung–Box-Q
statistics and the Q–Q plots. The Ljung–Box Q statistics measure the overall
significance of the autocorrelations in the residuals for the fitted models.11

The evidence shown in the two tables are consistent that a pure ACARR
model is not sufficient and exogenous variables are necessary to warrant the
model to pass the model misspecification tests. Using a 5% significance level
for the test, the model is satisfactory once the lagged returns, the weekly
dummies and the opposite-sided range are included in the specifications.

Figs. 6 and 7 provide the expected and observed daily UPR and DWNR
respectively. It is interesting to note that the ACARR model gives smoother
yet very adaptive estimates of the two one-sided ranges. Figs. 8–11 are
histograms and Q–Q plots of the estimated residuals in the two models. It
seems to indicate that the exponential distribution is more satisfactory for
the UPR than for the DWNR as the degree of fitness of fit can be measured
by the deviations of the Q–Q plot from the 45 degree lines. This fact further
indicates the difference in the characteristics of the two variables in addition
to the results reported above. Whether a different error distribution will be
more useful warrants more investigation. For example in Chou (2005) I
found that a more general error distribution such as Weibull might improve
the goodness of fit substantially in the CARR model.

The message from this section is clear: the market dynamics for the up-
ward swing and the downward plunge are different. They are different in
their dynamics of the volatility shocks, i.e., the short-term impact and long-
term persistence. They are also different in the forces that have effects on
them, the leverage effect, the weekly seasonal effect and the volatility clus-
tering effect. Finally, even the error structures of the two variables are
different.
3.3. Comparing ACARR and CARR in Forecasting Volatility

Although the above results shows important differences in the models for
the upward and the downward range, we further ask a question on the value
of the modeling of asymmetries. How much difference does this modeling
consideration make to improve the power of the model in forecasting vol-
atilities? In Chou (2005) we proposed the CARR model, where the upward
and downward movements of the stock price are treated symmetrically. We
showed that the CARR model provides a much sharper tool in forecasting
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volatility than the GARCH model. In this section, we further compare the
forecasting power for volatilities of the CARR model, which ignores the
asymmetry, and the ACARR model which give explicit considerations to
the asymmetric structures. Given our finding of the importance of modeling
asymmetry in the above section, we would expect the ACARR model to
provide more accurate volatility forecast comparing with the CARR model.

Since volatility is an unobservable variable, we employ three proxies as
measures of volatility (henceforth MVs). They are the daily high/low range
(RNG) as defined in (2.2), the daily return squared (RETSQ) as is com-
monly used in the literature of volatility forecast comparisons and the ab-
solute value of the daily returns (ARET) which is more robust to outliers
than the second measure. We then use the following regressions to gauge the
forecasting powers of the CARR and the ACARR models.

MVt ¼ a þ b FVtðCARRÞ þ ut (3.1)

MVt ¼ a þ b FVtðACARRÞ þ ut (3.2)

MVt ¼ a þ b FVtðCARRÞ þ c FVðACARRÞ þ ut (3.3)

FVt(CARR) is the forecasted volatility using the CARR model in (2.5).
FVt(ACARR) is computed as the sum of the forecasted UPR and forecasted
DWNR as is shown in (2.4). Proper transformations are made to adjust the
difference between a variance estimator and a standard deviation estimator.
Table 4 gives the estimation result.

The results are consistent for the three measures of volatility. In all cases,
the forecasted volatility using ACARR dominates the forecasted volatility
using CARR. In the three measures, the corresponding t-ratios for the two
models are (21.83, 0.46) using RNG, (7.61, �2,32) using RETSQ and (8.09,
�1.91) using ARET. Once the forecasted volatility using ACARR is in-
cluded, CARR provides no additional explanatory power. Another inter-
esting observation is that the results using range as the measured volatility
look particularly favorable for the ACARR model and the absolute results
are a bit weaker. In other words, the adjusted R2 of the regression using
these two measures are much smaller than that using RNG. This result is
consistent with the observation in Chou (2005) that both RETSQ and
ARET are based on close-to-close return data and are much more noisier
than RNG which is based on the extreme values of the price.



Table 4. ACARR versus CARR.

Measured Volatility Explanatory Variables Adj. R2 S.E.

Constant FV(CARR) FV(ACARR)

RNG �0.067[�0.366] 1.005[96.29] 0.489 0.543

RNG �0.006[�4.148] 1.047[101.02] 0.513 0.531

RNG �0.067[0.632] 0.021[0.46] 1.026[21.83] 0.513 0.531

RETSQ �1.203[�1.35] 0.397[14.25] 0.02 5.725

RETSQ �0.265[�2.94] 0.459[16.02] 0.026 5.709

RETSQ �0.249[�2.76] �0.191[�2.32] 0.644[7.61] 0.026 5.708

ARET 1.142[7.41] 0.334[27.07] 0.07 0.642

ARET 0.113[5.85] 0.354[28.28] 0.076 0.639

ARET 0.115[5.95] �0.106[�1.91] 0.458[8.09] 0.076 0.639

Note: In-sample Volatility Forecast Comparison Using Three Measured Volatilities as Bench-

marks. The three measures of volatility are RNG, RETSQ and ARET: respectively, daily

ranges, squared-daily-returns, and absoulte daily return. ACARR(1,1) model is fitted for the

range series and a ACARR models are fitted for the upward range and the downward range

series. FV(CARR) (FV(ACARR)) is the forecasted volatility using CARR (ACARR).

FV(ACARR) is the forecasted range using the sum of the forcasted upward range and down-

ward range. Proper transformations are made for adjusting the difference between a variance

estimator and a standard-deviation estimator. Numbers in parentheses are t-ratios.

MVt ¼ a þ b FVtðCARRÞ þ ut

MVt ¼ a þ c FVtðACARRÞ þ ut

MVt ¼ a þ b FVtðCARRÞ þ c FVtðACARRÞ þ ut
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4. CONCLUSION

The ACARR model provides a simple, yet efficient and natural framework
to analyze the asymmetry of the price movement in financial markets. Ap-
plications can be used in computing the option prices where the upward
(downward) range (or the maximum (minimum) return) is more relevant for
computing the price of a call (put) option. Value-at-Risk is another impor-
tant area for applications using the downward range dynamic model. The
ACARR model is related to studies like the duration between a threshold
high or low price level. Further more, the ACARR model can be used to
forecast volatilities comparing with the symmetric model, CARR GARCH,
and SV models, or other asymmetric volatility models like EGARCH, GJR-
GARCH models. Further Monte Carlo analysis will be useful as well as
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applications to other financial markets such as foreign exchanges, bonds,
and commodities. Applications of the ACARR model to other frequency of
range interval, say every 30min, every hour, or every quarter, and other
frequencies, will provide further understanding of the usefulness/limitation
of the model. Other generalization of the ACARR model will be worthy
subjects of future research, for example, the generalization of the univariate
to a multivariate framework, models simultaneously treat the price return
and the range data, long memory ACARR models.12

The ACARR model in this paper can be seen as an example of an emerging
literature: applications of extreme value theory in finance. Embrecht, Kluppelb-
erg, and Mikosch (1999) and Smith (1999), among others, are strong advocates
of such an approach in studying many important issues in financial economics.
Noticeable examples are Embrechts, McNeil, and Straumann (2002) for cor-
relation of market extreme movements, McNeil and Frey (2000) for volatility
forecasts, and Tsay (2000) for modeling crashes. In fact, all the static range
literature (Parkinson, 1980) and the long-term dependence literature using re-
scaled range (Mandelbrot, 1972; Lo, 1991) can be viewed as earlier examples of
this more general broader approach to the study of empirical finance.
NOTES

1. A general data generating process for Pt can be written as

dPt ¼ mt þ stdW t

dst ¼ yt þ kdVt

where Wt and Vt are two independent standard Wiener processes, or Brownian
motions.
2. See Lo (1991) for a similar case and a proof.
3. It is not clear to me yet how the daily highs/lows of asset prices are compiled

reported on the public or private data sources such as the Wall Street Journal,
Financial Times, and in CRSP. They may be computed from a very high, fixed
frequency. Alternatively, they may be computed directly from the transaction data, a
sampling frequency with non-fixed intervals.
4. Although in this paper we follow the approach of Engle and Russell (1998) in

relying on the QMLE for estimation, it is important to recognize the fact that the
limiting distribution of CARR is known while it is not the case for ACD. This issue is
dealt within the later section.
5. It is of course a worthy topic for future research as to how much of efficiency

gain can be obtained by utilizing the FIML with the limiting distribution to estimate
the parameters. Alternatively, one can estimate the density function using non-
parametric methods.
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6. See Engle and Russell (1998) for a proof.
7. It is noteworthy that the closure property holds only for the weak-GARCH

processes. Namely, in general, the GARCH process is not closed under aggregation.
See Drost and Nijman (1993) for the discussion of the closure property of GARCH
process.
8. The exact date is unknown since this change in compiling process was not

documented by the company. However, from a detailed look at the data, the most
likely date is April 20, 1982.
9. Mathematically, these two compiling methods are respectively, index of the

highs (lows) and highs (lows) of the index. The Jensen inequality tells us that these
two operations are not interchangeable.
10. For the range variable, it is consistently found that a CARR(1,1) model is

sufficient to capture the dynamics for daily and weekly and for different sub-sample
periods.
11. In the GARCH literature a Q-statistics for the squared normalized residuals is

usually included as well to account for the remaining ARCH effect in the residual.
Here we do not include such a statistics because range is by itself a measure of
volatility and this statistics will be measuring the persistence of the volatility of
volatility. For formal tests of the distribution, some tests can be incorporated to
complement the Q–Q plots.
12. In the daily ACARR models, as is suggested by the Portmanteau statistics, the

memory in range (hence in the volatility) seems to be longer than can be accounted
for using the simple ACARR(1,1) or ACARR(2,1) models with short memories.
However, such a phenomenon disappears in the weekly model. Given our empirical
results, it is questionable whether such an attempt is useful in practice.
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