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Extracting trajectory equations of classical periodic orbits from the quantum eigenmodes in
two-dimensional integrable billiards
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The trajectory equations for classical periodic orbits in the equilateral-triangular and circular billiards are
systematically extracted from quantum stationary coherent states. The relationship between the phase factors of
quantum stationary coherent states and the initial positions of classical periodic orbits is analytically derived.
In addition, the stationary coherent states with noncoprime parametric numbers are shown to correspond to the
multiple periodic orbits, which cannot be explicable in the one-particle picture. The stationary coherent states are
further verified to be linked to the resonant modes that are generally observed in the experimental wave system
excited by a localized and unidirectional source. The excellent agreement between the resonant modes and the
stationary coherent states not only manifests the importance of classical features in experimental systems but also
paves the way to manipulate the mesoscopic wave functions localized on the periodic orbits for applications.
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I. INTRODUCTION

Since Schrödinger first constructed the coherent state for
the one-dimensional harmonic oscillator to mimic the classical
dynamics [1,2], the coherent superposition has been identified
to play an important role in the quantum-classical connection.
Extending Schrödinger’s method to the two-dimensional (2D)
harmonic oscillator, the stationary coherent states superposed
by a group of degenerate eigenstates have been derived to
demonstrate that their wave patterns can be exactly localized
on the classical periodic orbits (POs), i.e., Lissajous figures [3].
In addition to harmonic oscillators, the 2D billiard systems
widely serve as the paradigm for exploring the quantum-
classical correspondence, since they can be simply employed
to analyze a variety of dynamical features by changing
geometric shapes [4–12]. So far, most investigations on billiard
systems have mainly focused on nonintegrable and irregular
shapes [12–21]. One of the intriguing findings in nonintegrable
billiards is the emergence of eigenstates localized on the
unstable POs. Even so, the number of eigenstates related to
unstable POs is rather few. The eigenstates in nonintegrable
billiards for the most part are extensively distributed in the
coordinate spaces [14,21] and usually display a common
feature of quasi-linear-ridge structures [21,22].

In contrast to nonintegrable billiards, stable POs are
generally abundant in integrable billiards with symmetric
shapes [4,17,23–38]. The quantum wave functions related to
the stable POs have been verified to play a critical role in
numerous striking physics including conductance fluctuations
[39], ballistic transport [40,41], and directional emissions
[42–57]. It has been confirmed that quantum coherent states
constructed by the coherent superposition of nearly degenerate
eigenstates can manifest the wave functions to be associated
with the classical POs in integrable billiards [5,6]. Quantum
wave functions related to classical POs with different initial
positions can be utterly obtained by changing the phase factor
and the central order in the constructed stationary coherent
states. Nevertheless, trajectory equations for classical POs
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have not been completely extracted from quantum stationary
coherent states until now. A thorough extraction for trajectory
equations from quantum coherent states is pedagogically
important in understanding the quantum-classical connection.

In this work, a theoretical approach for constructing
quantum stationary coherent states to manifest classical POs
is systematically reviewed in integrable billiards, including
the equilateral-triangular and circular shapes. In terms of the
central order (m0,n0) and the phase factor φ0, the wave repre-
sentation of stationary coherent states is employed to extract
trajectory equations analytically for the classical POs. The
extracted trajectory equations clearly reveal the relationship
between the parameters (m0,n0,φ0) of the stationary coherent
states and the initial position (x0,y0) of the classical POs
described by the indices (p,q). Furthermore, we analyze the
stationary coherent states for the noncoprime indices (p,q)
and show the wave patterns to be localized on the multiple
POs. The feature of quantum wave patterns related to multiple
POs has no correspondence in the one-particle picture. Finally,
we verify that the stationary coherent states can be linked to
the resonant modes generally observed in the experimental
wave system excited by a localized and unidirectional source
[58,59]. The good agreement between the stationary coherent
states and the experimental resonant modes sheds light on
using the present model to manipulate the generation of
quantum wave functions related to classical POs for feasible
applications.

II. EXTRACTING TRAJECTORY EQUATIONS FOR
EQUILATERAL TRIANGULAR BILLIARDS

We first consider equilateral-triangular billiards to demon-
strate the approach for extracting the trajectory equations
for classical POs from quantum stationary coherent states.
For an equilateral-triangular billiards with three vertices at
(0,0), (a/2,

√
3a/2), and (−a/2,

√
3a/2), the eigenvalues and

eigenfunctions are given by [60]

Em,n = (m2 + n2 − mn)ε0 (1)
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FIG. 1. Wave patterns of (a) |�(e)
m,n(x,y)|, (b)|�(o)

m,n(x,y)|, and (c) |�(+)
m,n(x,y)| for several sets of quantum numbers (m,n).

and
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, (2)

where ε0 = 9h̄2π2/8μa2 is the unit energy of the equilateral-
triangular billiards, h̄ is the reduced Planck’s constant, and μ

is the mass of particle. Here the quantum numbers m and n are
non-negative integers and the superscripts (o) and (e) denote
the two types of degenerate modes with odd and even sym-
metries, respectively. The form of �(e)

m,n(x,y) and �(o)
m,n(x,y)

in Eq. (2) is the standing-wave representation. It is necessary
to use the traveling-wave representation for constructing the
stationary coherent states related to the classical POs. In terms
of �(e)

m,n(x,y) and �(o)
m,n(x,y), the traveling-wave representation

is given by �(±)
m,n(x,y) = �(e)

m,n(x,y) ± i�(o)
m,n(x,y) , where the

superscripts (+) and (−) denote the forward and backward
traveling states, respectively. Figures 1(a)–1(c) show the in-
tensity wave patterns of �(e)

m,n(x,y), �(o)
m,n(x,y), and �(+)

m,n(x,y)
with different sets of quantum numbers (m,n), respectively.
Since the wave patterns for |�(+)

m,n(x,y)| and |�(−)
m,n(x,y)| are

similar in spatial morphologies, only the case of |�(+)
m,n(x,y)|

is shown in Fig. 1(c). The intensity patterns for all cases can
be seen to be symmetric with respect to the y axis due to the
setting of the equilateral triangle.

The quantum stationary coherent states related to the
classical POs are formed by the superposition of the nearly
degenerate eigenstates [5,6,9]. The nearly degenerate condi-
tion for the integrable billiards with the central order (m0,n0)
can be derived from the tangent of the constant-energy contour

with the slope given by

− dn

dm

∣∣∣∣
m0,n0

= ∂E/∂m|m0,n0

∂E/∂n|m0,n0

= 2m0 − n0

2n0 − m0
, (3)

as shown in Fig. 2 for the spectrum of eigenvalues. Each gray
point in the spectrum of Fig. 2 represents an eigenstate denoted
by (m,n) and the solid black line marks the constant-energy
contour with the central order (m0,n0). If the slope in Eq. (3)
is given by a rational number q/p, the central eigenstate for
the coherent superposition can be written as m0 = (2q + p)N
and n0 = (2p + q)N with a single parameter N to determine
the mode order. The rational slope q/p is used to make a
connection with classical POs for convenience. In terms of the
indices (p,q), the coherent superposition of 2M + 1 nearly de-
generate eigenstates around the central mode of (m0,n0) can be

const

FIG. 2. Spectrum of eigenvalues in the equilateral triangular
billiards. Each gray point represents an eigenstate denoted by (m,n)
and the solid black line marks the constant-energy contour with
central order to be (m0,n0).
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FIG. 3. Wave patterns of |� (+)
N,M | calculated by Eq. (4) with

N = 30,M = 5, and different sets of (p,q,φ0): (a) (1,0,π/2), (b)
(1,1,π/3), (c) (1,1,π/2), and (d) (2,1,π/3).

given by

�
(±)
N,M (x,y; p,q,φ0)

= 1√
2M + 1

M∑
K=−M

eiKφ0�
(±)
m0+pK,n0−qK (x,y), (4)

where φ0 is the phase factor in the range −π � φ0 � π . As
discussed later, the phase factor φ0 is related to the initial

position of the classical PO. From Eq. (1) it can be found that
the eigenenergies of the superposed eigenstates are nearly a
constant energy of ESC = Em0,n0 + 3pqNMε0 under the con-
ditions m0 � pM and n0 � qM . Since �

(+)
N,M and �

(−)
N,M form

a conjugate pair with identical spatial patterns, only the travel-
ing state �

(+)
N,M is presented in the following. Figures 3(a)–3(d)

show the wave patterns of |�(+)
N,M |2 calculated by Eq. (4)

with N = 30,M = 5, and different sets of (p,q,φ0). Here the
indices (p,q) are coprime. The result for the noncoprime (p,q)
will be discussed later in this section. The wave patterns of sta-
tionary coherent states given by Eq. (4) can be seen to be well
localized on the classical POs. The velocity direction of the tra-
jectory can be straightforwardly determined by the slope q/p.

Since the stationary coherent states can perfectly manifest
the morphologies of classical POs, they can be employed
to extract the trajectory equations for POs by means of
determining the central maximum of the wave intensity. Using
Euler’s formula exp(iθ ) = cos θ + i sin θ to express the sine
and cosine functions in Eq. (2), after some algebra, the
stationary coherent states can be further simplified as

�
(+)
N,M (x,y; p,q,φ0) =

{
exp

[
−i

(
2(m0 + n0)π

3a
x ∓ 2π (m0 − n0)√

3a
y

)]
DM

(
2π

3a
[(p − q)x ∓

√
3(p + q)y + φ0]

)

± exp

[
−i

(
2(2m0 + n0)π

3a
x ∓ 2πn0√

3a
y

)]
DM

(
2π

3a
[(2p + q)x ∓

√
3qy + φ0]

)

∓exp

[
−i

(
2(2n0 + m0)π

3a
x ∓ 2πm0√

3a
y

)]
DM

(
2π

3a
[(p + 2q)x ∓

√
3py + φ0]

)}
, (5)

where DM (θ ) = (2i
√

2M + 1)−1 ∑M
K=−M eiKθ is the Dirich-

let kernel that has the maxima at θ = 2nπ for any integer
n. Using the maximal feature of the Dirichlet kernel, the
parametric equations for the central maxima of |�(+)

N,M | can
be deduced as

Asx + Bsy + φ0 = 2nπ, (6)

where −As/Bs = ηs are the slopes for line equations with
s = 1,2, . . . ,6. The family of Eq. (6) is exactly related to the
trajectory equations for the classical POs. From Eq. (5) the
slopes for all trajectories can be found to be η1 = −η2 =
(p − q)/

√
3(p + q), η3 = −η4 = (p + 2q)/

√
3p, and η5 =

−η6 = (2p + q)/
√

3q. Equation (6) clearly indicates that the
classical POs of the equilateral-triangular billiards are consti-
tuted by six independent line equations with different slopes.
The initial position (x0,y0) and the velocity (vx,vy) in classical
dynamics are linked to Eq. (6) by the identities Asx0 + Bsy0 =
2nπ − φ0 and vy/vx = (dy/dt)/(dx/dt)|x0,y0 = ηs . In other
words, the phase factor φ0 of the stationary coherent state
is directly related to the initial position (x0,y0). On the other
hand, the velocity (vx,vy) in classical dynamics depends only
on the parameters p and q. Figure 4 shows the correspondence
between the classical POs by the trajectory equations with
(x0,y0) = (0.05a,0.52a) and their quantum counterparts of
stationary coherent states calculated under different parame-
ters of (s,p,q). The black points mark the initial positions and

the black arrows denote the velocities of the classical particle.
The good agreement between the classical trajectory patterns
and the quantum wave patterns confirms that the trajectory
equations for the classical POs can be perfectly extracted from
the quantum stationary coherent states.

Before concluding this section, we turn to the case
of noncoprime (p,q). The greatest common divisor for
noncoprime (p,q) is denoted by l. By using the iden-
tity (l)−1 ∑l−1

s=0 ei2πus/l = δu,lM for any integer u and M =
0,±1,±2, . . ., the stationary coherent state in Eq. (4) can be

FIG. 4. Correspondence between the classical POs by the tra-
jectory equations with (x0,y0) = (0.05a,0.52a) and their quantum
counterparts of stationary coherent states calculated with different
parameters of (s,p,q).
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FIG. 5. Wave patterns of the stationary coherent states given by
Eq. (7) with the parameters N = 30, M = 5, (p/l,q/ l) = (1,0), φ0 =
0.5π , and (a) l = 2, (b) l = 3, (c) l = 4, and (d) l = 5.

rewritten in a form with double summation

�
(±)
N,M (x,y; p,q,φ0)

= 1

l
√

2M + 1

l−1∑
s=0

lM∑
u=−lM

eiuφl,s �
(±)
m0+(pu/l),n0−(qu/l)(x,y),

(7)

where φl,s = (φ0 + 2πs)/l. Note that the running index K in
Eq. (4) has been changed as s and u. Equation (7) indicates
that the stationary coherent state for the noncoprime (p,q)
can be expressed as the sum of l stationary coherent states
with coprime indices (p/l,q/ l) and the phase factors φl,s .
Figures 5(a)–5(d) present the wave patterns of the stationary
coherent states in Eq. (7) with the parameters N = 30, M = 5,
(p/l,q/ l) = (1,0), φ0 = 0.5π , and l = 2,3,4,5, respectively.
It can be clearly seen that the wave patterns of stationary
coherent states are simultaneously localized on l classical
POs with the initial positions determined by the phase factors
φl,s . It is worth noting that there is no correspondence in the
one-particle picture for the quantum wave patterns localized
on the multiple POs.

III. EXTRACTING TRAJECTORY EQUATIONS FOR
CIRCULAR BILLIARDS

The circular billiards is analyzed to further confirm the
present approach of extracting the trajectory equations for
classical POs from quantum stationary coherent states. The
eigenvalues and the eigenfunctions in polar coordinates for a
circular billiards with a radius R are given by

Em,n = h̄2

2μ
k2
m,n (8)

and

�m,n(r,θ ) = 1√
πRJm−1(km,nR)

Jm(km,nr)eimθ , (9)

where km,n = αm,n/R and αm,n is the nth zero of the first kind
of Bessel function Jm(z) with order m. Figure 6(a) depicts the
wave patterns of �m,n(r,θ ) with different quantum numbers
(m,n). It is clear that the indices n and m are related to the nodal
structures in the radial and azimuthal directions, respectively.
To determine the nearly degenerate condition for the circular
billiards, the Wentzel-Kramers-Brillouin (WKB) method is
employed to derive the analytical form for the eigenvalues

FIG. 6. (a) Wave patterns of |�m,n(r,θ )| with different quantum
numbers (m,n). (b) Schematic diagram of the classical PO defined as
(p,q) = (1,3) in circular billiards.

km,n as√
k2
m,n

(
R2 − R2

0

) − mcos−1

(
R0

R

)
=

(
n + 3

4

)
π, (10)

where R0 = R cos(pπ/q) is the shortest distance to the
circular center for the periodic orbits (p,q), as shown in
Fig. 6(b). Here q is the number of turning points at the
boundary during one period and p is the number of windings
during one period. From the correspondence of the orbital
angular momentum, another quantum-classical connection
can be obtained as Lz = mh̄ = R0h̄km,n. Substituting the
relation m = R0km,n into Eq. (10), the WKB quantization can
be simplified as km,nR sin(pπ/q) = [m(p/q) + n + (3/4)]π .
Under the condition m0 � |qK|, it can be found that the
group of eigenstates �m0+qK,n0−pK with K ∈ Z constitutes
a family of nearly degenerate states and their eigenvalues form
an energy shell in the neighborhood of the central state �m0,n0 .
In terms of the nearly degenerate eigenstates �m0+qK,n0−pK

and the phase factor φ0, the stationary coherent states for the
circular billiards can be given by

�m0,M (r,θ ; p,q,φ0)

= 1√
2M + 1

M∑
K=−M

eiKqφ0�m0+qK,n0−pK (r,θ ). (11)

Figures 7(a)–7(d) show the wave patterns |�m0,M | calcu-
lated with m0 = 300,M = 2, and different sets of parameters
(p,q,φ0). All the wave patterns can be seen to be well localized
on the classical POs of the circular billiards. Furthermore, the
wave patterns near the periphery of the billiards can be found

FIG. 7. Wave patterns |�m0,M (r,θ ; p,q,φ0)| calculated with m0 =
300,M = 2, and different sets of parameters (p,q,φ0): (a) (1,3,0), (b)
(1,4,0), (c) (1,5,0), and (d) (2,5,π /2).
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to exhibit the ripple morphologies that are the characteristics
arising from the interference of Bessel functions.

To extract the trajectory equations from the central maxima
of the stationary coherent states, it is necessary to use the
asymptotic form and the boundary condition for the Bessel
function. By using the boundary condition Jm(km,nR) = 0 and
the asymptotic form Jm(z) ≈ √

2/πz cos[z − (2m + 1)π/4]

for z → ∞, the coefficient related to the normalization
constant can be given by Jm−1(km,nR) ≈ √

2/πkm,nR for
high-order modes. In terms of this coefficient, the high-order
eigenfunctions �m,n(r,θ ) can be expressed as �m,n(r,θ ) =
(
√

km,n/2R/2π )
∫ π

−π
eikm,nr sin(ϕ)eim(θ−ϕ)dϕ. Substituting this

expression into Eq. (11), the stationary coherent states can
be rewritten as

�m0,M (r,θ ; p,q,φ0) =
√

(2M + 1)km0,n0

8π2R

[∫ π

−π

eikm0 ,n0 r sin(α+θ+φ0)e−im0(α+φ0) DM (qα)dα

]
, (12)

where the Dirichlet kernel is given by DM (qα) = (2M + 1)−1 ∑M
K=−M e−iKqα and the integration variable has been changed to

α = ϕ − θ − φ0. Since DM (qα) is a periodic pulse function with period 2π/q, the integration of Eq. (12) on the circle angle can
be divided into q segments with the integration interval between −π/q and π/q. Consequently, Eq. (12) can be expressed as

�m0,M (r,θ ; p,q,φ0) = Cm0,n0

q−1∑
s=0

{∫ π/q

−π/q

exp

[
ikm0,n0r sin

(
α + θ + φ0 − 2πs

q

)]
exp

[
−im0

(
α + φ0 − 2πs

q

)]
DM (qα)dα

}
,

(13)

where Cm0,n0 =
√

(2M + 1)km0,n0/8π2R is the normalization constant. For (2M + 1)q � 1, DM (qα) displays a narrow peak
concentrated in a small region of − � α �  with  = π/q(2M + 1). As a result, the factor sin(α + θ + φ0 − 2πs/q) in
Eq. (13) can be expanded as α cos(φ0 + θ − 2πs/q) + sin(φ0 + θ − 2πs/q) under the small-angle approximation. To derive an
analytical form, we further approximate DM (qα) as a gate function whose values are unity in the interval [−,] and vanish
outside. By using these approximations and km0,n0 = m0/R0, the integration in Eq. (13) can be performed as

�m0,M (r,θ ; p,q,φ0) =
√

m0

2(2M + 1)RR0q2
e−im0φ0

×
(q−1∑

s=0

exp

{
im0

[
r

R0
sin

(
θ + φ0 − 2πs

q

)
+ 2πs

q

]}
sin c

{
m0

R0

π

q(2M + 1)
Fs(r,θ,q)

})
, (14)

where sin c(x) = sin(x)/x is the sinc function and

Fs(r,θ,q) = r cos

(
φ0 + θ − 2πs

q

)
− R0, (15)

with s = 0,1,...,q − 1. Since the maximum of the function
sin c(x) occurs at x = 0, the trajectory equations for the
classical POs determined by the central maxima of the
stationary coherent states in Eq. (14) can be deduced as
Fs(r,θ,q) = 0 with s = 0,1,...,q − 1. Similar to the analysis
for the equilateral-triangular billiards, the initial position
(x0,y0) and the velocity (vx,vy) of the classical particle
moving along the POs can be linked to the parameters
(p,q,φ0) by the expressions R0/

√
x2

0 + y2
0 = cos(φ0 + θ −

2πs/q) and |vyx0 − vxy0|/
√

v2
x + v2

y = R0. Figure 8 illustrates

the correspondence between the classical POs evaluated by
the trajectory equations with (x0,y0) = (0.44a,0.31a) and the
quantum counterparts of stationary coherent states calculated
by using the related parameters of (p,q). The black points mark
the initial positions and the black arrows denote the velocities
of the classical particle. The good agreement between classical
POs and quantum wave patterns once again confirms the
present method of extracting the trajectory equations from
the quantum stationary coherent states.

Similar to the analysis for the equilateral-triangular bil-
liards, the case of noncoprime (p,q) is also considered for the
circular billiards. Based on the same approach, the stationary

coherent states in Eq. (11) for the noncoprime (p,q) with
the greatest common divisor l can be rewritten as a double-
summation form

�m0,M (r,θ ; p,q,φ0)

= 1

l
√

2M + 1

l−1∑
s=0

lM∑
u=−lM

eiuφl,s �m0+(qu/l),n0−(pu/l)(r,θ ),

(16)

where φl,s = (qφ0 + 2πs)/l. The wave patterns of the station-
ary coherent states calculated by Eq. (16) with the parameters
m0 = 300,M = 2, φ0 = 0, and different sets of (p/l,q/ l)

FIG. 8. Correspondence between the classical POs evaluated
by the trajectory equations with (x0,y0) = (0.44a,0.31a) and their
quantum counterparts of stationary coherent states calculated under
different parameters of (p,q).
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FIG. 9. Wave patterns of the stationary coherent states calculated
by Eq. (16) with the parameters m0 = 300,M = 2, φ0 = 0 , and
different sets of (p/l,q/ l) with (a) and (c) l = 2 and (b) and
(d) l = 3.

with l = 2,3 are shown in Figs. 9(a)–9(d). It can be seen that
the overall features for the noncoprime (p,q) in the circular
billiards are the same as those obtained in the equilateral-
triangular billiards.

IV. CONNECTION BETWEEN STATIONARY COHERENT
STATES AND EXPERIMENTAL RESONANT MODES

It has been demonstrated that the trajectory equations for
classical POs in integrable billiards can be exactly extracted
from stationary coherent states. Next, we further verify that
the stationary coherent states can be linked to the resonant
modes that are generally observed in an experimental wave
system excited by a localized and unidirectional source
[58,59]. The connection between theoretical coherent states
and experimental resonant modes can provide insight into the
real mesoscopic systems.

For an experimental resonant system driven by an excitation
source with the spatial distribution S(x,y), the wave function

of the stationary response �̃(x,y; k̃) can be given by the
inhomogeneous Helmholtz equation [59]

(∇2 + k̃2)�̃(x,y; k̃) = S(x,y), (17)

where the complex wave number k̃ = k + iγ is composed of
the driving wave number k of the monochromatic source and
the damping factor γ corresponding to the system dissipation.
In terms of the eigenfunction expansion, the response wave
function and the excitation source distribution can be respec-
tively written as �̃(x,y; k̃) = ∑

n An(k̃)�n(x,y) and S(x,y) =∑
n fn�n(x,y), where �n(x,y) are the eigenfunctions of the

bound system. Substituting the results into Eq. (17), the
comparison between the coefficients can lead to An(k̃) =
fn/(k̃2 − k2

n), where kn is the wave-number eigenvalue of
the system. Note that here the equivalence of ∇2�n(x,y) =
−k2

n�n(x,y) has been used. Hence the response wave function
can be explicitly expressed as

�̃(x,y; k,γ ) =
∑

n

fn(
k2 − k2

n − γ 2
) + 2iγ k

�n(x,y), (18)

where the expansion coefficient fn can be calculated by the
overlapping integral as

fn =
∫∫

�∗
n(x,y) S(x,y)dxdy. (19)

Equation (18) reveals that the resonance generally occurs at
the driving wave number k to be fairly close to the eigenvalue
kn. The excitation sources in most resonant systems, including
quantum-dot billiards, microwave cavities, microcavity lasers,
and optical waveguides [58,59], are usually localized and
unidirectional. Therefore, it is practically useful to model the
source distribution S(x,y) as a Gaussian wave packet with a
specific momentum (px,py):

S(x,y) = 1

σ
√

π
exp

(
− (x − x0)2

σ 2

)
exp

(
− (y − y0)2

σ 2

)
exp

(
i
px

h̄
(x − x0)

)
exp

(
i
py

h̄
(y − y0)

)
, (20)

where (x0,y0) denotes the central position and σ is the width of the wave packet. It is worthwhile to mention that the Gaussian
wave packet has been widely used to study the time evolution of the wave function in quantum billiards [19,20]. The equilateral-
triangular billiards is considered to demonstrate the connection between the stationary coherent states and the experimental reso-
nant modes. Substituting Eqs. (2) and (20) into Eq. (19), after some algebra, the response wave function in Eq. (18) can be derived as

�̃(±)(x,y; k,γ ) =
∑
m,n

Am,n(k̃)�(±)
m,n(x,y) =

∑
m,n

fm,n(
k2 − k2

m,n − γ 2
) + 2iγ k

�(±)
m,n(x,y), (21)

where

fm,n = G(±)

(
x0,px,

4m − 2n

3

)
G(s)

(
y0,py,

2n√
3

)
− G(±)

(
x0,px,

4n − 2m

3

)
G(s)

(
y0,py,

2m√
3

)

+G(±)

(
x0,px,

−2m − 2n

3

)
G(s)

(
y0,py,

2m − 2n√
3

)
(22)

and

G(s)(ρ,P,λ) = π1/4√σ exp

{
−σ 2

4

[(
P 2

h̄

)
+

(
λπ

a

)2
]}

i sinh

[(
λπ

a

)(
σ 2P

2h̄
− iρ

)]
,

G(c)(ρ,P,λ) = π1/4√σ exp

{
−σ 2

4

[(
P 2

h̄

)
+

(
λπ

a

)2
]}

cosh

[(
λπ

a

)(
σ 2P

2h̄
− iρ

)]
, (23)
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FIG. 10. Wave patterns of |�̃ (±)(x,y; k,γ )| with different parameters: (a) (x0,y0) = (−0.43a,0.70a), N = 20, and (p,q) = (1,0); (b)
(x0,y0) = (−0.45a,0.95a), N = 15, and (p,q) = (1,1); and (c) (x0,y0) = (0,0.577a), N = 100, and (p,q) = (2,1). (a′)–(c′) Absolute values
of the weighting coefficient |Am,n| for each resonant mode corresponding to the cases in (a)–(c), respectively.

with G(±)(ρ,P,λ) = G(c)(ρ,P,λ) ± iG(s)(ρ,P,λ). To obtain
the response wave function with the intensity maxima localized
on the classical PO denoted by (p,q), the momenta of the
Gaussian wave packet are set as px = 2h̄π (n0 + m0)/3a and
py = 2h̄π (n0 − m0)/

√
3a, where m0 = (2q + p)N and n0 =

(2p + q)N , which can be comprehended from Sec. II. The
mass of the particle is assumed to be unity for convenience.
From Eq. (21) it can be clearly found that the resonant mode
at k = km0,n0 is mainly dominated by the superposition of
the nearly degenerate eigenstates around the central order
(m0,n0). To be more specific, the condition k = km0,n0 in the
denominator of the right-hand side of Eq. (21) effectively
leads the double summations to be a single summation that is
only contributed by the group of nearly degenerate eigenstates
�

(±)
m0+pK,n0−qK , which is the same as the form of the stationary

coherent state.
Figures 10 shows the wave patterns of |�̃(±)(x,y; k,γ )| for

three cases: (x0,y0) = (−0.43a,0.70a), N = 20, and (p,q) =

FIG. 11. Wave patterns of the lasing modes observed in a VCSEL
with equilateral-triangle transverse confinement.

(1,0) [Fig. 10(a)]; (x0,y0) = (−0.45a,0.95a) , N = 15, and
(p,q) = (1,1) [Fig. 10(b)]; and (x0,y0) = (0,0.577a), N =
100, and (p,q) = (2,1) [Fig. 10(c)]. The width of the Gaussian
wave packet and the damping factor are set equal to σ =
0.05a and γ = 0.2a−1, respectively. The absolute values of
the weighting coefficient |Am,n| for three resonant modes
are plotted in Figs. 10(a′)–10(c′) to reveal the dominated
eigenstates more clearly. It can be seen that the dominated
eigenstates in the resonant modes are well distributed on the
tangent of the constant energy contour with central order
(m0,n0). The nearly complete overlap leads the resonant modes
to be similar to the stationary coherent states with the intensity
maxima perfectly localized on the classical POs.

Finally, the wave patterns of the lasing modes observed
in a vertical-cavity surface-emitting laser (VCSEL) with
an equilateral-triangle transverse confinement are shown in
Figs. 11(a) and 11(b) to further confirm the validity of the
proposed theoretical treatments. The device structures and
the operation conditions of the equilateral-triangle VCSEL
are identical to the case in Ref. [52]. The perfect consistency
between the theoretical results in Figs. 10(a) and 10(b) and the
experimental wave patterns in Figs. 11(a) and 11(b) provides
the feasibility of using the proposed model to analyze the
trajectorylike wave functions for further applications such as
ballistic transports and directional emissions.

V. CONCLUSION

We have thoroughly demonstrated that the wave patterns
of quantum stationary coherent states formed by nearly
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degenerate eigenstates are well localized on the classical POs
in integrable billiards, including the equilateral-triangular and
circular shapes. By using quantum stationary coherent states,
a theoretical approach has been developed to extract the trajec-
tory equations for classical POs. The extracted trajectory equa-
tions clearly reveal the relationship between the phase factors
of quantum stationary coherent states and the initial positions
of classical POs. Moreover, we have shown that the stationary
coherent states with noncoprime parametric numbers corre-
spond to multiple POs, which has no correspondence in the
one-particle picture. We have further verified that the stationary
coherent states can be linked to the experimental resonant

modes generated by a localized and unidirectional source. It
is believed that the excellent agreement between the resonant
modes and the stationary coherent states can offer useful in-
sight into the quantum-classical connection in the mesoscopic
regime.
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[58] H.-J. Stöckmann, Quantum Chaos—An Introduction (Cam-
bridge University Press, Cambridge, 1999).

[59] P. H. Tuan, C. P. Wen, Y. T. Yu, H. C. Liang, K. F. Huang, and
Y. F. Chen, Phys. Rev. E 89, 022911 (2014).

[60] W.-K. Li and S. M. Blinder, J. Chem. Educ. 64, 130 (1987).

022214-9

https://doi.org/10.1364/OL.35.002723
https://doi.org/10.1364/OL.35.002723
https://doi.org/10.1364/OL.35.002723
https://doi.org/10.1364/OL.35.002723
https://doi.org/10.1103/PhysRevE.83.016208
https://doi.org/10.1103/PhysRevE.83.016208
https://doi.org/10.1103/PhysRevE.83.016208
https://doi.org/10.1103/PhysRevE.83.016208
https://doi.org/10.1103/PhysRevA.72.063806
https://doi.org/10.1103/PhysRevA.72.063806
https://doi.org/10.1103/PhysRevA.72.063806
https://doi.org/10.1103/PhysRevA.72.063806
https://doi.org/10.1063/1.2779094
https://doi.org/10.1063/1.2779094
https://doi.org/10.1063/1.2779094
https://doi.org/10.1063/1.2779094
https://doi.org/10.1063/1.3276069
https://doi.org/10.1063/1.3276069
https://doi.org/10.1063/1.3276069
https://doi.org/10.1063/1.3276069
https://doi.org/10.1103/PhysRevE.89.022911
https://doi.org/10.1103/PhysRevE.89.022911
https://doi.org/10.1103/PhysRevE.89.022911
https://doi.org/10.1103/PhysRevE.89.022911
https://doi.org/10.1021/ed064p130
https://doi.org/10.1021/ed064p130
https://doi.org/10.1021/ed064p130
https://doi.org/10.1021/ed064p130



