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Abstract

We investigate an Einstein–Maxwell-Dilaton–Axion holographic model and obtain two branches of a 
charged black hole solution with a dynamic exponent and a hyperscaling violation factor when a magnetic 
field presents. The magnetothermoelectric DC conductivities are then calculated in terms of horizon data 
by means of holographic principle. We find that linear temperature dependence resistivity and quadratic 
temperature dependence inverse Hall angle can be achieved in our model. The well-known anomalous 
temperature scaling of the Nernst signal and the Seebeck coefficient of cuprate strange metals are also 
discussed.
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1. Introduction

Holographic principle provides a powerful tool for calculating the properties of strongly cou-
pled systems [1–6]. According to the principle, a classical weakly coupled gravitational theory 
is mapped to a strongly coupled large N gauge theory on the boundary. The property of strong–
weak duality in this approach makes non-perturbative calculations possible.

Since a system at a critical point can be described by a strongly coupled conformal field theory, 
the metric in the corresponding classical gravitational theory may be that of Anti-de Sitter space 
which also possesses scale symmetry. However, in condensed matter physics there are many 
systems in which space and time scale differently, so it is necessary to introduce the dynamical 
exponent z in the metric to characterize the Lifshitz scaling [7–20]. When the temperature is 
finite, a black hole metric which is asymptotic to Lifshitz is what we want. Possible models that 
can yield such solutions, for example, are Einstein–Maxwell-Dilaton model and massive vector 
field model. Besides, another Maxwell term should be introduced when the system has a finite 
chemical potential. For more general cases, the metric can also involve a hyperscaling violation 
factor θ .

Once the background has been set up, one can extract various transport properties such as 
electric conductivity from it. In the gauge/gravity duality approach, the transport coefficients 
can be obtained by analyzing the retarded Green’s functions from small perturbations about the 
background. For example, in the case of the AC electric conductivity, one obtain the conductivity 
by computing the retarded Green’s function from the perturbations with time dependence e−iω, 
and take ω → 0 to obtain the DC conductivity.

However, the transport will be divergent if the system is translational invariant. Therefore, 
some mechanism of momentum relaxation to break translational invariance should be intro-
duced. One straightforward approach is to impose inhomogeneous boundary conditions of the 
bulk fields [21–26]. Other approaches include introducing extra bulk fields like holographic Q-
lattices [27,28] and linear massless axion [29–38,40]. The holographic Q-lattice model breaks 
translational invariance by exploiting a continuous global symmetry of bulk gravitational theory 
while the linear axion model breaks the translational invariance by introducing a spatial depen-
dent source of bulk fields. In addition, the momentum dissipation can also be introduced by 
explicitly breaking the spatial diffeomorphism invariance as the massive gravity theory [42–51].

An approach to directly calculate the DC conductivity was introduced in [52]. In this ap-
proach, the bulk equations of motion can be manipulated into radially independent quantities 
which are identified with the currents, and the DC conductivity is expressed in terms of the 
horizon data by analyzing the regularity condition on the horizon. The thermal conductivity and 
thermoelectric conductivity can also be computed in this approach. In presence of the magnetic 
field, the Hall angle and the Nernst signal can be calculated [53–58] if the magnetization cur-
rents are subtracted carefully to obtain radially independent quantities. A holographic Wilsonian 
renormalization group approach to momentum dissipated systems were also developed by one 
of the authors very recently [59].

The subtle points of the transport in Lifshitz spacetime with two gauge fields are that the re-
sulting DC electrical conductivity matrix is hard to interpreted. The first gauge field plays the role 
of an auxiliary field, making the geometry asymptotic Lifshitz, and the second gauge field makes 
the black hole charged, playing a role analogous to that of a standard Maxwell field in asymptot-
ically AdS space. The mixture of the two gauge fluctuations leads to a 2 × 2 conductivity matrix 
with non-vanishing off-diagonal components in the absence of external magnetic field, although 
we consider electric perturbations only along the x-direction. In the presence of magnetic fields, 
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the resulting DC electric conductivity becomes a 4 × 4 matrix. The physical interpretation of 
each component is a very tough task, since one does not expect so many components on the dual 
field theory side. To avoid ambiguities, we shall set the currents induced by the auxiliary gauge 
field to be vanishing so that the deduced electrical conductivity matrix is only related to the black 
hole charges [38–40].

In this work, we will construct a dyonic-black-hole-like solution with hyperscaling violating 
factor and derive various transport coefficients such as electrical and thermoelectric conductiv-
ities (see [41] for related work on transport in Lifshitz geometry). This paper is organized as 
follows. In section 2, we present a dyonic-black-hole-like solution with a dynamic exponent 
and a hyperscaling violation factor in the Einstein–Maxwell-Dilaton–Axion model. In section 3, 
we calculate the DC electric conductivity, thermal and thermoelectric conductivities, Hall angle, 
Nernst signal and Seebeck coefficients in terms of horizon data. In section 4, some special cases 
are considered. Our conclusion is presented in section 5.

2. The black hole solutions

In this section, we will construct a dyonic black hole solution with hyperscaling violating fac-
tor in the presence of momentum relaxation. In order to obtain the solution which is asymptotic 
to Lifshitz geometry, we use the Einstein–Maxwell-Dilaton holographic model with two U(1)

gauge fields. One gauge field coupled with scalar field is required to generate the Lifshitz scal-
ing, while the other is to provide charge density on the boundary. For further investigations into 
the transport properties, we also introduce linear axions which leads to momentum dissipation. 
Therefore, we consider the following action

S = − 1

16πG

∫
d4x

√−g

(
R− 1

2
(∂φ)2 − 1

4

2∑
i=1

eλiφ(Fi)
2 − 1

2
eηφ

2∑
i=1

(∂χi)
2 +

2∑
i=1

Vie
γiφ

)
,

(1)

where λi , η, γi , Vi are undetermined constant parameters. We have assumed general gauge-
dilaton coupling since this is demanded by the Lifshitz scaling [13]. That is to say, the require-
ment of having an asymptotically Lifshitz manifold (i.e., for z �= 1) forces a relationship between 
the constant of motion associated to Ai and the magnitude of the dilaton field φ. Otherwise, one 
would expect to have one free parameter associated to the gauge field, given by the constant 
of motion, since it appears in the action only through its derivatives. For the relativistic scaling 
z = 1, the Maxwell field can be independent of the dilaton field φ.

The equations of motion are given by

Rμ
ν − 1

2
∂μφ∂νφ − 1

2

2∑
i=1

eλiφ(Fi)
μρ(Fi)νρ − 1

2
eηφ

2∑
i=1

∂μχi∂νχi

+ 1

2
δμ
ν

(1

4

2∑
i=1

eλiφ(Fi)
2 +

2∑
i=1

Vie
γiφ

) = 0, (2a)

∂μ(
√−geλiφ(Fi)

μν) = 0, (2b)

∂μ(
√−geηφgμν∂νχi) = 0, (2c)
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1√−g
∂μ(

√−ggμν∂νφ) − 1

4

2∑
i=1

λie
λiφ(Fi)

2 − 1

2
ηeηφ

2∑
i=1

(∂χi)
2 +

2∑
i=1

Viγie
γiφ = 0.

(2d)

At the same time, we consider the following ansatz for the metric, gauge fields and axions

ds2 = r−θ
( − r2zf (r)dt2 + dr2

r2f (r)
+ r2 dx2 + r2 dy2), (3a)

A1 = a1(r)dt, A2 = a2(r)dt + Bx dy, (3b)

χ1 = kx, χ2 = ky, (3c)

where the constants z and θ are dynamical and hyperscaling violation exponents, respectively. 
The black hole solution represents effective low temperature geometry, is not an asymptotically 
AdS solution and therefore can in principle be interpreted as an IR geometry embedded in the 
AdS space. The second gauge field is the physical one which provides the finite chemical po-
tential and the constant B is the magnetic field. Obviously, the ansatz of axions (3c) is just the 
solution to equations of motion of axions (2c) if k is just a constant. Besides, the scalar field φ
only depends on the radial coordinate, namely φ = φ(r).

Given the ansatz of metric, scalar and gauge fields, the Maxwell equations (2b) can be recast 
as

∂r(
√−geλiφ(Fi)

rν) = 0, (4)

or equivalently

qi = J t
i = √−geλiφ(Fi)

tr = r−z+3eλiφa′
i , (5)

where qi are constants of integration. In Lifshitz spacetime, q2 is interpreted as the charge density 
in the boundary theory while the “charge” q1 is not really the black hole charge since the first 
gauge field is only used to support the Lifshitz scaling.

Next, subtracting the rr component from the t t component of Einstein equation (2a)

−1

2
(θ − 2)(θ − 2z + 2)rθf + 1

2
rθ+2(φ′)2f = 0, (6)

one can solve the scalar field

φ = √
(θ − 2)(θ − 2z + 2) ln r ≡ β ln r. (7)

The expressions (5) and (7) lead the xx component Einstein equation (2a) to

1

2
(θ − 2)r2θ−z−1(r−θ+z+2f )′ − 1

4

∑
i

r−λiβ+2θ−4(qi)
2 − 1

4
rλ2β+2θ−4B2

− 1

2
rηβ+θ−2k2 + 1

2

∑
i

Vir
γiβ = 0, (8)

from which, by integral, we can solve the function f in terms of some undetermined parameters

f =
∑

i

(qi)
2r−λiβ+θ−4

2(θ − 2)(−λiβ + z − 2)
+ B2rλ2β+θ−4

2(θ − 2)(λ2β + z − 2)

+ k2rηβ−2

(θ − 2)(ηβ − θ + z)
−

∑ Vir
γiβ−θ

(θ − 2)(γiβ − 2θ + z + 2)
− mrθ−z−2, (9)
i
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where m is a constant of integration and can be interpreted as the mass of black hole. The condi-
tion that metric is the Lifshitz type fixes the parameter γ1 as

γ1 = θ

β
. (10)

The determination of other parameters need the equation of motion of scalar field (2d) in 
which expressions (5) and (7) are plugged in

βr2θ−z−1(r−θ+z+2f )′ + 1

2

∑
i

λir
−λiβ+2θ−4(qi)

2 − 1

2
λ2r

λ2β+2θ−4B2

− ηrηβ+θ−2k2 +
∑

i

Viγir
γiβ = 0. (11)

Combining (8) with (11) and eliminating the function f , one obtains

1

2

∑
i

[β + λi(θ − 2)]r−λiβ+2θ−4(qi)
2 + 1

2
[β − λ2(θ − 2)]rλ2β+2θ−4B2

+ [β − η(θ − 2)]rηβ+θ−2k2 +
∑

i

Vi[γi(θ − 2) − β]rγiβ = 0. (12)

First branch of the solution Since q2 and k can be arbitrary value, their coefficients should be 
zero and we can obtain the values of λ2 and η. Although B is also arbitrary, its coefficient has 
no more parameter after λ2 is determined, so we let the exponentials of the terms which contain 
B and V2 to be equal and let their coefficients be canceled with each other. Meanwhile use the 
same way to deal with the remaining terms so that the equation is satisfied. The results are

λ2 = β

2 − θ
, η = β

θ − 2
, λ1 = θ − 4

β
, γ2 = θ + 2z − 6

β
,

(q1)
2 = 2V1(z − 1)

z − θ + 1
, V2 = B2(2z − θ − 2)

4(z − 2)
. (13)

Then we can plug all parameters (10) (13) into the expression (9) and obtain the final result of 
function

f = 1 + (q2)
2r2θ−2z−2

2(θ − 2)(θ − z)
+ B2r2z−6

4(z − 2)(3z − θ − 4)
− k2rθ−2z

(θ − 2)(z − 2)
− mrθ−z−2. (14)

The constant term is set to be one, as long as we demand

V1 = (z − θ + 1)(z − θ + 2). (15)

Also, we can obtain the solution of gauge fields using (5), (7) and (13)

a1 = q1r
z−θ+2

z − θ + 2
+ μ1, a2 = q2r

θ−z

θ − z
+ μ2, (16)

where μi are constants of integration and the physical one μ2 is the chemical potential. In order 
that the chemical potential meaning makes sense, the dynamical and hyperscaling violation ex-
ponents should satisfy θ < z. So far we can see that the introducing one more gauge field coupled 
to the scalar field indeed is a way to solve the anisotropic scaling, since we can check that the 
t t component of Einstein equation (2a) is automatically satisfied when all above constraints are 
imposed.
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Using the definition of horizon f (r+) = 0, we can express the mass-parameter m in terms 
of r+

m = rz−θ+2+ + (q2)
2rθ−z+

2(θ − 2)(θ − z)
+ B2r3z−θ−4+

4(z − 2)(3z − θ − 4)
− k2r−z+2+

(θ − 2)(z − 2)
, (17)

and further calculate the Hawking temperature

T = 1

4π

[
(z − θ + 2)rz+ + (q2)

2r2θ−z−2+
2(θ − 2)

+ B2r3z−6+
4(z − 2)

+ k2rθ−z+
θ − 2

]
. (18)

Second branch of the solution In order to obtain (13), we have supposed that the requirement 
of charge q2 being free is fulfilled first and then used the term containing V2 to offset the term 
containing the free B . In fact, we can reverse these two steps, namely let the coefficient of B be 
zero first and then demand that the exponentials of the terms which contain q2 and V2 to be equal 
and their coefficients to be canceled with each other. The results will be slightly changed

λ∗
2 = β

θ − 2
, γ ∗

2 = θ + 2z − 6

β
, V ∗

2 = (q2)
2(2z − θ − 2)

4(z − 2)
. (19)

Other parameters will be the same since they are determined in the same way. The corresponding 
(14) becomes

f ∗ = 1 + (q2)
2r2z−6

4(z − 2)(3z − θ − 4)
+ B2r2θ−2z−2

2(θ − 2)(θ − z)
− k2rθ−2z

(θ − 2)(z − 2)
− mrθ−z−2. (20)

The difference between (14) and (20) is the interchange of the coefficients and the exponentials 
of the terms containing q2 and B . Then the mass and the Hawking temperature are

m∗ = rz−θ+2+ + (q2)
2r3z−θ−4+

4(z − 2)(3z − θ − 4)
+ B2rθ−z+

2(θ − 2)(θ − z)
− k2r−z+2+

(θ − 2)(z − 2)
, (21)

T ∗ = 1

4π
[(z − θ + 2)rz+ + (q2)

2r3z−6+
4(z − 2)

+ B2r2θ−z−2+
2(θ − 2)

+ k2rθ−z+
θ − 2

]. (22)

3. Thermo-electric transport

Now we begin to calculate the electric conductivity σ and thermoelectric conductivity α in 
terms of horizon data. For notation simplicity, we rewrite the action (1) and the ansatz of the 
metric (3a) as

S =
∫

d4x
√−g

(
R− 1

2
(∂φ)2 − 1

4

2∑
i=1

Zi(Fi)
2 − 1

2
�

2∑
i=1

(∂χi)
2 +

2∑
i=1

Vi

)
, (23)

ds2 = −U(r)dt2 + V (r)dr2 + W(r)dx2 + W(r)dy2, (24)

and maintain the remaining ansatz (3b) and (3c).
In order to compute conductivities, we consider the following small perturbations around the 

background solutions, just as [52]

δgtx = htx(r), δgty = hty(r), δgrx = hrx(r), δgry = hry(r),

δAix = bix(r) − Eixt, δAiy = biy(r) − Eiyt,

δχ1 = ϕx(r), δχ2 = ϕy(r), (25)
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where Eix and Eiy are constants, i takes 1 or 2. For a complete understanding of the holographic 
interpretation, we would like to address the UV asymptotic of electric–magnetic perturbations. 
The larger-r asymptotic behavior for δAix for the first branch of the solution are given by

δA1x = c10

[
1 + c11(ω)

rz−4+θ
+ ...

]
, (26)

δA2x = c20

[
1 + c22(ω)

r3z−2+θ
+ ...

]
. (27)

The same is for δAiy . Note that in order for c10 to be regular asymptotically, one must have 
c11 = 0 when z − 4 + θ < 0. In the ω → 0 limit, we can define

σ̃ij = − lim
ω→0

cij (ω)

iω
, i = 1,2. (28)

One can prove that σ̃ij is exactly the DC conductivity matrix as given in (39). The similar dis-
cussions are given in [39,40].

Then we can obtain the linearized Maxwell equation in the form of

∂r (
√−gZi(Fi)

nr ) = 0. (29)

According to the holographic principle, the electric current density J n = (J t , J x, J y) has the 
form

Jn = √−gZFnr , (30)

which is calculated at the boundary r → ∞. Comparing these two expressions, we can conclude 
that J n is a conserved quantity along radial direction and can be evaluated at arbitrary value of r .

It is easier to do the computation at the horizon. Therefore we make the coordinate transfor-

mation v = t +∫
dr

√
V
U

so that the background metric is explicitly regular at the horizon, namely 

ds2 = −Udv2 − 2
√

UV dvdr + Wdx2 + Wdy2. Now the perturbed metric has additional terms

htxdvdx + htydvdy + (hrx −
√

V

U
ghx)drdx + (hry −

√
V

U
ghy)drdy. (31)

In order to ensure the regularity of the perturbed metric at the horizon, we demand the following 
relation at the horizon

hrx ∼
√

V

U
htx, hry ∼

√
V

U
hty. (32)

The gauge fields should also be regular at the horizon, so from the expression of the perturbed 
gauge fields

Aix = bix − Eixv + Eix

∫
dr

√
V

U
, Aiy = biy − Eiyv + Eiy

∫
dr

√
V

U
, (33)

following relation should be imposed at the horizon as well

b′
ix ∼ −

√
V

U
Eix, b′

iy ∼ −
√

V

U
Eiy. (34)

To fix the perturbations, we need the linearized Einstein equations
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1

2UV
h′′

tx − 1

4UV
(
U ′

U
+ V ′

V
)h′

tx + 1

4UV W
[W ′(U

′

U
+ V ′

V
) − 2W ′′]htx − Z2B

2

2UW 2
htx

+ Z2Ba′
2

2UV W
hry + Z2a

′
2

2UV
b′

2x − Z2B

2UW
E2y + Z1a

′
1

2UV
b′

1x − �k2

2UW
htx = 0, (35a)

1

2UV
h′′

ty − 1

4UV
(
U ′

U
+ V ′

V
)h′

ty + 1

4UV W
[W ′(U

′

U
+ V ′

V
) − 2W ′′]hty − Z2B

2

2UW 2
hty

− Z2Ba′
2

2UV W
hrx + Z2a

′
2

2UV
b′

2y + Z2B

2UW
E2x + Z1a

′
1

2UV
b′

1y − �k2

2UW
hty = 0, (35b)

Z2B
2

2V W 2
hrx − Z2Ba′

2

2UV W
hty − Z2B

2V W
b′

2y + Z2a
′
2

2UV
E2x + Z1a

′
1

2UV
E1x + �k2

2V W
hrx − �k

2V
ϕ′

x =0,

(35c)

Z2B
2

2V W 2
hry + Z2Ba′

2

2UV W
htx + Z2B

2V W
b′

2x + Z2a
′
2

2UV
E2y + Z1a

′
1

2UV
E1y + �k2

2V W
hry − �k

2V
ϕ′

y =0.

(35d)

Taking into account the horizon values (5) (32) (34), either tx (35a) and ty (35b) or rx (35c) and 
ry (35d) components of Einstein equation will give

(Z2B
2 + W�k2)htx − q2Bhty = −Wq2E2x − Wq1E1x − WZ2BE2y, (36a)

q2Bhtx + (Z2B
2 + W�k2)hty = −Wq2E2y − Wq1E1y + WZ2BE2x. (36b)

The solutions of the linearized Einstein equations are

htx = −[W 2�k2q2E2x + WB(q2
2 + Z2

2B2 + Z2W�k2)E2y

+ Wq1(Z2B
2 + W�k2)E1x + Wq1q2BE1y]/[(Z2B

2 + W�k2)2 + q2
2B2], (37a)

hty = [WB(q2
2 + Z2

2B2 + Z2W�k2)E2x − W 2�k2q2E2y

+ Wq1q2BE1x − Wq1(Z2B
2 + W�k2)E1y]/[(Z2B

2 + W�k2)2 + q2
2B2]. (37b)

From the linearized Maxwell equation (29), we can obtain four radially independent quantities

J1x = Z1E1x − q1

W
htx

∣∣∣
r=r+

= Z1E1x + q1[W�k2q2E2x + B(q2
2 + Z2

2B2 + Z2W�k2)E2y

+ q1(Z2B
2 + W�k2)E1x + q1q2BE1y]/[(Z2B

2 + W�k2)2 + q2
2B2], (38a)

J1y = Z1E1y − q1

W
hty

∣∣∣
r=r+

= Z1E1y − q1[B(q2
2 + Z2

2B2 + Z2W�k2)E2x − W�k2q2E2y

+ q1q2BE1x − q1(Z2B
2 + W�k2)E1y]/[(Z2B

2 + W�k2)2 + q2
2B2], (38b)

J2x = Z2E2x − q2

W
htx − Z2B

W
hty

∣∣∣∣
r=r+

= [W�k2(q2
2 + Z2

2B2 + WZ2�k2)E2x + q2B(q2
2 + Z2

2B2 + 2WZ2�k2)E2y

+ W�k2q2q1E1x + q1B(q2
2 + Z2

2B2 + WZ2�k2)E1y]/[q2
2B2

+ (Z2B
2 + W�k2)2], (38c)
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J2y = Z2E2y − q2

W
hty + Z2B

W
htx

∣∣∣∣
r=r+

= [−q2B(q2
2 + Z2

2B2 + 2WZ2�k2)E2x + W�k2(q2
2 + Z2

2B2 + WZ2�k2)E2y

− q1B(q2
2 + Z2

2B2 + WZ2�k2)E1x + W�k2q2q1E1y]/[q2
2B2

+ (Z2B
2 + W�k2)2] (38d)

If we just take the derivative σiajb = ∂Jia

∂Ejb
, we will obtain following 16-quantities

σ1x1x = Z1 + q2
1 (Z2B

2 + W�k2)

(Z2B2 + W�k2)2 + q2
2B2

, σ1x1y = q2
1q2B

(Z2B2 + W�k2)2 + q2
2B2

,

σ1x2x = q1W�k2q2

(Z2B2 + W�k2)2 + q2
2B2

, σ1x2y = q1B(q2
2 + Z2

2B2 + Z2W�k2)

(Z2B2 + W�k2)2 + q2
2B2

,

σ1y1x = −q2
1q2B

(Z2B2 + W�k2)2 + q2
2B2

, σ1y1y = Z1 + q2
1 (Z2B

2 + W�k2)

(Z2B2+W�k2)2+q2
2B2

,

σ1y2x = −q1B(q2
2 + Z2

2B2 + Z2W�k2)

(Z2B2 + W�k2)2 + q2
2B2

, σ1y2y = q1W�k2q2

(Z2B2 + W�k2)2 + q2
2B2

,

σ2x1x = W�k2q2q1

(Z2B2 + W�k2)2 + q2
2B2

, σ2x1y = q1B(q2
2 + Z2

2B2 + WZ2�k2)

(Z2B2 + W�k2)2 + q2
2B2

,

σ2x2x = W�k2(q2
2 + Z2

2B2 + WZ2�k2)

(Z2B2 + W�k2)2 + q2
2B2

, σ2x2y = q2B(q2
2 + Z2

2B2 + 2WZ2�k2)

(Z2B2 + W�k2)2 + q2
2B2

,

σ2y1x = −q1B(q2
2 + Z2

2B2 + WZ2�k2)

(Z2B2 + W�k2)2 + q2
2B2

, σ2y1y = W�k2q2q1

(Z2B2 + W�k2)2 + q2
2B2

,

σ2y2x = −q2B(q2
2 + Z2

2B2 + 2WZ2�k2)

(Z2B2 + W�k2)2 + q2
2B2

, σ2y2y = W�k2(q2
2 +Z2

2B2+WZ2�k2)

(Z2B2 + W�k2)2 + q2
2B2

.

However, as A2 is a physical gauge field while A1 is only an auxiliary field, the only physical 
electrical fields are E2x and E2y , and the physical electrical currents are J2x , J2y . Therefore, we 
can identify σ2x2x , σ2x2y , σ2y2x , σ2y2y as conductivities, but have no idea about the rest. These 
four conductivities are the same as those in [54] which is based on asymptotic AdS background. 
We can infer further that the thermoelectric conductivities and thermal conductivities are the 
same as the old results as long as we do not include the contributions from A1.

Or we can make some efforts to eliminate the explicit dependence on A1. Let J1x = 0, J1y = 0
and solve for E1x , E1y so that we can obtain the expressions of electric currents into which 
E1x , E1y are substituted for. The results also allow us to compute the electrical conductivity

σxx = ∂J2x

∂E2x

= (q2
1 + Z1W�k2)[Z1(q

2
2 + Z2

2B2) + Z2(q
2
1 + Z1W�k2)]

[q2
1 + Z1(Z2B2 + W�k2)]2 + Z2

1q2
2B2

, (39a)

σxy = ∂J2x

∂E2y

= Z1q2B[Z1(q
2
2 + Z2

2B2) + 2Z2(q
2
1 + Z1W�k2)]

[q2
1 + Z1(Z2B2 + W�k2)]2 + Z2

1q2
2B2

, (39b)

σyx = ∂J2y

∂E
= −Z1q2B[Z1(q

2
2 + Z2

2B2) + 2Z2(q
2
1 + Z1W�k2)]

[q2 + Z (Z B2 + W�k2)]2 + Z2q2B2
, (39c)
2x 1 1 2 1 2
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σyy = ∂J2y

∂E2y

= (q2
1 + Z1W�k2)[Z1(q

2
2 + Z2

2B2) + Z2(q
2
1 + Z1W�k2)]

[q2
1 + Z1(Z2B2 + W�k2)]2 + Z2

1q2
2B2

. (39d)

We can check that we still have σyx = −σxy and σyy = σxx .
In this situation, we can express the Hall angle as

θH ≡ σxy

σxx

= Z1q2B[Z1(q
2
2 + Z2

2B2) + 2Z2(q
2
1 + Z1W�k2)]

(q2
1 + Z1W�k2)[Z1(q

2
2 + Z2

2B2) + Z2(q
2
1 + Z1W�k2)] . (40)

Another interesting quantity is the magnetoresistance, which is given as

�ρ

ρ
= ρxx(B) − ρxx(0)

ρxx(0)
= Z1Z

3
2B2(q2

1 + Z1W�k2)

(Z1q
2
2 + Z2q

2
1 + Z1Z2W�k2)2 + Z2

1Z2
2q2

2B2
(41)

In order to obtain the thermoelectrical conductivities, we need the expressions for heat currents 
which should be conserved quantities of Einstein equations. The situation is analogous to the 
electric current. Here we use the two-form in [52], so the heat currents are

Qx = U2

√
UV

(
htx

U
)′ −

2∑
i=1

aiJix

∣∣∣∣∣
r=r+

= −U ′htx√
UV

∣∣∣∣
r=r+

, (42a)

Qy = U2

√
UV

(
hty

U
)′ −

2∑
i=1

aiJiy

∣∣∣∣∣
r=r+

= − U ′hty√
UV

∣∣∣∣
r=r+

. (42b)

Then the thermoelectrical conductivities are

αxx = 1

T

∂Qx

∂E2x

= 4πZ1Wq2(q
2
1 + Z1W�k2)

[q2
1 + Z1(Z2B2 + W�k2)]2 + Z2

1q2
2B2

, (43a)

αxy = 1

T

∂Qx

∂E2y

= 4πZ1WB[Z1(q
2
2 + Z2

2B2) + Z2(q
2
1 + Z1W�k2)]

[q2
1 + Z1(Z2B2 + W�k2)]2 + Z2

1q2
2B2

, (43b)

αyx = 1

T

∂Qy

∂E2x

= −4πZ1WB[Z1(q
2
2 + Z2

2B2) + Z2(q
2
1 + Z1W�k2)]

[q2
1 + Z1(Z2B2 + W�k2)]2 + Z2

1q2
2B2

, (43c)

αyy = 1

T

∂Qy

∂E2y

= 4πZ1Wq2(q
2
1 + Z1W�k2)

[q2
1 + Z1(Z2B2 + W�k2)]2 + Z2

1q2
2B2

. (43d)

We can obtain other interesting transport coefficients associated both the electric and heat 
currents, the Seebeck coefficient

S ≡ αxx

σxx

= 4πZ1Wq2

Z1(q
2
2 + Z2

2B2) + Z2(q
2
1 + Z1W�k2)

(44)

The Nernst signal is then ready to be calculated

eN ≡ (σ−1 · α)xy = 4πZ1Z
2
2WB(q2

1 + Z1W�k2)

(Z1q
2
2 + Z2q

2
1 + Z1Z2W�k2)2 + Z2

1Z2
2q2

2B2
. (45)
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4. Special cases

So far we have derived the general expressions for conductivities. Now we analysis some 
special cases. Since we have two general background metric, the discussion will be divided into 
two parts first. Then we will consider another special case without momentum dissipation.

• First branch solution with momentum dissipation
Now we take (14) as the background metric, then taking (13) into account, then we have

(q1)
2 = 2(z − 1)(z − θ + 2), � = rθ−2z+2, Z1 = rθ−4, Z2 = r2z−θ−2,

W = r−θ+2. (46)

The simplest case will be z = 1, θ = 0, in which the metric will return to asymptotic AdS with 
one charge

f = 1 + (q2)
2

4r4
+ B2

4r4
− k2

2r2
− m

r3
. (47)

Direct calculation leads to the temperature

T = 1

4π

(
3r+ − (q2)

2

4r3+
− B2

4r3+
− k2

2r+

)
. (48)

We emphasize that once we switch the asymptotic structure from an AdS to a Lifshitz one and 
turn on the perturbation δA(1)x , it could not have a continuous limit back to the perturbation 
considered in the Reissner–Nordström–AdS spacetime by simply taking z → 1, θ → 0 and 
q1 → 0 limit. From (46) we can see that taking z → 1, θ → 0 leads to q1 → 0, but the quantity 
σ1x1x = σ1y1y = r−4+ is not vanishing. However, if we set z = 1 and θ = 0 from the very begin-
ning in the action (23), the auxiliary gauge field F(1)rt naturally does not appear and the black 
hole solution is the Reissner–Nordström–AdS (RN–AdS) metric. So we have a discontinuity in 
the z → 1, θ → 0 and q1 → 0 limit.

For RN–AdS black hole with linear axions, the electric and thermoelectric conductivities are 
given by

σxx = r2+k2(q2
2 + B2 + r2+k2)

(B2 + r2+k2)2 + q2
2B2

,

σxy = q2B(q2
2 + B2 + 2r2+k2)

(B2 + r2+k2)2 + q2
2B2

,

αxx = 4πr4+q2k
2

(B2 + r2+k2)2 + q2
2B2

,

αxy = 4πr2+B(q2
2 + B2 + r2+k2)

(B2 + r2+k2)2 + q2
2B2

. (49)

Of course, we are more interested in non-vanishing hyperscaling factor cases, for example 
z = 1 and θ = 1. One may notice that the charge term in the metric will be divergent if one plug 
in the values of the exponents directly (i.e. z = 1 and θ = 1). In order to fix the problem, we 
rewrite the charge term as

(q2)
2r2θ−2z−2

= (q2)
2rθ−zrθ−z−2

, (50)

2(θ − 2)(θ − z) 2(θ − 2)(θ − z)
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and in the limit θ − z → 0, expand rθ−z as

rθ−z = 1 + (θ − z) ln r + · · · , (51)

so that the recasted metric is

f = 1 − (m − (q2)
2

2(θ − 2)(θ − z)
)rθ−z−2 + (q2)

2rθ−z−2 ln r

2(θ − 2)

+ B2r2z−6

4(z − 2)(3z − θ − 4)
− k2rθ−2z

(θ − 2)(z − 2)
. (52)

After defining

M = m − (q2)
2

2(θ − 2)(θ − z)
, (53)

we obtain

f = 1 − Mrθ−z−2 + (q2)
2rθ−z−2 ln r

2(θ − 2)
+ B2r2z−6

4(z − 2)(3z − θ − 4)
− k2rθ−2z

(θ − 2)(z − 2)

= 1 − M

r2
− (q2)

2 ln r

2r2
+ B2

8r4
− k2

r
, (54)

from which the temperature is

T = 1

4π

(
2r+ − (q2)

2

2r+
− B2

4r3+
− k2

)
. (55)

It is consistent with (18). The conductivities and thermoelectrical conductivities are straightfor-
wardly

σxx = r2+k2(q2
2 + r−2+ B2 + r+k2)

(r−1+ B2 + r2+k2)2 + q2
2B2

,

σxy = q2B(q2
2 + r−2+ B2 + 2r+k2)

(r−1+ B2 + r2+k2)2 + q2
2B2

,

αxx = 4πr3+q2k
2

(r−1+ B2 + r2+k2)2 + q2
2B2

,

αxy = 4πr+B(q2
2 + r−2+ B2 + r+k2)

(r−1+ B2 + r2+k2)2 + q2
2B2

. (56)

The magnetoresistance, Seebeck coefficients are also easily to be derived

�ρ

ρ
= r+k2B2

q2
2B2 + r2+(q2

2 + r+k2)2
, (57)

S = 4πr3+q2

r2+q2
2 + B2 + r3+k2

. (58)

And also the Hall angle is given by

θH = q2B[(r2+q2
2 + B2) + 2r3+k2]

k2r2 [r2 q2 + B2 + r3 k2] . (59)

+ + 2 +
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Fig. 1. (Left) Nernst signal as a function of magnetic field B . The lines from the top to bottom correspond to k/T =
1, 0.84, 0.66, 3. (Right) Conventional metal behaviors Nernst signal as a function of temperature with q = 1.8, k = 1, 
and B = 1/2. We set θ = 1 and z = 1 for the first branch of black hole solution.

The Nernst signal is defined as

eN ≡ (σ−1 · α)xy = 4πBr3+k2

B2q2
2 + r2+(q2

2 + r+k2)2
, (60)

where σ and α denote the electric and thermoelectric conductivity matrices, respectively.
In the high temperature limit, T ∼ r+, one can show that we have linear resistivity namely 

ρxx ∼ T , S is constant and the Hall angle satisfies the behavior θH ∼ 1
T 2 . From (60) and Fig. 1, 

we can see that in the high temperature limit, eN ∼ 4π

k2T
yields exactly bad metal behavior while 

in the low temperature eN ∼ T agrees with that of conventional metals. These scaling behaviors 
are in some aspects consistent with the anomalous scaling in cuprate strange metal.

• Second branch solution with momentum dissipation
Next we consider another background metric (20). (46) does not change except

Z2 = rθ−2z+2. (61)

Similarly, it will return to asymptotic AdS situation when z = 1, θ = 0. Besides, we will use the 
values z = 1, θ = −1 as a non-AdS example. After redefining the mass term

M∗ = m∗ − (q2)
2

4(z − 2)(3z − θ − 4)
, (62)

we can obtain the metric in an analogous way

f ∗ = 1 − M∗rθ−z−2 + (q2)
2rθ−z−2 ln r

4(z − 2)
+ B2r2θ−2z−2

2(θ − 2)(θ − z)
− k2rθ−2z

(θ − 2)(z − 2)

= 1 − M∗

r4
− (q2)

2 ln r

4r4
+ B2

12r6
− k2

3r3
. (63)

The corresponding temperature and conductivities can be recast as

T = 1

4π
(4r+ − (q2)

2

4r3+
− B2

6r5+
− k2

3r2+
),

σxx = r2+k2(q2
2 + r−2+ B2 + r+k2)

(r−1B2 + r2 k2)2 + q2B2
,

+ + 2
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σxy = q2B(q2
2 + r−2+ B2 + 2r+k2)

(r−1+ B2 + r2+k2)2 + q2
2B2

,

αxx = 4πr5+q2k
2

(r−1+ B2 + r2+k2)2 + q2
2B2

,

αxy = 4πr3+B(q2
2 + r−2+ B2 + r+k2)

(r−1+ B2 + r2+k2)2 + q2
2B2

. (64)

We can see the electric conductivities are the same as those in the case of former background 
metric when z = 1, θ = 1, while the thermoelectric conductivities are not. Similarly, it is also 
straightforward to derive the Seebeck coefficient, magnetoresistance and Hall angle for this case. 
Then we have the Seebeck coefficient

S = 4πq2r
3+

q2
2 + r−2+ B2 + r+k2

, (65)

the magnetoresistance

�ρ

ρ
= r+k2B2

q2
2B2 + r2+(q2

2 + r+k2)2
, (66)

and the Hall angle

θH = q2B(q2
2 + r−2+ B2 + 2r+k2)

r2+k2(q2
2 + r−2+ B2 + r+k2)

. (67)

The Nernst signal can also be evaluated

eN = 4πBr5+k2

B2q2
2 + r2+(q2

2 + r+k2)2
. (68)

Again, in high temperature limit, we have the following scaling behavior, ρxx ∼ T , θH ∼ 1
T 2 , 

S ∼ T 2, �ρ
ρ

∼ B2

T 3 and eN ∼ T . Although we have linear resistivity and quadratic temperature 
dependence of inverse Hall angle as the cuprate strange metal, but the temperature dependence 
of Seebeck coefficient and magnetoresistance do not match with the scaling behavior found in 
cuprate experiments. Meanwhile, the Nernst signal also shows its conventional metal behavior 
as shown in Fig. 2.

• Two branches without momentum dissipation
Another interesting case is when k = 0, but keeping q1 and q2 finite. It was noticed in [38]

that in this case the linear resistivity can also be realized even without momentum dissipation. 
The resulting thermoelectric conductivities become

σxx = σyy = q2
1 [Z1(q

2
2 + Z2

2B2) + Z2(q
2
1 )]

[q2
1 + Z1(Z2B2)]2 + Z2

1q2
2B2

,

σxy = −σyx = Z1q2B[Z1(q
2
2 + Z2

2B2) + 2Z2(q
2
1 )]

[q2
1 + Z1(Z2B2)]2 + Z2

1q2
2B2

,

αxx = αyy = 4πZ1Wq2q
2
1

[q2 + Z Z B2]2 + Z2q2B2
,

1 1 2 1 2
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Fig. 2. (Left) Nernst signal as a function of magnetic field B . The lines from the top to bottom correspond to k/T =
1, 0.84, 0.66, 3. (Right) Conventional metal behaviors Nernst signal as a function of temperature with q = 1, k = 1, and 
B = 1/2. We set θ = −1 and z = 1 for the second branch of solution.

αxy = −αyx = Z1q2B[Z1(q
2
2 + Z2

2B2) + 2Z2q
2
1 ]

[q2
1 + Z1Z2B2]2 + Z2

1q2
2B2

. (69)

In the absence of magnetic field, namely B = 0, the electrical conductivities reduces to

σxx = σyy = Z2 + q2
2Z1

q2
1

, σxy = σyx = 0. (70)

Assuming the first term in σxx corresponds to the intrinsic current relaxation effect and thus leads 
to the linear in temperature resistivity, we obtain θ = 8/5 and z = 6/5 for the first branch of the 
black hole solution so that both linear and quadratic in temperature resistivities can be realized. 
On the other hand, we need θ = 0 and z = 2 for the second branch of solution to realize the linear 
and quadratic in temperature resistivities. The Seebeck coefficient is then given by

S = 4πZ1Wq2q
2
1

q2
1 (Z1q

2
2 + Z2q

2
1 )

(71)

For the first branch of the black hole solution with θ = 8/5 and z = 6/5, the Seebeck coefficient 
scales as S ∼ T −2/3 in the high temperature limit. But for the second branch of the black hole 
solution, we have S ∼ constant in the high temperature limit.

In the presence of magnetic field, we are able to calculate the magnetoresistance. For both 
branches of the solution, we have �ρ/ρ ∼ B2/T 3 for both cases (θ = 8/5, z = 6/5) and (θ = 0, 
z = 2). The Nernst signal for the first branch of solution with (θ = 8/5, z = 6/5) is given by

eN = 4πBq2
1 r

14/5
+

B2q2
2 + r

12/5
+ (q2

2 + q2
1 r

6/5
+ )2

. (72)

From Fig. 3, we can see that the magnetic dependence of the Nernst signal is quiet similar to 
the previous cases. But the temperature-dependence of the signal only shows its bad-mental-like 
behaviors as eN ∼ 1/T 5/3 in the high temperature limit.

For the second branch of black hole solution with θ = 0, z = 2, the Nernst signal goes as

eN = 4πBq2
1 r6+

B2q2 + r4 (q2 + q2r2 )2
. (73)
2 + 2 1 +
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Fig. 3. (Left) Nernst signal as a function of magnetic field B . The lines from right to left correspond to q1/T =
0.2, 0.4.0.6, 1. (Right) Non-conventional metal behavior of the Nernst signal as a function of temperature with q1 = 1, 
q2 = 1/5 and B = 1/10. We consider the first branch of the black hole solution and set θ = 8/5 and z = 6/5.

Fig. 4. (Left) Nernst signal as a function of magnetic field B . The lines from right to left correspond to q1/T =
0.2, 0.4.0.6, 1. (Right) Non-conventional metal behavior of the Nernst signal as a function of temperature with q1 = 1, 
q2 = 1/5 and B = 1/10. We consider the second branch of the black hole solution and set θ = 0 and z = 2.

As shown in Fig. 4, the Nernst signal scales as eN ∼ 1/T in the high temperature regime. But in 
the low temperature, the conventional metal behavior eN ∼ T cannot be recovered. The magnetic 
dependence of the Nernst signal is more close to the experimental result found in [60].

5. Conclusion

In this paper, we studied the Einstein–Maxwell-Dilaton model with massless Axion fields 
providing momentum dissipation and obtain two branches of the analytical black hole solutions 
in the presence of an external magnet field when spacetime yields Lifshitz scaling. The effect of 
the hyperscaling factor was also considered. The magnetothermoelectric DC conductivities were 
thus calculated in terms of horizon data by means of holographic principle.

In order to mimic the experimental results, we consider special choices of the values of the 
dynamical and the hyperscaling factors. For the first branch of black hole solution with momen-
tum dissipation, we found that θ = 1 and z = 1 could leads to linear and quadratic in temperature 
resistivities, inverse T square Hall angle and experiment compatible Seebeck coefficient. Re-
markably, the Nernst signal shows exactly bad metal behaviors in the high temperature regime 
(i.e. eN ∼ 1/T ) and conventional metal behavior eN ∼ T in the low temperature region, in good 
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agreement with the experimental results of cuprates. For the second branch of black hole solution 
with momentum dissipation with θ = −1 and z = 1, the linear and quadratic in temperature re-
sistivities can still be realized. But the Seebeck coefficient shows S ∼ T 2 scaling and the Nernst 
signal only yields conventional metal behavior.

As a byproduct of this paper, we realized that even in the absence of momentum dissipation, 
the DC electrical conductivity still has two terms of contributions and the dual conductivity is 
finite. We discuss in detail how to reproduce the anomalous transport of cuprates for these two 
branches of black hole solution. For the first branch, θ = 8/5 and z = 6/5 results in linear and 
quadratic in temperature resistivities, leaving the Seebeck coefficient different from the experi-
ments and non-conventional metal behavior of the Nernst signal. For the second branch, θ = 0
and z = 2, linear and quadratic in temperature resistivities can be realized without trouble. The 
Seebeck coefficient scales as S ∼ constant. But the Nernst signal only marks non-conventional 
metal behaviors.
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