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RAY YEUTIEN CHOU

Forecasting Financial Volatilities with Extreme
Values: The Conditional Autoregressive Range
(CARR) Model

We propose a dynamic model for the high/low range of asset prices within
fixed time intervals: the Conditional Autoregressive Range Model (hence-
forth CARR). The evolution of the conditional range is specified in a fash-
ion similar to the conditional variance models as in GARCH and is very
similar to the Autoregressive Conditional Duration (ACD) model of Engle
and Russell (1998). Extreme value theories imply that the range is an
efficient estimator of the local volatility, e.g., Parkinson (1980). Hence,
CARR can be viewed as a model of volatility. Out-of-sample volatility
forecasts using the S&P500 index data show that the CARR model does pro-
vide sharper volatility estimates compared with a standard GARCH model.

JEL codes: C53, C82, G12
Keywords: CARR, high/low range, extreme values, GARCH, ACD.

MODELING THE VOLATILITIES of speculative asset prices has
been a central theme in the recent literature of financial economics and economet-
rics. As a measure of risk, volatility modeling is important to researchers who are
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trying to understand the nature of the dynamics of volatilities. It is also of fundamental
importance to policy makers and regulators as it is closely related to the functioning
and the stability of financial markets, which has direct links to the functioning and
fluctuations of the real economy.

Since the mid-1970s, there has been a remarkable rapid surge and expansion in
the market of derivative assets, further reinforcing the concentration of attention on this
subject. Hedging funds play important roles in the portfolios of banks: whether
commercial or investment, pension funds, insurance companies are very essential
in some securities houses. Central bankers now pay close attention to the develop-
ment of the derivatives market as activities on the off-balance-sheet have increased
in their regulated banks and because catastrophic losses have begun to occur at a
non-trivial frequency; for example, the episodes of the Barings Bank collapse, the
Orange County investment scandal, and the bankruptcy of the Long-term Capital
Corporation. Whether such a trend is reversible! is debatable, but it is clear that
this trend will continue at least in the near future, say 5 to 10 years. Another thing
very clear is the fact that what is at stake is increasing dramatically.?

A milestone in the theory of derivative assets is the stochastic volatility model
of Hull and White (1987). This model formally extends the Black and Scholes
(1973) option valuation model to incorporate the time-varying volatilities. Models of
stochastic volatilities have surged in finance journals and have been seriously adopted
by investment banks, e.g., see Lewis (2000).

It has been known for a long time in statistics that range is a viable measure of
the variability of random variables, among other alternatives. Applications and
discussions of this measure are common to statisticians of engineering dealing with
quality control. Using the application of range in finance is also not a new concept
as Mandelbrot (1971) and others employ it to test the existence of long-term depen-
dence in asset prices.’ The noticeable application of range in the context of financial
volatility and in particular to the estimation of volatilities started from the early
1980s. By employing the extreme value theory and some well-known properties of
range, Parkinson (1980) forcefully argues and demonstrates the superiority of using
range as a volatility estimator as compared with standard methods. Beckers (1983),
among others, further extends the range estimator to incorporate information about
the opening and closing prices and the treatment of a time-varying drift, as well as
other considerations. It is a puzzle, however, that despite the elegant theory and the
support of simulation results, the range estimator has performed poorly in empirical
studies. See Rogers (1998) for an attempt of resolution and a typical disappointing

1. One of the consequences of the Asian financial crisis in the late 1990s is the reconsideration of
central bankers on the pros/cons of the derivative markets. Malaysia and Taiwan are two cases where
the regulators have made some drastic policy moves halting the trading of some derivative securities
related to foreign exchanges.

2. The above three examples of catastrophic risk, related to derivatives trading, are related to (or
has caused) the solvency of a reputable bank, a county government, and unknown number of commercial/
investment banks.

3. See Lo (1991) for an extension of the test statistic and a more recent re-investigation of the issue.
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conclusion about this puzzle and Cox and Rubinstein (1985) for some conjectures
of explanations. Other references include Garman and Klass (1980), Wiggins (1991),
Rogers and Satchell (1991), Kunitomo (1992), and more recently Yang and
Zhang (2000).

In the last two decades, one of the most phenomenal developments of the literature
on empirical finance is the ARCH/GARCH family of models; see Engle (1982),
Bollerslev (1986), and Nelson (1991). For a critical review with a thorough survey
of the ARCH literature, see Bollerslev, Chou, and Kroner (1992). See also Bollerslev,
Engle, and Nelson (1994) for a deeper theoretical treatment. Engle (1995), Rossi
(1996), and Jarrow (1999) also provide more references of ARCH models and the
linkage to asset pricing models with stochastic volatilities.* A competitive volatility
model to ARCH is the Stochastic Volatility (henceforth SV) model of Taylor (1986)
and Heston (1993). See also Tsay (2001) for discussions of the two branches of
the literature. For insightful implementations of GARCH diffusion models to
derivative pricing, see Duan (1995, 1997), Ritchken and Trevor (1999), Heston and
Nandi (2000), and the recent book by Lewis (2000).

The strength of the ARCH model lies in its flexible adaptation of the dynamics
of volatilities and its ease of estimation when compared to the SV models. It is quite
interesting that very few have attempted to combine this dynamic modeling strategy
with the sharp insight of Parkinson (1980) which states that range is an effective
estimator of volatility.” Andersen and Bollerslev (1998) report the favorable explana-
tory power of range in the discussion of the “realized volatilities.” Gallant, Hsu,
and Tauchen (1999) and Alizadeh, Brandt, and Diebold (2001) incorporate the range
into the equilibrium asset price models. Their approaches follow the SV framework.
Hence, there is an obvious literature gap between a dynamic model and range is
waiting to be filled by our paper. In concurrent work, Brandt and Jones (2002)
compare a range-based EGARCH model with the return-based volatility model.
They find much better predicting power of the range-based volatility model over
the return-based model for out-of-sample forecasts. Their study emphasizes on the
model of the log range rather than the level of range using an approximating result
from Alizadeh, Brandt, and Diebold (2001) that the log range is approximately
normal. It will be useful for future studies to compare the forecast ability between
the level vis-a-vis log-range models.

We conjecture that the fundamental reason for the poor empirical performance
of range is its failure to capture the dynamic evolution of volatilities. We propose a
range-based volatility model: the Conditional Autoregressive Range model (hence-
forth CARR). By properly modeling the dynamics, range retains its superiority

4. Of the three books of collections of articles, Engle provides reports on the milestones in the
ARCH literature; Rossi concentrates on Daniel Nelson’s contribution; and Jarrow has the broadest
scope in treating ARCH on a relatively equal-footing with the SV approach under a general title of
volatility modeling.

5. A noticeable exception is Lin and Rozeff (1994). They introduce the range into the variance
equation of a GARCH model and find a significant coefficient for the range; furthermore, the ARCH
term becomes insignificant.
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in forecasting volatility. We discuss its relationship with an important class of the
GARCH family, the standard deviation GARCH. As an empirical illustration,
we estimate the CARR model and compare the out-of-sample forecasts of CARR
and GARCH using four different measures of volatility as benchmarks for forecast-
ing evaluations.

The paper is organized as follows. We propose and develop the CARR model
with some discussions in Section 1. In Section 2, an empirical example is shown
using the S&P500 index to estimate the model. In Section 3, we provide out-of-
sample forecast comparisons between the CARR and the GARCH model. Section
4 concludes with considerations on future extensions of CARR.

1. MODEL SPECIFICATION, ESTIMATION, AND PROPERTIES

1.1 The Model Specification, Stochastic Volatilities and the Range

Let P, be the logarithmic price of a speculative asset, possibly driven by a
geometric Brownian motion with stochastic volatilities. We focus our analysis in
this paper on the range measured at discrete intervals (e.g., daily, weekly) for an asset
price with a discrete-path sampled at finer intervals (e.g., every 5 minutes). We
define the observed range, as

R;=Max{P;} — Min{P;}, (1

T=r—1,r—1 +1,t— 1 +g,...,t.
n n

The parameter # is the number of intervals used in measuring the price within each
range-measured interval, which is normalized to be unity. The bias of range will
be a non-increasing function of n. Namely, the finer the sampling interval is of the
price path, the more accurate the measured range will be.

Since the price process is in natural logarithm, we can define r, as the one period
(t — 1 to 1) continuously compounding return,

=P —P_. @

It is a well-known result in statistics that the range is an estimator of G,, the standard
deviation of the random variable. From the results of Parkinson (1980) and Lo
(1991), the range of any distribution is proportional to its standard deviation.

We hereby posit a dynamic specification, the Conditional Autoregressive Range
(or CARR) model for the range:

R, = A&, 3)
9q P

M=o+ E o; R—; + 2 Bjkz—js
i=1 j=1

e |1 ~fLE),
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where A, is the conditional mean of the range based on all information up to time
t. The distribution of the disturbance term €, or the normalized range € = R,/A,,
is assumed to be distributed with a density function f{.) with a unit mean. The
coefficients (w, o, B)) in the conditional mean equation are all positive to ensure posi-
tivity of A,. The specification of the model has implied some restriction upon the
conditional moments of the variable. If the disturbance is i.i.d., then the conditional
variance of the range is proportional to the square of its conditional expectation. In
fact, this is a property shared by all models with multiplicative errors; see Engle
(2002). If it is not i.i.d., then a non-negative distribution with a unit mean and
time-varying variance can be specified.

Note that €, is positively valued given that both the range R, and its expected
value A, are positively valued. A natural choice for the distribution is the exponential as
it has non-negative support. Assuming that the distribution follows an exponential
distribution with unit mean then the log likelihood function can be written as

T
Lo, Bj; R\.Ry,...Ry,) = _E

t=1

In(A,) + %] . “4)

Such a model will be called the ECARR model. The second equation in (3) specifies
a dynamic structure for A, characterizing the persistence of shocks to the range of
speculative prices or what is usually known as volatility clustering as documented
by Mandelbrot (1963). The parameters , o, and [3; characterize the inherent uncer-
tainty in range, the short-term impact effect, and the long-term effect of shocks to the
range (or the volatility of return), respectively. The sum of the impact parameters,
o+ Ele B plays a role in determining the persistence of range shocks. See
Bollerslev (1986) for a discussion of the parameters in the context of GARCH.
The model is called a Conditional Autoregressive Range model of order (p, g), or
CARR(p, ¢q). For the process to be stationary, a condition is that the characteristic
roots of the polynomial are outside the unit circle, or 3 0, + 37, B; < 1. The
unconditional (long-term) mean of range, denoted -bar, is calculated as
o /1= (ZL, o + 27 B).
The equation of the conditional expectation of range can in general be easily extended
to incorporate other explanatory variables, namely, X, for [ = 1,2 ... L, that are
I,—-adapted.

q )4 L
=0+ D R+ D Bih D Y Xy )
i=1 j=1 =1

This model is called the CARR model with exogenous variables, or CARRX. It
will be called an ECARRX model if the model is estimated with an assumed
exponential distribution for the disturbance. Among others, some important exoge-
nous variables are trading volume (see Lamoureux and Lastrapes, 1990, Karpoff,
1987), the lagged returns capturing the leverage effect frequently observed in equity
markets, and some seasonal factors that characterize the seasonal pattern within the
range interval.
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This model is similar to the ACD model of Engle and Russell (1998) for durations
between trades, and belongs to the family of Multiplicative Error Model in Engle
(2002). Nonetheless, there are essential distinctions between the ACD and the CARR
models. First, duration is measured at some random intervals, but the range is measured
at fixed intervals; hence, the natures of the variables of interest are different although
they share the common property that all observations are positively valued. Secondly,
the CARR model is a model for range, but it can also be used as a model for volatility.

1.2 Properties of CARR: Estimation and Relationships with Other Models

The ACD and CARR models have some analogous statistical properties. Further-
more, the CARR model has some unique properties of its own. We illustrate some
of the important properties in this subsection. First, a consistent estimation of
the parameters can be obtained by the Quasi-Maximum Likelihood Estimation or
QMLE method. Engle and Russell (1998) prove that under some regularity condi-
tions, the parameters in the CARR model can be estimated consistently by QMLE
in which the density function of the disturbance term €, is given by a unit mean
exponential density function. See also Engle (2002) for further discussions.

The intuition behind this property relies on the insight that the likelihood function
in ACD (and CARR) with an exponential density is identical to the GARCH model
with a normal density function, but with some simple adjustments on the specification
of the conditional mean. Furthermore, all asymptotic properties of GARCH are
applicable to CARR. Given that CARR is a model for the conditional mean,
the regularity conditions (e.g., the moment condition) are in fact less stringent
than in GARCH. The details of this and some related issues are not dealt with in
this paper.

A convenient property for CARR is the ease of estimation. Specifically, the QMLE
estimation of the CARR model can be obtained by estimating a GARCH model
with a particular specification: specifying a GARCH model for the square root of
range without a constant term in the mean equation.® This property is related to the
above QMLE property by the observation of the equivalence of the exponential
distribution’s likelihood functions in CARR and ACD and the observation of the
normal density in GARCH. It is important to note that the direct application of
QMLE will not yield consistent estimates for the covariance matrix of the parameters.
The standard errors of the parameters are consistently estimated by the robust method
of Bollerslev and Wooldridge (1992).

Notice that although the exponential density specification can yield consistent
estimation, it is not efficient. The efficiency result can be attained only if the
conditional density is correctly specified. Hence, in our estimation, we also attempt
to estimate the model with a more general density function, the Weibull distribution.
In this case the log likelihood function can be expressed as

6. See Engle and Russell (1998) for a proof. Hence, any software that is capable of estimating the
GARCH model can be used to estimate the CARR model.
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T
L(o, Bj, 0; Ry, Ry, Rpy) = 1n(3)

t=1 14

+ Gln(

(1 + 1/0) R,)_(F(H 1/9)R,)9. (6)

A,

It is important to note that the Weibull distribution includes as a special case the
exponential distribution when 6 = 1. Otherwise, the transformed error, (Rt/lt)e, will
have an exponential distribution. This fact can be used in testing the validity of the
distribution specifications. A CARR (CARRX) model with the Weibull distribution
will be called a WCARR (WCARRX) model.”

Another interesting property of the CARR model is its relationship with the
GARCH family models. In Taylor (1986) and Davidian and Carroll (1987), a model
estimating the standard deviation of stock price is proposed. This model uses the
absolute value of the return as an instrument to estimate the volatility of asset prices.
We label it the standard deviation GARCH model. It is interesting to notice that
the standard deviation GARCH model turns out to be the same as a CARR model
if the specification of the mean equation is ignored. This property follows from the
observation that, with n = 1, the range R; is identical to the absolute value of
the return, r,, i.e., R, = Max(P,_;, P,) — Min(P,_, P,) = |P, — P,_4| = Ir/). Hence,
the CARR model is directly linked to one of the most useful GARCH models.

There is an issue of fairness concerning the forecast comparison given the consider-
ation of the difference in the information used in the two models. The information
set used in CARR includes the GARCH as a subset given that GARCH only uses
the closing prices of the interval, say a day, and CARR uses the whole price path
in the interval in computing the range variable. Such a comparison is exactly what is
made in the static range literature of Parkinson (1980) and others. As a result, a
comparison of this should always be interpreted with caution. It would also be
interesting to compare the CARR model with a model that utilizes the same informa-
tion set.

t

2. AN EMPIRICAL EXAMPLE USING THE S&P500 INDEX

2.1 The Data Set

We collect the daily index data of the Standard and Poors 500 (S&P500) for the
sample period from April 26, 1982 to October 17, 2003.® For each day, four

7. A feasible alternative estimation method is the GMM using moments in autocorrelations of ranges
and their squares. Still another alternative is to take log on both sides of Equation (3), then the current
multiplicative specification is transformed into a non-linear regression model with additive innovations.
As suggested by Fourgeaud, Gourieroux, and Pradel (1988), a non-linear least squares can be used for
estimation. I thank an anonymous referee for raising these points to me.

8. We use a longer sample period starting from the year 1962 in the previous version of the paper.
We notice, however, a clear in the structure of the data around April of 1982. We hence decide to start
our sample period from the beginning of May 1982. This is to avoid the unnecessary error caused by
the changes of the data compilation procedure. Indeed, such a change occurred around the end of April,
1982, according to a telephone conversation with the S&P Inc.
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pieces of the price information, open, close, high, low, are reported. The data set
is downloaded from the finance subdirectory of the website “Yahoo.com”. We
estimate the model using both the daily and the weekly frequencies. The estimation
results using the daily data are qualitatively the same as the results using weekly
data. Some weekday seasonal effects are found for the daily range data. However,
to save space without losing much information, we report only the estimation results
using the weekly frequency. The daily estimation results are available from the
author upon requests.

2.2 Empirical Estimation of the Weekly Range

The weekly range is obtained by taking the difference of the highest price (over
the five daily highs) and the lowest price (of the five daily lows) that occurred
throughout the week. For comparison, we also compute the weekly return series
by taking the first difference on the log price series on the closing day of each week.
The total number of observations is 1120. Figure 1 presents the plot of the weekly
return in the upper panel and the weekly range in the lower panel. Table 1 gives
summary statistics of these two series and the series of absolute value of the return.
The kurtosis coefficient of the return is 6.38 indicating a strong deviation from the
normal distribution. It is interesting to observe the difference in the values of
the ACF’s and of the Ljung—Box Q statistics for the absolute return and the range
series. The Q statistics are 1564.7 for the range and 191.5 for the absolute returns
indicating a much stronger degree of persistence in volatility for the range than for
the absolute return series. One target in our modeling is to explain away this high
degree of persistence by estimating the conditional mean of the range.

The estimation results are reported in Tables 2 and 3 for the ECARR and for
the WCARR model, respectively. We estimate variations of the CARR models.
Specifically, we estimate four models: CARR(1,1), CARR(2,2), CARRX(1,1)-a, and
CARRX(1,1)-b. In the CARRX models, exogenous variables in the conditional
range equation include combinations of two variables: a lagged return r,_;, and a
lagged absolute return. The lagged return variable is used (in both CARRX specifi-
cations) for consideration of the leverage effect of Black (1976) and Nelson (1991).
The lagged absolute return is used in the standard deviation GARCH model in the
volatility equation. It is included in the CARRX(1,1)-a model to check whether it
provides additional information about the volatility in addition to the lagged ranges.

For each of the model estimations, we compute two diagnostic test statistics
0(12) and W2. The W2 statistic is an empirical distribution test by the Cramer—
von Mises test. This is based on a comparison of the hypothesized distribution
function with the empirical distribution function. For detailed discussion of this
testing method and other alternatives, see Stephens (1986). As is stated earlier, the
exponential and the Weibull distributions are hypothesized in the ECARR (Table 2)
and in the WCARR (Table 3), respectively.

We first discuss the estimation result in Table 2. It suggests that a simple dynamic
structure we consider is satisfactory. In other words, the likelihood functions indicate
that p = 1 and ¢ = 1 for the CARR model is sufficient over the entire data period
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TABLE 1

SUMMARY STATISTICS FOR THE RETURNS AND RANGES OF WEEKLY S&P500 INDEX, APRIL 26, 1982 TO
OcCTOBER 13, 2003

Return Absolute return Range
Mean 0.195 1.675 3.146
Median 0.363 1.331 2.663
Maximum 8.462 13.007 26.698
Minimum —13.007 0.002 0.707
Standard deviation 2.222 1.472 1.828
Skewness —0.556 2.309 3.287
Kurtosis 6.382 12.390 30.424
Jarque—Bera 591.3 5109.8 37147.6
Probability 0.000 0.000 0.000

Auto-Correlation Function (lag)

ACF (1) —0.062 0.207 0.530
ACF (2) 0.068 0.101 0.426
ACF (3) —0.031 0.147 0.386
ACF (4) —0.037 0.087 0.356
ACF (5) —=0.011 0.064 0.311
ACF (6) 0.082 0.130 0.348
ACF (7) —0.024 0.142 0.326
ACF (8) —0.029 0.101 0.285
ACF (9) —0.012 0.101 0.233
ACF (10) —0.006 0.105 0.277
ACF (11) 0.059 0.091 0.250
ACF (12) —0.023 0.083 0.225
0(12) 26.3 191.5 1564.7

spanning more than twenty years.” Note also that in the CARR(2,2) estimation
results, neither o, nor B, are significant. This is consistent with the results using
the likelihood ratio test. The reduction of the Box—Ljung Q statistics in all four
models, when compared to that of the raw range data, is phenomenal. They are
reduced from the raw data of 1564.7 (see Table 1) to the levels of 14.6, 14.594,
12.579, and 12.308 for the four models, respectively. They are all insignificant at
the 5% level.

The significance level of the leverage effect in the two models with exogenous
variables is noteworthy. The absolute values of the f-ratios are 5.11 and 5.62 in
model CARRX(1,1)-a and CARRX(1,1)-b, respectively. They correspond to a sig-
nificance level with p-values less than 0.001%. This contrasts the GARCH literature
in which the leverage effect is often reported to be significant at some mediocre level,
say 5% but not 1% or 0.001%. Our conjecture about this contrast is the fact that
range is observable and the volatility level in GARCH is not observable. Hence,
the estimation error in the GARCH model will cause the reduction of the statistical
significance of the leverage effect. Another conjecture to be verified is that GARCH
uses the variance to measure volatility while CARR uses the range, a proxy for

9. This is consistent with the GARCH literature where a GARCH(1,1) specification is sufficient
for a large class of speculative asset returns. See Bollerslev, Chou, and Kroner (1992).
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TABLE 2

EsTIMATION OF THE CARR MODEL USING WEEKLY S&P500 INDEX WITH EXPONENTIAL DISTRIBUTION,
APRIL 26, 1982 TO OCTOBER 13, 2003

Ri=\eg

P
A=+ i O Ry + 2y Bj My + Y remy + 815y |
j=1

i=1
g ~iidf(),

where R, is the range and r, the return. Estimation is carried out using the QMLE method hence it is
equivalent to estimating an Exponential CARR(p, ¢) or an ECARR(p, ¢) model. LLF is the log likelihood
function, Q(12) is the Ljung—Box statistic for auto-correlation test with 12 lags and W2 is the Cramer—
von Mises statistic for empirical distribution test. Numbers in parentheses are robust standard errors
(p-values) for the model coefficients (Q(12) and W2).

ECARR(1,1) ECARR(2,2) ECARRX(1,1)-a ECARRX(1,1)-b
LLF —2204.887 —2204.825 ~2199.039 ~2199.062
o 0.139 (0.034) 0.152 (0.097) 0.212 (0.037) 0.207 (0.036)
o 0.242 (0.031) 0.262 (0.046) 0.256 (0.033) 0.236 (0.027)
o 0.023 (0.183)
Bi 0.714 (0.034) 0.415 (0.683) 0.697 (0.031) 0.705 (0.031)
B, 0.252 (0.495)
Y —0.096 (0.019) —0.097 (0.017)
5 —0.025 (0.038)
0(12) 14.790 (0.253) 15.081 (0.237) 12.536 (0.404) 12.319 (0.420)
w2 40.355 (0.000) 40.414 (0.000) 41.529 (0.000) 41.479 (0.000)

standard deviation, to measure volatility. In general, the square of a dependent
variable often reduces the explanatory power in regression models.

As can be seen from the results of estimation in CARRX(1,1)-a, the lagged
absolute return series provides no extra explanatory power over the conditional
range in addition to the lagged ranges. This can be viewed as a confirmation of the
above discussion that the standard deviation GARCH model is a special case of
the CARR model.

The empirical distribution test results indicate clear rejection of the hypothesized
exponential distribution. In all four models, the Cramer—von Mises tests are all very
large. This indicates that the exponential distribution is not supported by the data.
Figure 2 provides a kernel density estimation of the residuals from the CARR(1,1)
model. The exponential density function is monotonically declining. The shape of
the empirical distribution indicates a clear deviation from the exponential function
especially for the small range values, or inliers. By allowing one additional parameter,
the Weibull distribution is potentially capable of solving this problem. We now turn
to Table 3 for the estimation result using the Weibull specification.

We first notice that the estimates of the parameter of transformation, 0, are in
the neighborhood of 2.4-2.5 and are very significantly different from one. Hence, the

10. As is noted by a referee, the negative sign may potentially cause the conditional range to be
non-positive. A way to solve this potential problem is to adopt a log-range formulation in the same way
as in the EGARCH model. This is done in Brandt and Jones (2002).
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TABLE 3

EstiMATION OF THE CARR MODEL USING WEEKLY S&P500 INDEX WITH WEIBULL DISTRIBUTION
APRIL 26, 1982 TO OCTOBER 13, /2003

R =M\¢
P
A=+ i O R—i + 2 Bj Ay + Yremy + 81l
i=1 j=1

€~ iid f(.)

where R, is the range and r, the return. Estimation is carried out using the MLE method assuming a
Weibull distribution for the disturbance. LLF is the log likelihood function, Q(12) is the Ljung—Box
statistic for auto-correlation test with 12 lags and W2 is the Cramer—von Mises statistic for empirical
distribution test. Numbers in parentheses are robust standard errors (p-values) for the model coefficients
(0(12) and W2).

WCARR(1,1) WCARR(2,2) WCARRX(1,1)-a WCARRX(1,1)-b
LLF —1810.485 ~1810.363 —1781.963 —1782.092
o 0.180 (0.040) 0.173 (0.146) 0.251 (0.042) 0.256 (0.041)
o 0.309 (0.017) 0.314 (0.017) 0.254 (0.031) 0.268 (0.018)
o —0.011 (0.252)
B, 0.636 (0.022) 0.615 (0.838) 0.666 (0.026) 0.659 (0.023)
B, 0.028 (0.546)
Y —0.115 (0.010) —0.115 (0.010)
K 0.017 (0.027)
9 2.403 (0.047) 2.402 (0.048) 2.474 (0.048) 2.473 (0.047)
0(12) 16.889 (0.154) 16.218 (0.181) 14.943 (0.245) 15.196 (0.231)
w2 6.152 (0.000) 6.179 (0.000) 6.208 (0.000) 6.238 (0.000)

data seem to support a Weibull alternative over the null of an exponential distribution.
Otherwise, the estimation results are similar to those in Table 2. Specifically, a
CARRC(1,1) specification is preferred to the alternative of CARR(2,2), the leverage
effect is very significant and there is no additional explanatory power provided by
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FIG. 2. Residual Density: ECARR(1,1)
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the lagged absolute returns. The Ljung—Box statistics are slightly higher than their
counter parts in the exponential function specifications. The Cramer—von Mises
statistic, W2 are still significant although they are dramatically reduced in their
sizes from the neighborhood of 4042 to 6.1-6.3. Figure 3 gives the kernel density
of the transformed residual (R/A,)°. It is now much closer to the exponential
density function in the sense that the problems of inliers seem to be a lot less serious.
There is still however, clear room left for further improvements. This is a potential
fruitful topic for future research.

To further check the difference of the two error distribution specifications, we
compute the correlation coefficients between the expected ranges for each of the four
specifications. These are the correlations of the in-sample forecasts given by the
two error specifications. They are 0.994, 0.993, 0.996, and 0.997 for the CARR(1,1),
CARR(2,2), CARRX(1,1)-aand CARRX(1,1)-b, respectively. This seems to indicate
that the error specification between the two alternatives (exponential or Weibull)
does not have much impact on the forecasts of range. This result is consistent with that
of Engle and Russell (1998) in the study of dynamic modeling of trading durations.

3. OUT-OF-SAMPLE VOLATILITY FORECAST COMPARISON

To gauge the differences in the forecasting power between CARR and GARCH,
we perform out-of-sample forecasts and make comparisons using different methods.
Our benchmark GARCH model is a symmetric model with conditional normal
distribution. Hence, on equal ground, we use an ECARR model instead of a WCARR
or an ECARRX model in the forecast comparison. We choose #, the forecast horizons
to be from 1 week to 50 weeks. Rolling sample estimations are made to estimate the
parameters for an ECARR(1,1) model and for a standard GARCH(1,1) model. For
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the ECARR(1,1) model, the weekly range series is used for estimation to make
forecasts for the ranges. For the GARCH(1,1) model the weekly return series is
used and the forecasts for conditional variances are made. In each of the sample
estimations, 972 weeks of data prior to the forecast interval are used. The first end
date is December 4, 2000 and the last end date is October 28, 2002, the first end date
+99 weeks. For each forecast horizon, 100 out-of-sample forecasts are made and
forecasts for all horizons are made for the same 100 end dates. For the one-
step forecasts, the first forecast is on December 11, 2000 and the last is on November
4,2002. The first 50-step forecast is made on November 19, 2001 and the last made
on October 13, 2003.

We use four measures of the ex post volatility: the sum of squared daily returns
(SSDR), weekly return squared (WRSQ), weekly range (WRNG), and absolute
weekly return (AWRET).!! The measure SSDR is obtained by aggregating the squared
daily returns within each week; see Poterba and Summers (1986) for one of the
first serious attempts in computing monthly volatilities using this procedure. This
method is adopted by French, Schwert, and Stambaugh (1987) and recently by
Andersen et al. (2000). In the latter work, it is named the “realized volatility.”

Out of the four “measured volatilities” (denote MV,), the first two measure the
variance while the last two measure the standard deviation with and without a
scale adjustment. It is clear that a GARCH model should be good in forecasting
the variable WRSQ, because it is precisely the variable used in the variance equation
of the GARCH model. Similarly, ECARR should have advantages in forecasting
WRNG for exactly the same reason. Given the difference in the target forecasts in
the four measures of volatilities, we conduct transformations on the estimated volatil-
ity from the two models for FVs, the forecasted volatilities. In other words, the
GARCH volatility forecasts, FV(GARCH), are the conditional variances of the return
series in forecasting SSDR and WRSQ), but they are the conditional standard devia-
tions (by taking the square root of the conditional variances) in forecasting WRNG
and AWRET. Similarly, for the ECARR model, the expected (or the conditional
mean of) range is used in forecasting WRNG and AWRET, while a “squared”
expected range is used in forecasting SSDR and WRSQ.

We compute the root-mean-squared-errors (RMSE) and the mean-absolute-errors
(MAE) i.e.,

T 0.5
RMSE(n, ) = [T ) (MV, — FVy m) | (7)
=1
T
MAE(m, h) = T°' 2 (IMV,1;, = BV, (m)]) , 8)

t=1

11. In this paper, we do not compare the evaluation of the forecasts of the daily volatility, because
a serious comparison of such would require the use of intra-daily data and it is beyond the scope of
this paper.
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TABLE 4
OuUT-OF-SAMPLE FORECAST COMPARISON FOR ECARR AND GARCH

This table computes the root-mean-squared-errors (RMSE) and the mean-absolute-errors (MAE) using
the following equations:
05

T
N 2
RMSE(m, h) = [r‘ > (MV,y, — MV,4, (m))
=1

T
MAE(m, h) = T >, (IMV,4), — NV, (m)1) ,

=1

where T = 100, m = ECARR, GARCH. The four measured volatilities (MV,): SSDR, WRSQ, WRNG,
AWRET are the sum of squared daily returns over the week, the weekly return squared, the weekly
range, and the absolute weekly return, respectively. An ECARR(1,1) model is fitted for the weekly range
series and a GARCH(1,1) is fitted for the weekly return series. The data used are S&P500 stock index
from April 26, 1982 to October 13, 2003. Rolling samples of 972 observations are used in fitting the
two models and 100 observations are made for the out-of-sample forecasts.

SSDR WRSQ WRNG AWRET

Horizon ECARR GARCH ECARR GARCH ECARR GARCH ECARR GARCH
RMSE

1 9.262 11.329 18.999 19.310 1.956 2.263 2.019 2.058

2 9.955 11.820 19.242 19.653 2.055 2.358 2.044 2.091

4 11.225 12.597 19.565 19.792 2.238 2.452 2.074 2.106

8 11.231 12.397 19.524 19.800 2.394 2.561 2.085 2.125

13 11.593 12.675 19.598 19.760 2.480 2.595 2.103 2.131
MAE

1 6.759 8.015 9.619 9.878 1.374 1.640 1.492 1.485

2 7.328 8.440 9.708 9.995 1.442 1.687 1.499 1.493

4 7.835 8.653 9.474 10.072 1.605 1.724 1.473 1.483

8 7.745 8.715 9.027 9.984 1.690 1.864 1.433 1.495

13 7.431 8.853 8.922 10.061 1.752 1.919 1.420 1.496

where T = 100, MV, = SSDR,, WRSQ,, WRNG,, or AWRET,. FV,(m) are forecasted
volatilities using model m, and m stands for model ECARR or GARCH.

To save space we only report cases with &7 = 1, 2, 4, 8, and 13 weeks. Results
for longer horizons (h = 26 and 50) are available in the working paper. Table 4
gives the result of these two forecast evaluation criteria. Both criteria give almost
unanimous support for the ECARR model over GARCH. For RMSE, the values
are smaller for the ECARR model for 20 out of the 20 (four measures and five
different horizons) cases. For MAE, again, for all cases, the ECARR model has
smaller values than the GARCH model. A closer examination of the evaluation
reveals that the differences in the performance of the two models are more obvious
when SSDR and WRNG are used for the measured volatility and for shorter
horizons. Given the fact that SSDR and WRNG use more information (daily) than
WRSQ and AWRET (weekly information), it is not surprising that they contain less
noise and will yield more precise pictures in forecast comparisons.
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To gain further insight into the difference of the two competing volatility models,
we follow the approach of Mincer and Zarnowitz (1969) in running the regressions:

MV,., = a + bFV,,, (ECARR) + u,., , 9)

MV,., = a + ¢ FV,,, (GARCH) + u,., . (10)

A test of the unbiasedness of the forecasted volatility FV,(CARR) (FV,(GARCH))
can be performed by a joint test of ¢ = 0 and b = 1 (¢ = 1). Given the consideration
of the scale factor in the CARR model as discussed above, FV,(ECARR) will not
have a coefficient of unity even if it is unbiased.'”> We hence focus mainly on the
comparison of predictive powers of the two competing models. The heteroskedasticity-
autocorrelation-consistent standard errors are computed using the Newey—West
(1987) procedure. As for the lag length specification, we follow the suggestion in
their work by choosing it to be (4(T/100)*°). Further adjustments are made for
parameter estimation error by adopting the correcting procedure suggested by West
and McCracken (1998). Specifically, the standard errors are multiplied by a quantity
called A-hat in their work. Given that we adopt rolling-samples method, A-hat =
1 — (TC2/3), where © = 100/972, is the ratio of number of predictions to the QMLE
estimation sample size. We also calculate the R-squared values for each regression
to gauge the explanatory power of the regressors. Table 5 gives the results of the
Mincer-Zarnowitz regressions using each of the four measured volatilities as
the volatility proxy. To save space, we only report cases with 1-week, 2-week, and
8-week ahead forecasts.

The results of the regression-based comparison are very interesting. As is consis-
tent with the results in Table 4, the two noisy measured volatilities, WRSQ and
AWRET, are difficult to forecast; the R-squared are all less than 0.03. The other
two better proxies, SSDR and WRNG, yield much higher R-squared values up to
0.317 and 0.224, respectively. Further, for all four volatility proxies and for 4 = 1
and 7 = 2, ECARR dominates GARCH in producing higher R-squared values and
higher z-ratios with the “right” sign. For the one-step forecast and for the two better
volatility proxies, the difference in R-squared is in the range of about six to eight
times. For the case & = 8, neither model predictions have significant explanatory
powers and the dominance of ECARR over GARCH is less obvious. These results
are consistent with those of Day and Lewis (1992), Andersen and Bollerslev (1998),
and Brandt and Jones (2002).

To determine the relative information content of the two volatility forecasts we
also run a forecast encompassing regression:

MV,., = a + bFV,,, (ECARR) + ¢ FV,,, (GARCH) + u;,,, . (11)

12. By multiplying the constant to the expected range, we can obtain an unbiased estimator for the
standard deviation. However, we do not do this in this paper, given that the focus is more on the comparison
of the two forecasts simultaneously.
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TABLE 5
OUT-OF-SAMPLE PREDICTIVE POWER FOR ECARR AND GARCH FORECASTS

This table performs the Mincer/Zarnowitz regressions. The dependent variable is one of the four measured
volatilities (MV): SSDR, WRSQ, WRNG, and AWRET. The independent variable is the out-of-sample
forecasts of the volatility using either the ECARR(1,1) model on ranges or the GARCH(1,1) model on
returns. Numbers in parentheses are heteroscedasticity-autocorrelation consistent standard errors using
the Newey—West procedure and also corrected for parameter estimation error proposed by West and
McCracken (1998). The data used are S&P500 stock index from April 26, 1982 to October 13, 2003.
Rolling samples of 972 observations are used in fitting the two models and 100 observations are made
for the out-of-sample forecasts.

MV, =a + bFV,, (ECARR) + upy,

MV, =a+ cFV,;, (GARCH) + u,y

Horizon Intercept FV(ECARR) FV(GARCH) R-squared
SSDR
1 —0.12 (2.07) 0.54 (0.12) 0.317
6.27 (3.39) 0.54 (0.46) 0.043
2 1.64 (2.10) 0.47 (0.14) 0.214
8.65 (3.10) 0.27 (0.38) 0.011
8 8.83 (4.44) 0.12 (0.24) 0.007
13.66 (3.33) —0.32 (0.31) 0.017
WRSQ
1 5.73 (3.19) 0.17 (0.11) 0.011
9.12 (3.12) 0.01 (0.25) 0.000
2 7.78 (3.50) 0.06 (0.10) 0.001
12.90 (4.37) —0.44 (0.27) 0.010
8 12.87 (5.93) —0.22 (0.25) 0.008
15.05 (5.19) —0.67 (0.38) 0.023
WRNG
1 0.88 (0.68) 0.86 (0.16) 0.224
2.72 (1.09) 0.66 (0.37) 0.039
2 1.41 (0.74) 0.74 (0.17) 0.154
3.84 (1.17) 0.26 (0.37) 0.006
8 4.20 (1.66) 0.09 (0.38) 0.037
6.42 (1.29) —0.65 (0.41) 0.090
AWRET
1 1.16 (0.55) 0.25 (0.12) 0.023
1.95 (0.65) 0.11 (0.22) 0.001
2 1.58 (0.57) 0.15 (0.11) 0.008
2.71 (0.75) —0.16 (0.21) 0.003
8 2.75 (1.10) —0.12 (0.25) 0.003
3.52 (0.90) —0.43 (0.27) 0.020

The standard errors are computed as in Equations (9) and (10) described above.
Under the null of encompassing, the t-ratio of the encompassed model can be used
for the encompassing test. Under situations when no model is encompassing, West
(2001) shows that construction of confidence intervals and test statistics can lead
to wildly inaccurate inference. As is defined above, the ratio of number of predictions
to the QMLE estimation sample size, © = 100/972, in our application. He shows that
as T — 0 and T — %, it becomes legitimate to conduct inference using the usual
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TABLE 6
EncompassING TEsTs FOR ECARR AND GARCH FoRECASTS

This table performs the forecast encompassing regressions. The dependent variable is one of the four
measured volatilities (MV): SSDR, WRSQ, WRNG, and AWRET. The two independent variables are
the out-of-sample forecasts of the volatility using the ECARR(1,1) model on ranges and the GARCH(1,1)
model on returns. Numbers in parentheses are heteroscedasticity-autocorrelation consistent standard
errors using the Newey—West procedure and also corrected for parameter estimation error proposed by
West and McCracken (1998).

MV,., = a + b FV,;, (ECARR) + ¢ FV,,, (GARCH) + 11,1,

Horizon Intercept FV(ECARR) FV(GARCH) R-squared
SSDR
1 2.80 (2.09) 0.73 (0.12) —0.79 (0.20) 0.368
2 5.07 (2.07) 0.72 (0.17) —0.96 (0.27) 0.290
4 9.71 (2.66) 0.57 (0.18) —1.08 (0.40) 0.146
8 11.07 (4.12) 0.42 (0.27) —0.85 (0.25) 0.071
13 14.03 (4.80) 0.25 (0.31) —0.78 (0.29) 0.056
WRSQ
1 7.71 (3.08) 0.30 (0.18) —0.53 (0.45) 0.019
2 11.31 (4.13) 0.32 (0.15) —0.99 (0.45) 0.029
4 14.06 (5.98) 0.10 (0.16) —0.78 (0.38) 0.022
8 14.78 (6.13) 0.04 (0.24) —0.73 (0.33) 0.023
13 16.72 (6.46) —0.25 (0.34) —0.40 (0.27) 0.024
WRNG
1 1.90 (0.65) 1.16 (0.22) —0.82 (0.32) 0.256
2 2.88 (0.81) 1.21 (0.28) —1.21 (0.46) 0.224
4 4.17 (1.13) 0.98 (0.31) —1.29 (0.48) 0.125
8 5.47 (1.54) 0.77 (0.42) —1.39 (0.33) 0.090
13 7.06 (1.75) 0.21 (0.52) —1.16 (0.45) 0.090
AWRET
1 1.67 (0.68) 0.40 (0.19) —0.40 (0.37) 0.032
2 2.39 (0.72) 0.41 (0.20) —0.67 (0.38) 0.033
4 2.85(1.00) 0.25 (0.19) —0.58 (0.30) 0.019
8 3.30 (1.09) 0.18 (0.27) —0.61 (0.27) 0.023
13 3.92 (1.13) —0.11 (0.35) —0.41 (0.30) 0.026

covariance matrix. The implication is that for sufficiently small  and sufficiently
large 7, the usual covariance matrix will work fine.!* See Davidson and MacKinnon
(1981) for the inference procedure under the null of encompassing and West (2001)
for a way in estimating the variance-covariance matrix under situations when no
model is encompassing.

Table 6 gives the results of the encompassing regressions. The dominance of
ECARR over the GARCH model is clear. Once the ECARR-predicted-volatility is
included, the GARCH-predicted-volatility often becomes insignificant or with wrong
signs. It is interesting to observe that the R-squared increases substantially for this

13. Note in particular that Table 1 in West (2001) indicates that for 1 © = 0.2 the usual standard
errors are slightly too small, with nominal 95% confidence intervals have actual coverage of between
85% and 95%. While the example in that Table is much simpler than our application, we hope that the
bias is similarly small.
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regression comparing with those in Table 5. This indicates that some form of
combined forecasts may be able to obtain a higher predictive power, ignoring the
fact that negative coefficients are difficult to interpret. For the two better volatility
proxies, SSDR and WRNG, the declining pattern of the R-squares over the increase
of horizons is obvious. However, even up to 13-week ahead, about 9% of the variations
in the volatility can be explained by this regression. It is interesting to note that if
the target is the “average” volatility over the next h-horizons, Brandt and Jones
(2002) report that the volatility is predictable as far as one year ahead using the
range-based volatility model.

As a result of the above forecast evaluations, it is obvious that the ECARR model
does provide sharper volatility forecasts than the standard GARCH model. Figure
4 provides a snap shot of the two alternative volatility forecasts together with
the measured volatility SSDR. It is interesting to observe that the ECARR model
gives a much more adaptive forecast than the GARCH model. This is consistent
with the fact that ranges use more information than the close-to-close returns.

4. CONCLUSION

The CARR model provides a simple, yet efficient and natural framework to
analyze the volatility dynamics. We have demonstrated empirically that CARR can
produce sharper volatility estimates as compared to the commonly adopted model
like standard deviation GARCH or GARCH. Further, Monte Carlo analysis is
useful to gauge the efficiency gain of CARR over its rival models. Applications of
CARR to other frequency of range intervals, say every hour, or every quarter, and
other frequencies, will provide further understanding of the performance of the range
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model. Analyses using other asset prices, e.g., currency, fixed-income securities,
and derivative assets, will also be useful. Other generalizations of the CARR model
will be worthy subjects of future research, for example, the generalization of the
univariate to amultivariate framework, models simultaneously treating the price return
and the range data, tests of risk premium hypothesis such as in Chou (1988), long
memory CARR models, asymmetric volatility models (see Chou 2004), CARR
diffusion models in the spirit of Duan (1995, 1997), and value-at-risk calculations
using CARR.

Itis suggested in statistics that range is sensitive to outliers. Hence, it is meaningful
to consider an extension of CARR by using robust measures of range to replace the
standard range. For example, some plausible measures are the next-to-max and
the next-to-min, the quantile range and the difference between the average of the top
5% observations and the bottom 5% observations, etc. A closely related analysis is
given in Engle and Manganelli (2001).

Following the approaches in the static range literature, the CARR model can also
be extended to model a time-varying drift term by incorporating the information in
the opening and closing prices. This will lead to models of the volatility process
using all four pieces of information: open, close, high, and low. A coherent dynamic
model should provide a framework whereby the range gives volatility predictions
consistent (identical) with the volatility prediction from the mean return.
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