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Abstract

The authors use four criteria to examine a novel community detection algorithm: (a)

effectiveness in terms of producing high values of normalized mutual information

(NMI) and modularity, using well-known social networks for testing; (b) examination,

meaning the ability to examine mitigating resolution limit problems using NMI values

and synthetic networks; (c) correctness, meaning the ability to identify useful commu-

nity structure results in terms of NMI values and Lancichinetti-Fortunato-Radicchi

(LFR) benchmark networks; and (d) scalability, or the ability to produce comparable

modularity values with fast execution times when working with large-scale real-world

networks. In addition to describing a simple hierarchical arc-merging (HAM) algorithm

that uses network topology information, we introduce rule-based arc-merging strate-

gies for identifying community structures. Five well-studied social network datasets

and eight sets of LFR benchmark networks were employed to validate the correctness

of a ground-truth community, eight large-scale real-world complex networks were used

to measure its efficiency, and two synthetic networks were used to determine its sus-

ceptibility to two resolution limit problems. Our experimental results indicate that the

proposed HAM algorithm exhibited satisfactory performance efficiency, and that HAM-

identified and ground-truth communities were comparable in terms of social and LFR

benchmark networks, while mitigating resolution limit problems.

Introduction

Many real-world systems can be expressed as networks consisting of nodes connected by

edges [1–3]. In social networks, nodes represent individuals, and edges are used to mark con-

nections such as friendships and family relations. In scientific collaboration networks, nodes

and edges respectively represent scientists and collaborations among scientists for published

academic papers. In web graphs, nodes and edges respectively correspond to URLs and
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hyperlinks. Primary properties exhibited by networks include the small-world effect (indicat-

ing a high degree of clustering and low degree of separation) [4], long tails (indicating a

power-law degree distribution in which a small number of nodes have stronger connections

compared to other network nodes) [5], fractality (indicating combined degree distribution

and negative assortativity coefficient slopes) [6–7], and community structure (indicating tight

connections between nodes with similar features within groups, and loose connections

between nodes across multiple groups) [1–2, 8–13].

Network community detection, especially community structure, is currently receiving sig-

nificant attention from researchers ranging from engineers and computer scientists to business

and marketing specialists. The primary goal of community detection is identifying densely

connected groups of network nodes and/or graph partitions that satisfy specific criteria such

as edge connectivity compactness [1, 8–11]. The community detection problem is a well-stud-

ied NP-complete graph partition problem [14–15], and researchers in multiple disciplines

have proposed various approaches to approximating community detection problem solutions.

In computer science, a large number of solutions involve evolutionary computation [16–30]

and artificial intelligence [31–33]. Complex network researchers initially used standard hierar-

chical clustering algorithms [2, 8–9], but eventually moved toward approaches based on mod-

ularity optimization [8, 32, 34–35], label propagation [36–41], data mining [42–44], and

information theory [45–46]. Others have used density-based [47–48] and topology-based [49]

algorithms.

Modularity [1, 10–11, 32] (a widely used measure for evaluating community structure qual-

ity when a network lacks a ground-truth community) involves evaluations of edge densities

within and across communities, with higher modularity values indicating stronger community

structures or better network partition quality. Thus, modularity can be used as a fitness func-

tion in evolutionary computation approaches, or as an objective optimization function for

finding optimum community detection solutions. However, care must be taken to identify and

respond to resolution limit problems [41, 50] that can arise when a community’s small size

makes it a likely candidate for absorption by a larger community. Methods that use modularity

for fitness or objective functions tend to experience resolution limit problems.

Normalized mutual information (NMI) [51] is a preferred approach for verifying the cor-

rectness of algorithm-identified community structures when a network has a ground-truth

community partition for calculating similarities between actual and identified partitions. Since

the Lancichinetti-Fortunato-Radicchi (LFR) benchmark model [52–53] generates networks

with actual partitions, a combined NMI-LFR benchmark network approach can be used to

examine an algorithm’s identification capabilities. Further, NMI can be used to test whether

an algorithm mitigates resolution limit problems according to predefined synthetic networks

(e.g., Clique-ring and Clique-pair networks) [41, 50]. However, most real-world networks lack

partitions, and networks with ground-truth communities are rare.

Theoretical benchmarks and actual network partitions can be used in combination to deter-

mine the ability of an algorithm to produce correct community detection results. One algo-

rithm may be better than another for LFR benchmark networks, but not for real networks. In

other cases, an algorithm may successfully mitigate resolution limit problems in one kind of

synthetic network, but not in another. We believe that community detection algorithms should

satisfy four criteria: (a) effectiveness in terms of producing high NMI and modularity values,

using well-known social networks for testing; (b) examination, meaning the ability to examine

resolution limits using NMI values and synthetic networks; (c) correctness, meaning the ability

to identify useful community structure results in terms of NMI values and LFR benchmark

networks; and (d) scalability, or the ability to produce comparable modularity values with fast

execution times when working with large-scale real-world networks.

A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies
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In this paper we will apply rule-based strategies to community detection tasks, and offer

alternative strategies for identifying network community structures. We will also describe our

proposal for a simple hierarchical arc-merging (HAM) algorithm that includes a measure for

computing the similarities (weights) of adjacent nodes connected by an edge, and for ranking

edges based on these weights. There are at least five advantages to using a rule-based HAM

algorithm: strategies are easy to implement because they primarily use if-else code statements;

rule structures for tasks such as edge merging are explicit; rule-based programs are efficient

because they only need to check rule-defined situations; the HAM algorithms have higher

community detection resolution; and they can be extended to node-based methods.

To validate the proposed HAM algorithm according to the four criteria described above, we

used five well-studied social network datasets to test community detection (effectiveness crite-

rion), two synthetic networks to examine its susceptibility to resolution limit problems (exami-

nation criterion), eight sets of LFR benchmark networks to identify ground-truth community

structures (correctness criterion), and eight large-scale real-world complex networks to mea-

sure performance (scalability criterion). Our experimental results indicate that the proposed

HAM algorithm is capable of producing high NMI and modularity values for identified com-

munity structures, and that those structures are similar to ground-truth community structures

in social and LFR benchmark networks, thereby reducing the potential for two kinds of resolu-

tion limit problems in synthetic networks. At the same time it produces comparable modular-

ity values for identified community structures, and satisfactory performance for large-scale

real-world complex networks.

Background

To represent a network, let an undirected and weighted graph G = (V,E,W), where V is the

node set, E the edge set, andW the edge weight. |V| denotes the number of nodes, |E| the num-

ber of edges, and |W| the sum of all edge weights. Network topology is represented as an adja-

cency matrix A = {aij} and aij 2 Rn, where aij = 1 if an edge eij exists between nodes i and j,
otherwise aij = 0. wij = wji denotes the weight of an edge eij, where wij = 1 if nodes i and j in a

network are identical and aij = 1, otherwise wij = 0.

Similarity measures

To capture network topology information for weighted networks for community detection

tasks, similarity measures are generally used to determine edge weights and network character-

istics for the purpose of identifying dense structures [54]. The most common approach for

determining weight wij of an edge eij is to calculate the number of common neighbors—that is,

wij = wji = Scn(i,j), as in (1). A high weight indicates a high degree of similarity and structural

equivalence (i.e., connected nodes sharing large numbers of common neighbors). Scn can be

extended to various similarity measures by dividing different denominator forms such as

cosine similarity, the Jaccard index, and minimum similarity, respectively defined as

Scnði; jÞ ¼ jGðiÞ \ GðjÞj ð1Þ

Scosine i; jð Þ ¼
jGðiÞ \ GðjÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jGðiÞjjGðjÞj

p ð2Þ

SJaccard i; jð Þ ¼
jGðiÞ \ GðjÞj
jGðiÞ [ GðjÞj

ð3Þ

A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0187603 November 9, 2017 3 / 30

https://doi.org/10.1371/journal.pone.0187603


Smin i; jð Þ ¼
jGðiÞ \ GðjÞj

minðjGðiÞj; jGðjÞjÞ
ð4Þ

where Γ(i) is the neighbor set of node i, Γ(j) the neighbor set of node j, |Γ(i)| the neighbor

number of node i, |Γ(j)| the neighbor number of node j, andmin(x,y) a minimum-value

retrieval function.

Community detection approaches

As mentioned above, researchers in many disciplines have proposed approaches for finding

approximate solutions for community detection problems. Computer scientists have offered

evolutionary computation approaches such as single-objective (e.g., Meme-Net, MIGA and

TPEF) [16–17, 27, 29] and multiple-objective evolutionary algorithms (EAs) (e.g., GANet,

MOGA-Net, MOEA/D-Net and APMOEA) [18–20, 23–26, 28], ant colony optimization (e.g.,

ACCFP) [21–22], and particle swarm optimization (e.g., MODPSO) [19, 30]. Proposed artifi-

cial intelligence approaches include greedy algorithms [32] and simulated annealing (SA) [31].

All of these methods have been used to address community detection problems.

In complex network research, Girvan–Newman (GN) [2] and Fast–Newman (FN) [32]

algorithms were initially applied to common community detection problems using hierarchi-

cal clustering and greedy searches. This was followed by several modularity optimization

approaches (e.g., CNM [8] and Louvain method [34]) to finding approximate solutions by

merging pairs of nodes (or communities) according to the maximum Q of a modularity mea-

sure or modularity density [55]. Some researchers then proposed label propagation approaches

(e.g., LPA [36], LPAm [37], LPAm+ [38], sub-community integration [39], CenLP [40], LPW

[49] and Core-Nodes based LAP [56]) in which node labels are propagated throughout entire

networks, with nodes assigned to communities based on the maximum number of neighbor-

ing labels, and with community structures identified until a steady level of label propagation is

achieved.

Data mining approaches have been adapted to handle non-overlapping (e.g., k-medoids

[42]) and overlapping (e.g., fuzzy c-means [43] and rough-fuzzy [44]) community detection

problems in which certain nodes belong to multiple communities. Infomap [45], an informa-

tion theory approach, uses random walk and Huffman coding methods to reveal a network’s

community structures by minimizing its map equation—that is, its movement entropies

between and within modules. Two density-based approaches, DenShrink [47] and ImDS [48],

use similarity measures to calculate edge similarities, to extract topology characteristics from a

network, and to identify community structures by merging or shrinking pairs of nodes accord-

ing to degrees of similarity among edges.

Community detection validation

Accurately measuring network partition quality is an important issue in light of the large num-

ber of potential partitions. Modularity and NMI measures depend on the presence or absence

of a ground-truth community. When none exists, modularity [1, 10–11, 32] is often used as a

fitness or objective function for evaluating community structure quality. A meaningful net-

work partition contains many intra-community edges, but only a small number of inter-com-

munity edges. The term “meaningful” indicates that for an identified community and its

randomized version, the number of intra-community connections should exceed the expected

value of randomized intra-community connections, with both identified and randomized

communities having the same degree sequences or numbers of nodes and edges. Thus, a
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randomized network is often used as a modularity null model. For any given network withM
communities, modularity Q is defined as

Q ¼
PM

i¼1
ðεii � a2

i Þ ¼
PM

i¼1

li
jEj
�

di
2jEj

� �2
 !

ð5Þ

where εii is the fraction of edges connected to endpoints in the same community i, αi the frac-

tion of edges connected to endpoints in community i, li the number of edges with two end-

points within community i, and di the summed degree of nodes in community i. A higher

modularity value indicates better community structure quality. Unfortunately, resolution lim-

its are a serious problem inherent to modularity [50]. In modularity optimization algorithms,

small community size increases the potential of any community being absorbed into a larger

community, thereby increasing the potential for overlooking important network substruc-

tures. Researchers who use modularity alone to identify communities should therefore con-

sider ways of avoiding resolution limits.

For cases where ground-truth communities are present, the NMI [51] and LFR benchmark

models [52–53] can be used to measure community structure quality associated with an algo-

rithm—that is, they can be used to calculate levels of similarity between actual A partitions and

identified B partitions. Here NMI is defined as

NMI A;Bð Þ ¼
� 2
PCA

i¼1

PCB
j¼1

NijN
Ni:N:j

PCA
i¼1
Ni:log

Ni:
N þ

PCB
j¼1
N:jlog

N:j
N

ð6Þ

where CA is the number of actual communities, CB the number of identified communities, N a

confusion matrix, Nij the number of nodes shared in common between communities CA and

CB, Ni. the sum over row i of matrix N, and Ni. the sum over column j of matrix N. The NMI

value range is between 0 and 1. If NMI(X,Y) = 1, the two partitions are considered identical,

otherwise they are considered independent. A combination of NMI and two kinds of prede-

fined synthetic networks (Clique rings and Clique pairs networks [51]) can be used to deter-

mine whether an algorithm suffers from a resolution limit problem.

In order to satisfy the four criteria, we developed a four-part process to determine the

appropriateness of a community detection algorithm. For the effectiveness criterion, a mix of

five social networks, one small-scale LFR benchmark network, and multiple modularity and

NMI measures were used to analyze the quality of identified community structures. For the

examination criterion, two kinds of synthetic networks and a NMI measure were used to

determine the presence of a resolution limit problem. For the correctness criterion, LFR

benchmark networks and a NMI measure were used to verify the quality of identified commu-

nity structures compared to an actual partition. For the scalability criterion, eight large-scale

real-world complex networks and a modularity measure were used to analyze community

structure quality and performance efficiency (e.g., execution time analysis).

Method

Consisting of an original network phase and a super-node network phase (Fig 1), our proposed

HAM algorithm uses network topologies and rule-based arc-merging strategies to identify

community structures. In the original network phase, a similarity measure is used to calculate

edge weights and to obtain network topology information, after which rule-based strategies

are used to identify major communities and to preprocess a super-node network structure.

During the super-node network phase, the combination of a proposed modularity optimiza-

tion equation and rule-based strategies is applied to construct the entire super-node network

A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies
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structure. HAM stops and returns community detection results when network modularity can

no longer be improved.

Rule-based arc-merging strategies

The hierarchical arc-merging (edge- or node-merging) mechanism has been widely used for

designing community detection algorithms [2, 8, 32, 34, 47–48]. It can be explicitly defined in

terms of corresponding rule-based arc-merging strategies—that is, one strategy can be used to

identify communities, and another to connect them. We established five arc-merging rules

that can be combined to create different strategies. For each edge eij = (vi,vj) 2 E and vi,vj 2 V,

the arc-merging rules are defined as:

R1: Create a super-node sn that merges endpoints vi and vj.

R2: If endpoint vi is unmerged but endpoint vj is merged with a super-node sj, then merge vi
with the super-node snj (or retain vi as a super-node sni).

R3: If endpoint vi is merged with super-node si but endpoint vj remains unmerged, then merge

vj with super-node sni (or retain vj as a super-node snj).

R4: Retain vi and vj as super-nodes sni and snj.

R5: Otherwise, do not merge vi and vj.

We used these rules to construct three kinds of strategies: community-creating (T1, which

uses R1, R2, R3 and R5), structure maintenance (T2, which uses R2, R3, R4 and R5), and sink-

shrinking (T3, which uses R2, R3 and R5). Details regarding the application of rule-based strat-

egies for each HAM phase are presented as S1 File.

Fig 1. HAM community detection architecture.

https://doi.org/10.1371/journal.pone.0187603.g001
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Original network phase

Building on previous community detection studies [34–36, 38, 47], we believe that the charac-

teristics of community structures can be captured by an explicit (deterministic) procedure.

Hence, in the original network phase of HAM, we added a procedure consisting of calculating

edge weights, classifying edges according to their weights, and merging edge endpoints accord-

ing to a rule-based strategy for community detection. After calculating the edge weights or

similarities of two endpoints and identifying the dense or loose parts of network components,

component edges are classified as weighted-edge EW, bridge EB, or sink ES. These three edge

classes are defined as:

EW ¼ feijjwij > 0g ð7Þ

EB ¼ feijjwij ¼ 0; ki > 1 and kj > 1g ð8Þ

ES ¼ feijjwij ¼ 0; ki ¼ 1 or kj ¼ 1g ð9Þ

where ki is the degree of node i and kj the degree of node j. V = V(EW) [ V(EB) [ V(ES) and

E = EW [ EB [ ES, where V(EW) is the weighted-edge node set, V(EB) the bridge-edge node set,

and V(ES) the sink-edge node set.

After classifying edge weights (Fig 2), EW weighted edges are said to have greater similarity

and higher summed node degrees, indicating that they are within the denser parts of commu-

nities—see, for example, edges (4, 5), (9, 10) and (12, 13) in Fig 2. Further, EB bridge edges

have higher degrees of either or both endpoints, indicating that they connect different commu-

nities—see edges (6, 8) and (7, 11) in the figure. Otherwise, the edges might be one part of a

long bridge consisting of multiple edges. ES sink-edges such as (1, 4), (2, 4) and (3, 4) have only

single community connections.

Next, weighted-edge and bridge-edge classes are sorted and arranged in decreasing order

according to two indexes: edge weight wij and the ki + kj summed degree of edge endpoints.

An edge with high weight wij is perceived as having shared endpoints with a large number of

neighbors, perhaps serving as the center of a community, group, or clique. However, the size

of this community is unknown—it could be large or small. Accordingly, edge sorting involving

wij weights and ki + kj summed degrees in decreasing order represents edge priorities in a

small community. High-priority edges in such sequences are considered candidates for com-

munity foci.

To give an example, assume that edges ex and ey have identical weights as determined by

minimum similarities (wx = 3/min(4,5) = 0.75 and wy = 15/min(20,25) = 0.75), but with differ-

ent ki + kj values (9 and 45, respectively). Although the two edges have identical proportions of

common neighbors, in terms of neighbor endpoint connections edge ey likely captures more

community information, and is therefore preferred for merging purposes early in the arc-

merging process. Hence, an edge with a higher ki + kj value should be promoted and its prior-

ity increased in any sequence that is sorted during the arc-merging process in the original net-

work phase. For the bridge-edge class, any edge with a high ki + kj should be considered an

important bridge for connecting two communities, and therefore be given a higher priority

during the arc-merging process.

According to this procedure, community structures are constructed from densest-to-loosest

according to the order of sorted edges plus three rule-based strategies:

1. For EW edges, the T1 community-creating strategy is used to merge the endpoints of edges

into super-nodes for use as seeds (R1), to attract unmerged nodes located close to these

A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies
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Fig 2. Edge classification results for a toy network. (a) The network, (b) after calculating similarities, (c)

after classifying edges.

https://doi.org/10.1371/journal.pone.0187603.g002
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seeds (R2 and R3), and to handle all other cases tied to creating edges for constructing net-

work structure (R5). After T1 is completed, a preprocessed high-level network structure

consisting of super-nodes is created.

2. For EB edges, the T2 structure maintenance strategy is used to create edges for connecting

isolated communities (R4), to attract nearby nodes with one edge endpoint that is already

inside a community (R2 and R3), and to handle all other cases (R5). All isolated communi-

ties are connected after applying T2.

3. For ES edges, the T3 sink-shrinking strategy is used to handle edges with edge endpoints

(either one) of 1 degree (i.e., di = 1 or dj = 1), and to address all other cases (R5). Although

the functionality of T3 is part of strategy T2, we will consider T3 as independent for pur-

poses of describing the HAM rule-based strategy.

Super-node network phase

The procedure for the super-node network phase is similar to that for the original network

phase. After edge similarity is measured in terms of the summed weights of all edges between

two super nodes, modularity optimization is applied to determine whether any edge endpoint

pairs should be merged into a high-level super-node based on a calculation of the ΔQ value of

edges contributing to network modularity. The summed weight and ΔQ equations are

expressed as

ŵij ¼
P

vi 2 mi; vj 2 mj;

vi 6¼ vj 2 V

wij ð10Þ

DQij ¼ Qmij
� Qmi

� Qmj

¼
lij
jEj
�

dij
2jEj

� �2
" #

�
li
jEj
�

di
2jEj

� �2
" #

�
lj
jEj
�

dj
2jEj

� �2
" #

¼
ðlij � li � ljÞ
jEj

�
ðd2

ij � d
2
i � d

2
j Þ

4jEj2

¼
1

jEj
lij � li � lj
� �

�
1

4jEj
d2

ij � d
2

i � d
2

j

� �� �

ð11Þ

wheremi is community (or super-node) i, ŵij the summed weights of edges between communi-

tiesmi andmj, ΔQij the incremental value of modularity as contributed by edge eij,Qmij
the par-

tial modularity value after merging communitiesmi andmj,Qmi
the partial modularity value

before merging communitymi, lij the number of edges in merged communitymij, li the number

of edges in communitymi, dij the summed degree of nodes in merged communitymij, and di
the summed degree of nodes in communitymi. If lij = li + lj + |eij|, then (11) can be simplified as

DQij ¼
1

jEj
eij �

1

4jEj
d2

ij � d
2

i � d
2

j

� �� �

ð12Þ

where (according to formulas 11 and 12) network topology information (i.e., lij, li, lj, dij, di, dj
and |eij|) is used for delta-Q calculations. This information, which is updated during the arc-

merging process, can be applied immediately. Weighted network information only uses edge

weights wij in the original network phase and summed weights ŵij in the super-node network

phase for sorting edges in decreasing order.
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After calculating their summed weights and ΔQ values, edges are classified as deltaQ-edge

EΔQ or bypass-edge EP. EΔQ denotes a set of edges with ΔQij values greater than zero—in other

words, the merging of two edge endpoints carries the potential to increase the ΔQ of the entire

network and improve community structure quality. EP consists of a set of unmerged edges.

The two classes are defined as

EDQ ¼ feijjŵij > 0 and DQij > 0g ð13Þ

EP ¼ feijjðŵij � 0 and DQij � 0Þ or ðŵij ¼ 0 and DQij � 0Þg ð14Þ

Following edge classification in the super-node network phase, EΔQ edges have higher

weights and ΔQ values, indicating their positions between two dense components and their

ability to increase the incremental ΔQ value of the entire network. EP edges are only used to

maintain the super-node network structure. Next, EΔQ-class edges are sorted and arranged in

decreasing order according to two indexes: the ΔQij value of edges and the ŵij summed weights

of edges. After sorting, the T1 and T2 rule-based strategies are used to create and maintain a

high-level super-node network structure. For EΔQ edges, T1 is used to create super-nodes as

seeds for attracting unmerged nodes that are close to the super-node, as well as to handle all

other cases. After executing T1, a preprocessed high-level network structure is created. For EB

edges, T2 is used to create edges for connecting various communities, to attract nodes that are

close to communities, and to handle all other cases. After executing T2, a high-level super-

node network is completed.

The proposed algorithm

A HAM flowchart is presented as Fig 3 and details presented as Algorithm 1. For any given

network G, a set of neighbors for each node in the original network is created, a similarity mea-

sure is used to calculate edge weights, and the original network is appended to the network list.

During the original network phase, an empty networkH is created as a super-node network

for further construction. Next, edges are classified as EW, EB or ES. Three rule-based strategies

(Algorithms A1-3 in S1 File) are applied during the original network phase: a strategy for cre-

ating communities, a maintenance strategy for connecting communities, and a sink-shrinking

strategy for handling the edge endpoints with node degree ki = 1. After applying these strate-

gies, all member-node information for the super-node network is refined. The constructed

super-node network is preserved and appended to the network list. As part of the super-node

network phase, an empty super-node network is created, ΔQij edge values are calculated, and

edges are classified as EΔQ or EP. Two rule-based strategies (Algorithms A4-5 in S1 File) are

used to merge super-nodes and to construct a high-level super-node network structure, after

which member-node information is refined and used to calculate network modularity values.

HAM continues this arc-merging procedure until the ΔQ increment of the entire network is

below a threshold, or until there are no more ΔQ edges. Last, community structures are identi-

fied. See S2 File for a step-by-step example.

Algorithm 1. Hierarchical arc-merging (HAM) algorithm

Time complexity. Time complexity analyses begin with node and edge pre-processing

(steps 1 to 9) according to O(hki � V) and O(E). The subsequent original network phase (steps

11 to 20) entails (a) the creation of member-node information using O(V), and (b) edge classi-

fication and sorting. Briefly, edge classification entails O(E + E
�

logE
�

), where E
�

depends on EW

or EB, and where three rule-based strategies utilize O(c � E), with c denoting the cost of merging
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Fig 3. HAM algorithm flowchart.

https://doi.org/10.1371/journal.pone.0187603.g003

A community detection algorithm using network topologies and rule-based hierarchical arc-merging strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0187603 November 9, 2017 11 / 30

https://doi.org/10.1371/journal.pone.0187603.g003
https://doi.org/10.1371/journal.pone.0187603


nodes. The third part of time complexity analysis is a super-node network phase (steps 22 to

28), in which member-node information uses O(V0), with V0 denoting the nodes of super-

node network G (step 35). Edge classification uses O(E0 + EΔQlogEΔQ), with E0 denoting the

edges of super-node network G, and EΔQ denoting ΔQ edges. Both rule-based strategies use O
(c � E0). The final time complexity analysis step usesO(V@) to refine member-node information,

and O(M) to calculate the modularity value of super-node networkH. For any given network,

the HAM while loop runs L0 times (step 10) at a cost ofO(L0). The time complexity of the origi-

nal network phase dominates the O(E
�

logE
�

) HAM community detection process, hence the

overall time complexity of HAM does not exceed O(L0 � E
�

logE
�

). For extreme sorted edge

cases, the overall time complexity of HAM does not exceed O(L0 � E), meaning that the edge-

sorting step is ignored. A step-by-step example of HAM time complexity estimation is shown

as S3 File.

Experimental results

We used two well-studied methods to establish HAM identification accuracy and performance

efficiency baselines that fit with the four criteria: the Louvain method, which has a reputation

for dealing successfully with a network consisting of 1 billion edges using a PC machine [34],

and the Infomap information theory-based method, based on its history of producing opti-

mum NMI results for LFR benchmark networks [45]. We designed experiments to compare

HAM with the CNM [8] and Louvain modularity optimization methods, Infomap, and

DenShrink (DS, a density-based method) [47]. All four are frequently used in community

detection comparison experiments. They were implemented using the C (CNM) or C++ (Lou-

vain, Infomap and DS) programming languages. Our proposed method was created with

Python to take advantage of its code readability and package support characteristics, while

accepting the disadvantage of slower execution times compared to C and C++. Our HAM

python program is downloadable at https://github.com/yuhsiangfu/Hierarchical-Arc-

Merging.

Datasets

For the effectiveness criterion we used five well-studied social networks and one small-scale

LFR benchmark network with ground-truth communities to verify community detection

results in terms of matches between identified and actual communities. For the examination

criterion, two synthetic networks were used to identify algorithm-associated resolution limit

problems, if any. For the correctness criterion, we used the LFR model [52–53] to generate

synthesized networks with different community structure properties, as well as to test the accu-

racy of algorithm-identified community structures. For the scalability criterion, eight large

real-world networks were used to test performance efficiency. The giant connected component

(GCC) of the social, synthetic, small-scale benchmark, and large-scale real-world networks

used in our experiments is shown in Table 1.

The five well-studied social networks used in this project are also listed in Table 1. The

Zachary Karate Club network consists of 34 nodes (club members) and 78 edges (cross-mem-

ber friendships) [57]. A split occurred due to a disagreement between the club’s administrator

and instructor; the instructor left, taking one-half of the original members and creating a new

club. The Dolphins network consists of 62 bottlenose dolphins living in Doubtful Sound, New

Zealand. Based on observations between 1994 and 2001, 159 interactions between dolphin

pairs took place, more than would be predicted by chance [58]. This network can be divided

into two groups based on the departure of one key individual. The U.S. college football net-

work consists of 115 teams and 613 games played during the 2000 season [2], with nodes
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representing teams and edges games played between teams. The teams are divided into 12 con-

ferences, and play more games against conference than non-conference opponents. The politi-

cal book network [59] consists of the purchase histories of customers who bought books on

political topics from the Amazon.com website. Nodes indicate books (105) and edges co-pur-

chasing relationships in which users bought more than one book (441). Purchased books were

classified as conservative, neutral or liberal. The political blogs network [60] consists of 1,222

blogs about the 2004 American presidential election and 16,714 links among them. The blogs

were manually divided into conservative and liberal categories.

The two synthetic networks shown in Table 1 were used to determine the presence of reso-

lution limit problems [51]. The Clique-ring synthetic network consists of a ring of w cliques

(with w an even number) connected by a single edge. Each clique is a complete Kp graph con-

sisting of p nodes and [p(p − 1)]/2 edges. The Clique-pair synthetic network consists of two Kp
(part one) and two Kq complete graphs (part two), both connected by single edges. Each part

one clique is connected to two part two cliques. Clique-ring parameters are p = 5 and r = 30

(150 nodes and 330 edges). Clique-pair parameters are p = 20 and q = 5 (50 nodes and 404

edges).

One assumption of the LFR model is that node degree and community size follow a power-

law distribution with the following parameters: γ, degree distribution exponent; β, community

size distribution exponent; kmax and kmin, upper and lower node degree boundaries, respec-

tively; zmax and zmin, community size constraints; mixing parameter u, the proportion of nodes

sharing links with the nodes of other communities; and 1 − u, the proportion of nodes sharing

links with other nodes in the same community. The LFR parameters used in this study are

shown in Table 2 [16, 47, 53]. The mixing parameter u range was between 0.1 and 0.8 (0.05

increments). The LFR model generated 30 synthesized networks for each u. The small-scale

LFR benchmark network described above was generated with 300 nodes and u = 0.05 (Table 1).

The eight large-scale real-world networks [61] can be further divided into the three large

(|V| = 1000*10000) and five very large (|V|� 10000) real network groups shown in Table 1.

Table 1. Giant connected component (GCC) of network statistics sorted by number of edges.

Dataset |V| |E| hCci hki kmax r

Karate 34 78 0.5706 4.5882 17 -0.4756

Dolphins 62 159 0.2590 5.1290 12 -0.0436

Clique-ring-m = 5_n = 30 150 330 0.8800 4.4000 6 0.0833

Clique-pair-m = 20_p = 5 50 404 0.9600 16.1600 20 0.9410

Polbooks 105 441 0.4875 8.4000 25 -0.1279

Football 115 613 0.4032 10.6609 12 0.1624

LFR-benchmark-n = 300-u = 0.05 300 2209 0.5538 14.7267 49 -0.1262

Polblogs 1222 16714 0.3203 27.3552 351 -0.2213

Email-contacts 12625 20362 0.1088 3.2257 576 -0.3867

Brightkite 56739 212945 0.1734 7.5061 1134 0.0096

Com-youtube 51204 317393 0.1750 12.3972 1928 -0.0586

Com-amazon 315819 870161 0.3990 5.5105 548 -0.0572

Com-DBLP 260691 949360 0.6457 7.2834 343 0.2599

Loc-gowalla 196591 950327 0.2367 9.6681 14730 -0.0293

Web-google 855802 4291352 0.5190 10.0288 6332 -0.0555

Wiki-talk 2388953 4656682 0.0527 3.8985 100029 *

* Memory error in Numpy.

hCci, average clustering coefficient; hki, average node degree; kmax, maximal node degree; r, assortativity.

https://doi.org/10.1371/journal.pone.0187603.t001
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The three large networks were (a) Email-contact, consisting of messages sent and received

between email accounts at the Computer Sciences Department of London’s Global University;

(b) Brightkite, representing users and friendships within a location-based social networking

service; and (c) Com-youtube, representing users of and friendships made via the YouTube

video-sharing website. The five very large networks were (a) the Com-amazon network, con-

sisting of customer co-purchasing behaviors on the Amazon.com website; (b) the Com-DBLP

network, representing authors and co-author publications found in a computer science bibli-

ography database; (c) the Loc-gowalla network, consisting of users and friendships within a

location-based social networking website; (d) the Web-google network, consisting of web

pages and hyperlinks between web pages; and (e) Wiki-talk, representing Wikipedia users and

their co-editor communications.

Results

Experimental results for the effectiveness and examination criteria are shown in Table 3. The

modularity, NMI, and execution time data for each method represent averages for 30 runs.

Table 2. LFR benchmark network parameters.

Dataset |V| |E| γ β hki kmax zmin zmax μ
1000 (S) 1000 20000 2 1 20 50 10 50 [0.1, 0.8]

1000 (B) 1000 20000 2 1 20 50 20 100 [0.1, 0.8]

5000 (S) 5000 100000 2 1 20 50 10 50 [0.1, 0.8]

5000 (B) 5000 100000 2 1 20 50 20 100 [0.1, 0.8]

10000 (S) 10000 200000 2 1 20 50 20 50 [0.1, 0.8]

10000 (B) 10000 400000 2 1 40 100 50 100 [0.1, 0.8]

50000 (S) 50000 2000000 2 1 40 100 50 100 [0.1, 0.8]

50000 (B) 50000 2000000 2 1 40 200 100 200 [0.1, 0.8]

(S), small community size.

(B), big community size.

https://doi.org/10.1371/journal.pone.0187603.t002

Table 3. Results for social, synthetic and LFR networks.

Network Karate Dolphins Football Polbooks

Measure NMI Q T-avg T-std NMI Q T-avg T-std NMI Q T-avg T-std NMI Q T-avg T-std

Louvain 0.6176 0.4188 0.0291 0.0053 0.5636 0.5185 0.0307 0.0028 0.8909 0.6046 0.0307 0.0028 0.5122 0.5266 0.0307 0.0028

CNM 0.7069 0.3807 0.0421 0.0071 0.6020 0.4955 0.0562 0.0086 0.7698 0.5773 0.0728 0.0093 0.5314 0.5020 0.0671 0.0071

DS 0.6301 0.4156 0.0515 0.0071 0.5766 0.4889 0.0504 0.0066 0.9096 0.6032 0.0629 0.0049 0.5145 0.5042 0.0598 0.0071

INFOMAP 0.7112 0.4020 0.0395 0.0078 0.6441 0.5285 0.0432 0.0066 0.9242 0.6005 0.0582 0.0069 0.5413 0.5268 0.0530 0.0076

HAMMin 1.0000 0.3715 0.0005 0.0028 0.6132 0.5228 0.0016 0.0047 0.9018 0.5551 0.0062 0.0076 0.5646 0.5199 0.0026 0.0058

Network Polblogs LFR-benchmark-n = 300-u = 0.05 Clique-ring-m = 5-n = 30 Clique-pair-m = 20-p = 5

Measure NMI Q T-avg T-std NMI Q T-avg T-std NMI Q T-avg T-std NMI Q T-avg T-std

Louvain 0.6505 0.4269 0.0473 0.0028 1.0000 0.8062 0.0322 0.0039 0.8923 0.8879 0.0317 0.0049 0.9401 0.5426 0.0307 0.0028

CNM 0.6609 0.4269 0.7842 0.0867 1.0000 0.8062 0.1404 0.0201 0.9074 0.8863 0.0816 0.0112 0.9401 0.5426 0.0510 0.0080

DS 0.3173 0.0649 0.9230 0.0156 1.0000 0.8062 0.1284 0.0077 1.0000 0.8758 0.0577 0.0071 1.0000 0.5416 0.0608 0.0074

INFOMAP 0.5431 0.4245 0.3895 0.0148 1.0000 0.8062 0.0790 0.0056 0.7258 0.8152 0.0588 0.0077 1.0000 0.5416 0.0390 0.0078

HAMMin 0.7125 0.4252 0.1352 0.0109 1.0000 0.8062 0.0146 0.0056 1.0000 0.8758 0.0016 0.0047 1.0000 0.5416 0.0021 0.0053

Bold, best result.

Bold and italics, second-best result.

Subscript, similarity measure used in HAM.

https://doi.org/10.1371/journal.pone.0187603.t003
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The first part of the table contains results for five well-studied social networks and one small-

scale LFR benchmark network. Modularity and NMI measures were used to verify the correct-

ness of community detection results produced by the various methods.

For the ground-truth community NMI results, the HAM algorithm produced the highest

NMI values according to the minimum similarity measure among the Karate, Polbooks, Pol-

blogs, and small-scale LFR benchmark networks—that is, the identified community structures

were the closest (or identical) to those of the networks’ ground-truth communities. Infomap

had the highest NMI values for the Dolphins, College Football, and small-scale LFR benchmark

networks. For modularity results, when ground-truth communities were removed, the Louvain

method had the highest modularity values for the Karate, Football, Polblogs and small-scale

LFR benchmark networks. Infomap had the highest modularity values for the Dolphins and

Polbooks networks. At best, HAM performance for modularity can only be considered satisfac-

tory. For execution time results, HAM unexpectedly had the fastest performance efficiency for

all six small-scale networks, including the Louvain method. Further, we found that different

methods produced the highest NMI or modularity values, but whenever a method concurrently

produced the highest values for both NMI and modularity (e.g., the Dolphin and small-scale

LFR benchmark networks using Infomap), actual community sizes were approximately equal.

Results for two kinds of synthetic networks are presented in the second part of Table 3,

with modularity and NMI measures used to determine the presence, if any, of resolution limit

problems. HAM and DS had the highest NMI values (equal to 1) for the two networks, indicat-

ing that the resolution limit problems had been mitigated to a certain degree, and that commu-

nity structures were correctly identified. In comparison, the Louvain method produced the

highest modularity results for the two synthetic networks, indicating the presence of resolution

limit problems. The unstable results produced by Infomap indicate uncertainty regarding their

presence.

For the correctness criterion, the LFR model was used to generate 30 benchmark networks

for each u (450 networks total). The results shown in Fig 4 represent averages for all 30. The

NMI measure was used to verify the correctness of identified community detection results.

Regarding HAM similarity settings, we used 50000S and 50000B LFR benchmark networks

to determine which similarity measures should be applied in our experiments, and found that

all three resulted in similar NMI values, but with markedly different execution times. We

observed that the minimum similarity measure resulted in the fastest execution times, that the

cosine similarity measure performed as fast as the minimum similarity measure, and that the

Jaccard index was the slowest. Based on the NMI and execution time results, we decided to use

the cosine similarity measure in our experiments. Similarity comparison data for other LFR

benchmark networks are presented in S4 File.

NMI and execution time results for LFR benchmark networks are shown in Figs 5 and 6,

and detailed NMI and execution time data are presented in S5 and S6 Files. One CNM run

required more than one hour for each u value for all 30 networks. Accordingly, generating

results for all LFR benchmark network sets would require many hours or days of computing

time. Due to a memory allocation error (“std::bad_alloc”) during DS execution, CNM and DS

results are not shown in Figs 5G, 5H, 6G or 6H. As shown, for each method the overall NMI

value decreased when u increased, meaning that the community structures became less distinct

as the number of in-between edges increased, making community structures more difficult for

algorithms to identify. NMI results from various methods were much closer to each other

when u� 0.5. NMI values produced by Infomap dropped sharply when u� 0.6 (e.g., 1000S)

or u� 0.55 (e.g., 1000B), indicating that the network structure information may have been

insufficient for random walkers to capture indistinct community structures. Similar decreases

have been reported by other researchers [18–19, 28, 39, 53]. In contrast, when network
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structure information was sufficient (e.g., 5000S/B to 50000S/B), Infomap performed well in

cases with u = 0.1*0.8 ranges of distinct/indistinct community structures. In those cases,

Infomap NMI results were best for the LFR benchmark networks (6 of 8 sets) (Tables I-M in

S5 File).

Regarding cosine similarity, our NMI results indicate that HAM successfully identified

community structures that were close (e.g., u� 0.6 in 1000S/B or u� 0.5 in 5000S/B) or iden-

tical to actual structures (e.g., u� 0.7 in 10000S/B to 50000S/B). Compared to those produced

by the Louvain method, HAM results were close (e.g., u = 0.6*0.7 for 1000S and 5000B) or

better (e.g., u� 0.1 for 5000S and 10000S/B to 50000S/B). HAM results were significantly bet-

ter than those produced by CNM and DS in terms of ground-truth community correctness.

Combined, the data indicate that HAM produced the second best NMI results for the LFR

benchmark networks (6 of 8 sets) (Tables I-M in S5 File).

According to the execution time results shown in Fig 6, the Louvain method had the best

performance efficiency among the LFR benchmark networks. Despite being constructed with

Fig 4. A comparison of similarities among the LFR benchmark networks used in this study. (a) 50000S, (b) 50000B.

https://doi.org/10.1371/journal.pone.0187603.g004
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an interpreted programming language, HAM still outperformed CNM, DS and Infomap. Info-

map’s performance efficiency results were satisfactory, with best NMI values produced when

u� 0.6. However, execution times increased sharply when u� 0.6, meaning that random

walkers required more time to find appropriate community structure boundaries. CNM exe-

cution time results indicate that the computing time required to identify the shortest paths

between all node pairs increased as u increased. The high peaks in the DS execution time

results may be due to an excessive number of choices for finding and merging micro-commu-

nities when u = 0.5.

Regarding the growth rate of execution time results (i.e., [t − tmin]/tmin), HAM exhibited

good stability in performance growth compared to the Louvain method when u = 0.1*0.8.

Infomap data indicate rapid growth when u� 0.6 (Fig 7). According to these findings, the

HAM algorithm was not significantly affected by small/large community sizes or distinct/

indistinct community structures. In contrast, the Louvain method and Infomap were affected

by increased u values. Although the Louvain method had the best performance efficiency, its

execution time growth rate increased quickly, producing execution time results that were close

to those produced by the HAM algorithm (e.g., u = 0.8 for the 10000B and 50000B LFR bench-

mark networks).

Data for the scalability criterion are shown in Table 4. Modularity and execution time

results for each method represent averages for 10 runs. Overall, only the Louvain method and

HAM could be applied to all of the large-scale real-world networks. Further, the Louvain

method produced the best modularity results for large-scale real-world networks such as

Email-contacts, Loc-gowalla, Web-google, and Wiki-talk for identifying community structures

in the absence of ground-truth communities. According to the cosine similarity measure,

HAM produced the best modularity results for the Brightkite, Com-youtube, and Com-ama-

zon networks, and was second best for large-scale real-world networks (S7 File). HAM modu-

larity results were close to or better than those produced by the Louvain method. In terms of

execution time, the Louvain method had the best performance efficiency for large-scale real-

world networks. In terms of performance efficiency, HAM was second, behind the Louvain

method. Its performance was considered satisfactory, despite the drawback that HAM was cre-

ated with an interpreted language (Table B in S7 File).

We also conducted multi-resolution analyses to compare HAM performance with mini-

mum, cosine, and Jaccard index similarity measures for small-scale social networks [62–67].

To execute a multi-resolution analysis, we introduced a tunable parameter as suggested by

Xiang et al. [68] and Arenas et al. [69]. In the original network phase, a weighted-edge is deter-

mined by edge weight wij> 0. We substituted a weight threshold for the 0 in formula 7—that

is, EW = {eij | wij> wthreshold}. Hence, edges were classified as weighted when their weights

exceeded a threshold, otherwise they were classified as bridge-edge or sink-edge.

In addition to using a weight threshold as a tunable parameter [68–69], we introduced sev-

eral communities and NMI values, and visualized the identified community structures. The

weight threshold value was established as wthreshold 2 [0,1], in increments of 0.01. Community

detection results produced by the HAM algorithm were collected for each threshold value. The

results shown in Figs 8 and 9 indicate that different similarity measures affected HAM’s com-

munity detection capabilities (e.g., different NMI curve trends). For example, the highest NMI

value for the Karate network (1.0) involved the minimum similarity measure, indicating that

the identified and ground-truth community structures were identical. In contrast, the highest

Fig 5. NMI results for the LFR benchmark networks used in this study. (a) 1000S, (b) 1000B, (c) 5000S, (d)

5000B, (e) 10000S, (f) 10000B, (g) 50000S, (h) 50000B.

https://doi.org/10.1371/journal.pone.0187603.g005
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NMI values for the Dolphins network (0.7769) were produced by both the cosine similarity

measure and the Jaccard index. The results also indicate that multi-resolution analysis can be

used to determine appropriate parameters (e.g., weight thresholds or tunability) for acquiring

useable community detection results. Multi-resolution analysis results for small-scale social

networks are shown in S8 File.

Summary and discussion

The underlying HAM rationale is based on observations from two kinds of synthetic networks

and related studies of resolution limit problems associated with community detection [51].

Since modularity approaches are not capable of identifying communities below certain scales,

there is a possibility that such communities are connected by single bridges or small numbers

of low-weight edges that can be identified via one or more combinations of a similarity mea-

sure and rule-based strategies. Further, a similarity measure can be used to calculate edge

weights in order to identify low-weight edges, including those located between communities.

The best rule-based strategy for merging nodes into super-nodes or for retaining nodes in

their own communities is determined by edge type—weighted, bridge, or sink. We therefore

designed a pre-processing original-network phase for partitioning networks into sub-commu-

nities based on weighted network structure. Because of the modularity maximization mecha-

nism, these sub-communities are merged.

The rule-based methods described in this paper focus on the use of network structure infor-

mation to extract important features from community structures. This observation can be

used to build corresponding arc-merging strategies. For example, in the original HAM net-

work phase we designed a three-step procedure for partitioning network community struc-

tures: edge classification for identifying different edge types, edge sorting for determining the

order of applying arc-merging strategies, and arc-merging strategies for merging edge end-

points according to edge type and sorting order. All three steps are based on community

Fig 6. Execution time results for the LFR benchmark networks used in this study. (a) 1000S, (b) 1000B, (c)

5000S, (d) 5000B, (e) 10000S, (f) 10000B, (g) 50000S, (h) 50000B.

https://doi.org/10.1371/journal.pone.0187603.g006

Fig 7. Execution time growth rate results for the LFR benchmark networks used in this study. (a) 50000S, (b) 50000B.

https://doi.org/10.1371/journal.pone.0187603.g007
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structure observations. Other researchers have used similar strategies to determine community

structure identification start points [40, 47, 63].

State-of-the-art methods can be analyzed, simplified and utilized based on their respective

advantages to create explicit rule-based strategies for community detection tasks. In cases of

overlapping communities [63–64], overlaps can be used to create corresponding rule-based

strategies for HAM extensions. The k-cliques of any given network can be merged as super-

node seeds during the original network phase, after which edge endpoints are merged into

super-nodes. In some instances of overlap, link-pair similarities can be utilized for HAM

extensions [65], and merged link-pair endpoints can serve as super-node seeds during initial

network phases. Afterwards, single edge endpoints can be merged into super-nodes. Nodes

belonging to multiple communities can be handled by a rule-based strategy involving the crea-

tion of duplicate nodes in individual communities.

According to our experimental data, there are two possible explanations for the capability

of the proposed HAM algorithm to mitigate resolution limit problems: (a) the similarity mea-

sure used to calculate edge weights (especially bridge edges), and (b) the strategy of using

bridge edges to maintain community structures. For example, in the Clique rings network, an

individual clique is connected to two smaller cliques via two individual bridge edges; a single

bridge edge also connects the smaller cliques to each other. Based on this example, we think

that any two communities (or groups or cliques) connected by bridge edges should be

retained, since merging them into new communities might increase overall modularity value.

Our execution time data indicate that the performance efficiency of HAM was satisfactory,

raising questions about which modifications could lead to improvement. Possibilities include

the addition of a more efficient sorting algorithm (e.g., a distributed sorting algorithm); a simi-

larity measure with lower computation costs such as a minimum similarity denominator (as

opposed to the Jaccard index denominator); simplifying defined rule structures in order to

reduce computation costs; and using compiled programming languages such as C and C+

+ rather than interpreted languages such as Python.

Table 4. Large scale real network results.

Network Email-contacts Brightkite Com-youtube Com-amazon

Measure Q T-avg T-std Q T-avg T-std Q T-avg T-std Q T-avg T-std

Louvain 0.6875 0.1295 0.0122 0.6609 0.8330 0.0125 0.0123 0.9188 0.0323 0.0000 6.4132 0.1611

CNM 0.6590 10.2258 1.2981 0.5963 328.2683 5.2576 0.5792 497.8858 1.7927 - - -

DS 0.3656 1.4430 0.0174 0.4880 58.1397 0.2177 0.2869 81.1186 0.3387 0.7983 1132.5838 5.0705

INFOMAP 0.1099 2.0124 0.0327 0.4000 33.4121 0.0707 0.4568 35.4838 0.1492 0.4348 232.5652 0.6746

HAMCosine 0.6691 0.1654 0.0076 0.6631 2.7394 0.0651 0.5926 4.3555 0.0548 0.8980 14.3317 0.0550

Network Com-DBLP Loc-gowalla Web-google Wiki-talk

Measure Q T-avg T-std Q T-avg T-std Q T-avg T-std Q T-avg T-std

Louvain 0.8083 5.3992 0.0465 0.6845 3.3852 0.0242 0.9774 19.9524 0.3932 0.5837 23.5389 0.4411

CNM - - - - - - - - - - - -

DS 0.6459 798.4390 8.0639 0.4393 855.8750 4.2060 * * * * * *

INFOMAP 0.8131 124.5974 0.2805 0.5534 152.0472 0.3748 * * * * * *

HAMCosine 0.7947 14.3941 0.0335 0.6825 13.3427 0.0931 0.9713 55.8731 0.0947 0.5235 66.1238 0.2340

Bold, best result.

Bold and italics, second-best result.

Subscript, similarity measure used in HAM.

-, method has excessive time requirement (runs exceed at least one hour for a single time).

*, memory allocation error (e.g., “std::bad_alloc”).

https://doi.org/10.1371/journal.pone.0187603.t004
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Fig 8. Multi-resolution analysis data for different Karate network similarities.

https://doi.org/10.1371/journal.pone.0187603.g008
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Fig 9. Multi-resolution analysis of different Dolphins network similarities.

https://doi.org/10.1371/journal.pone.0187603.g009
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Modularity, which is frequently used to evaluate community detection results produced by

algorithms, is strongly associated with resolution limit problems. Alternatives include greedy

surprise maximization [35], preprocessing [66], edge-reweighting [67–68], multi-resolution

[69], and Hamiltonians [70–71], among others. However, each alternative has its own prob-

lems, including excessive community splitting. Infomap, a non-modularity method, uses map

equations as quality functions for community detection tasks. Our experimental data indicate

that Infomap mitigates the resolution limit problem for clique-pair networks but not for cli-

que-ring networks—a unique resolution limit problem.

According to our multi-resolution analysis results (Fig 10), HAM tended to “over-merge”

long chains of star-like nodes (communities) connected by bridge edges in Clique line net-

works [41, 50]. We believe this problem is associated with the structure maintenance strategy

(Algorithm A2 in S1 File). After handling weighted edges, a long chain consisting of four star-

like nodes and bridge edges establishes a connection to the largest community in the Clique

line network (i.e., nodes with four bridge edges and multiple sink edges). After applying the

structure maintenance strategy, the first bridge edge is merged according to rule R3, since one

endpoint is in an identified community. Subsequently, the other three bridge edges merge

with the largest R3-based community. The remaining sink edges are handled by applying the

sink-shrinking strategy (Algorithm A3 in S1 File). In the end, only one community is

identified.

There are at least three ways to address this problem. First, structure maintenance rules

(especially R3 and R4) can be modified to retain edges between a community and a star-like

node, or between two star-like nodes. Second, each star-like node can be modified so that only

single edges are added for purposes of connecting neighbor pairs in a manner that eliminates

the need to modify the structure maintenance strategy. A third possibility is to add node-merg-

ing strategies to identify star-like and other node types; this idea exceeds the scope of arc-

merging strategies addressed in this paper.

According to the study results shown in Table 5, decisions regarding which algorithm to

use—Louvain, Infomap, DS or HAM—must be made on a case-by-case basis. If effectiveness

involving small-scale social networks is the main concern, the Louvain method is a better

choice for modularity optimization, while HAM is a better choice when accuracy or time limi-

tations are priorities. When the primary concern is mitigating resolution limit problems

(examination criterion), DS or HAM are the best choices. For the correctness criterion using

LFR theoretical networks, the Louvain method may be preferred due to its smaller time

requirement, Infomap if accuracy is emphasized, or HAM in scenarios involving combined

accuracy and performance efficiency. For the scalability criterion involving large-scale real-

world networks, the Louvain method remains the best choice in terms of community structure

quality and execution time. However, HAM is a satisfactory alternative in terms of community

structure quality or performance efficiency, especially when avoiding potential resolution limit

problems is a primary concern.

Conclusion

In this paper we introduced rule-based strategies for community detection tasks, and

described a hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-

based arc-merging strategies to identify community structures. The HAM architecture consists

of similarity measurement and modularity optimization phases, plus rule-based strategies for

community detection. We also used four criteria—effectiveness, examination, correctness, and

scalability—to determine community detection algorithm appropriateness. Experiments were

conducted to examine our proposed HAM algorithm according to these criteria, which we
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believe all community detection algorithms should satisfy. To test for effectiveness, we used

five social networks and one small-scale LFR benchmark network, all with ground-truth com-

munities. Our results indicate that HAM was capable of identifying community structures

with satisfactory NMI values, and that the identified communities were similar to ground-

Fig 10. The HAM multi-resolution problem. (a) The test network; (b) multi-resolution problem result; (c) modified strategy solution; (d) solution involving

the addition of edges without modifying the strategy.

https://doi.org/10.1371/journal.pone.0187603.g010
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truth communities in social and LFR benchmark networks. For the examination criterion, our

results (involving two synthetic networks) indicate an absence of HAM-associated resolution

limit problems. For the correctness criterion, results from an analysis involving LFR bench-

mark networks (also with ground-truth communities) with different parameters and commu-

nity sizes indicate that HAM’s NMI values and performance efficiency were as satisfactory as

those produced by Infomap. For the scalability criterion, eight large/very large real networks

without ground-truth communities were used for separate tests. Results indicate that HAM

produced satisfactory modularity values and good performance efficiency, although greater

efficiency can likely be achieved if a compiled language is used for implementation.
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Table 5. Experiment results summary.

Criterion (a) Effectiveness (b) Examination (c) Correctness (d) Scalability

Network Social networks Synthetic networks LFR networks Large networks

Measure NMI Q Time Test1 Test2 NMI Time Q Time

Louvain - ● � - - - ● ● ●
CNM - - - - - - - - -

DS - - - ● ● - - - -

INFOMAP � � - - ● ● - - -

HAM ● - ● ● ● � � � �

●, first place or overcame resolution limitation problem.

�, second place.

https://doi.org/10.1371/journal.pone.0187603.t005
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