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Abstract We will focus on the effect of a Weyl-invariant
model with a quadratic interaction term and a free scalar
field ψ . A set of analytic solutions will be obtained for this
model. This model provides a dynamical alternative to the
standard �CDM model. In particular, we will show that the
quartic Weyl-invariant model prediction is consistent with
the Hubble diagram observations.

1 Introduction

The Lambda cold dark matter (�CDM) model [1] is known
to be a successful model for the prediction of Hubble dia-
gram. The energy-momentum tensor of the minimal �CDM
model is composed of the cosmological constant (�), the
cold dark matter (CDM) and the radiation dominated (RD)
matter terms [2–4]. In this paper, we would like to introduce a
physical model that is capable of providing a dynamical reso-
lution to the cosmological constant (�), the cold dark matter
(CDM) and the radiation dominated (RD) matter interactions.
Indeed, we will show that the current equation of state (EOS)
of a physical model is effectively a combination of cosmolog-
ical constant, matter dominant (MD) and radiation dominant
(RD) components with appropriate ratio. In particular, cos-
mological constant can be introduced by the Weyl-invariant
(WI) model [5–13] or the massive gravity model [14–19]. In
fact, there are quite a number ways to induce a cosmological
constant. The WI model happens to be a perfect way to induce
a cosmological constant by choosing an unitary gauge.

Indeed, WI (or local scale-invariant) gravity is a useful
model as an effective theory [20–29]. A scale transformation
contains enriched symmetry that plays a certain and impor-
tant role in many areas of physics [30–33]. In addition, the
Weyl gauge field has also been proposed as a possible candi-
date of dark matter [34–83]. The WI massive gravity theory
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can also be generalized, with the introduction of a Weyl vec-
tor meson Sa , to the Weyl invariant dRGT model [84]. It is
also shown that the Weyl symmetry does not affect the ghost-
free nature of the massive gravity model. In fact, the resulting
theory is equivalent to a dRGT model coupled to a massive
U1 gauge field in the unitary gauge.

In this paper, we will show that the inclusion of a scalar
field ψ to the �CDM model will change the RD phase sig-
nificantly. The effect of the free scalar field will induce an
additional w = 1 phase during the early epoch due to the
nature of the free scalar field. Note that w denotes the matter
equation of state. In particular, we will start with a mini-
mal WI model in Sect. 3. It will be shown that the minimal
WI model could not produce a compatible resolution for a
current universe with a small anisotropy. We will later show
that the inclusion of a quartic interaction terms of the Weyl
vector meson and scalar field ψ will provide a resolution
compatible with the small anisotropy problem. In particular,
the quartic Weyl-invariant (QWI) model can also provide a
successful fitting of the Hubble diagram and a reasonable pre-
diction of current equation of state predicted by the �CDM
model.

WI model

The Weyl transformation is a local scale transformation that
relates all physical fields in different length scales. The scale
transformation of field is determined by its conformal dimen-
sion. For example, the conformal dimensions of the scalar
field, metric field gab are 1 and −2, respectively. Hence they
should transform as [32,33,52]

φ → φ� = �−1φ , (1)

gab → g�
ab = �2gab, (2)

respectively. The Weyl symmetry can be preserved by the
introduction of the Weyl-covariant derivative ∇a (or ∂̃c) in
place of the ordinary derivative ∂a . As a result, the transfor-
mation property of ∇aφ is made identical to the transforma-
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tion property of the scalar field φ. Indeed, the Weyl-covariant
derivative of a scalar field φ and gab can be defined as

∇aφ = (∂a − Sa) φ , (3)

∂̃cgab = (∂a + 2Sc) gab (4)

with Sa the Weyl gauge field (or Weyl vector meson). Hence
the scalar field and metric field will transform as

∇aφ → (∇aφ)� = �−1∇aφ , (5)

(∂̃cgab)
� = �2∂̃cgab, (6)

if the Weyl gauge field also transforms as

Sa → S�
a = Sa − ∂a ln �. (7)

In addition, we can show that
(
�̃c

ab

)� = �̃c
ab (8)

with the WI generalization of the spin connection

�̃c
ab = 1

2
gcd

(
∂̃agbd + ∂̃bgad − ∂̃d gab

)
. (9)

As a result, the action [52,85–89]

S =
∫

d4x
√

g

(
ε

2
φ2 R̃ − 1

2
∇aφ∇aφ − 1

4
H2 − λ

4
φ4

)
,

(10)

can be shown to be a WI extension of the conventional
Einstein–Hilbert action. Here εφ2 and λφ4/4 act as dynami-
cal coupling constants M2

p and � respectively in the unitary
gauge by setting φ = 1. In addition, the WI Sa field tensor
is defined as

Hab = ∂a Sb − ∂b Sa . (11)

Moreover, we can show that the Weyl-covariant Ricci curva-
ture tensor R̃ab can be shown to be

R̃ab = Rab − (Da Sb + Db Sa) − Dd Sd gab

+ 2
(

Sa Sb − Sd Sd gab

)
, (12)

with R̃ab defined as

R̃ab = Rab

(
∂cgde → ∂̃cgde

)
. (13)

As a result, the WI scalar curvature reduces to

R̃ = R̃a
a = R − 6Da Sa − 6Sa Sa . (14)

This paper will be organized as follows: (i) A brief review
and motivation has been presented in Sect. 1. (ii) The �CDM
model will be introduced in Sect. 2. (iii) We will focus on the
minimal WI model in Sect. 3. (iv) A quartic Weyl invariant
model will be introduced in Sect. 4. We will show that the
QWI model provides a consistent fit to the Hubble diagram
in this section. For comparison, we will also show that the
QWI model prediction of current EOS also agrees reasonably

well with the �CDM model. (v) The stability problem of the
solutions obtained in the paper will be discussed in Sect. 5.
(vi) Finally, concluding remarks will be made in Sect. 6.

2 �CDM model

We will focus on the flat �CDM model [1] for simplicity in
this section [90,91]. The metric of the flat �CDM model is
the flat FRW metric given by

ds2 = −dt2 + e2α
(

dx2 + dy2 + dz2
)

. (15)

As a result, the Einstein tensor can be shown to be

Ga
b =

⎛
⎜⎜⎝

−3α̇2 0 0 0
0 −2α̈ − 3α̇2 0 0
0 0 −2α̈ − 3α̇2 0
0 0 0 −2α̈ − 3α̇2

⎞
⎟⎟⎠ .

(16)

The energy-momentum tensor for the �CDM model can also
be shown to be

T a
b = −�ga

b + ρM

⎛
⎜⎜⎝

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ + ρR

⎛
⎜⎜⎝

−1 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

3

⎞
⎟⎟⎠ .

(17)

The conservation law DaT a
b implies that � = constant,

ρM ∝ e−3α and ρR ∝ e−4α . Here ρM and ρR denote the
energy density of cold dark matter and RD ultra-relativistic
matter, respectively.

In addition, the ratios of energy densities can be defined
as

�� ≡ �

ρ
, (18)

�M ≡ ρM

ρ
, (19)

�R ≡ ρR

ρ
, (20)

with ρ = −T 0
0.

Note that the current ratios of energy densities are
��(t0) � 0.7 and �M (t0) � 0.3 at t = t0 today accord-
ing to the �CDM model [90,91]. In addition, �R D(t0) �
�M (t0)/(1 + zeq) � 0.0001 for zeq ∼ 3400 [90,91]. Note
that the redshift z is defined by the relation

z + 1 ≡ e−α (21)

with zeq the redshift when �M = �R D .
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Fig. 1 The evolution of w for the �CDM model with an additional free
scalar field. The parameters are set �� : �M : �RD = 0.7 : 0.2999 :
0.0001 as of today. The effect of the scalar field is also included by

setting the current value of �ψ as 0, 10−19, 10−16 and 10−13. They are
plotted as a black-long-dashed curve, a red-solid curve, a green-short-
dashed curve and a blue dotted curve, respectively

Equation of state for the model with an additional free
scalar field ψ

The energy-momentum tensor for the �CDM model with an
additional free scalar field ψ can be shown to be

T a
b = −�ga

b + ρM

⎛
⎜⎜⎝

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ + ρRD

⎛
⎜⎜⎝

−1 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

3

⎞
⎟⎟⎠

+ρψ

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (22)

with the scalar Lagrangian given by −∂aψ∂aψ/2. As a result,
scalar field equation can be solved to give ρψ = ψ̇2/2 ∝
e−6α . Note also that the equation of state can be defined as

w ≡ P

ρ
, (23)

for the total energy density and the total pressure given by
ρ ≡ −T 0

0 and P ≡ T i
i , respectively.

With the conditions α0 ≡ α(t0) = 0 at z = 0 today, we
can plot the evolution of w (Fig. 1).

It is apparent that the inclusion of the free scalar field
affects the large z region quite appreciably. In particular, the
w = 1/3 RD phase is also affected quite appreciably. Indeed,
the scalar field induces a w = 1 phase in the large z region
even with a tiny scalar field contribution. On the other hand,
the w = 0 matter-dominated (MD) and w = −1 VD phases
in the small and negative z region are not affected appreciably
with the inclusion of the scalar field.

Note that the w = 1 phase at the early stage is a reflection
of the free scalar ψ . Indeed, the presence of a scalar field will
introduce an equation of state,

wψ = ψ̇2/2 − V (ψ)

ψ̇2/2 + V (ψ)
, (24)

if a potential V is present. The equation of state could also
induce a state with wψ > 1 if V < 0. In the absence of the
potential V , the equation of state wψ = 1 will hold during the
very early stage. Indeed, it can be shown that the density of
the scalar field ψ evolves as 1/a6. As a result, the 1/a6 term
will dominate the energy density when a 	 1. This is the
main reason that the presence of a free scalar does introduce
an w = 1 phase at the early epoch.

3 Weyl-invariant BI expanding universe

In this section, we will focus on the effect of the WI model
given by

S =
∫

dN x
√

g

[
1

2
εφN−2 R̃ − λφN − 1

2
φN−4∇aφ∇aφ

−1

4
φN−4 Hab Hab

]
. (25)

Note that we can set the gauge choice � = φ and turn off the
direct contribution of the scalar field φ. The gauge choice,
equivalent to setting φ = 1, is also known as the unitary
gauge. As a result, the WI action (25) is equivalent to the
effective action

S =
∫

dN x
√

g

[
ε

2
R − ε� − κ2

2
Sa Sa − 1

4
Hab Hab

]
(26)

in unitary gauge. Here we have set ε� = λ and κ2 = 1 + 6ε

for convenience.
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In this section, we will focus on the evolution of this model
in an anisotropically expanding Bianchi type I (BI) space
with the invariant length given by

ds2 = −dt2 + a2
1(t)dx2 + a2

2(t)dy2 + a2
3(t)dz2. (27)

Here the scale factors are defined as

a1 ≡ eα−2σ+ , a2 ≡ eα+σ++√
3σ− , a3 ≡ eα+σ+−√

3σ−

(28)

with α, σ+ and σ− the isotropy and anisotropies parame-
ters, respectively. As a result, the linear combinations of the
Einstein tensor Ga

b can be shown to be

− G0
0 = 3α̇2 − 3σ̇ 2+ − 3σ̇ 2− , (29)

G2
2 − G3

3 = 2
√

3(σ̈− + 3α̇σ̇−) , (30)

G2
2 + G3

3 − 2G1
1 = 6(σ̈+ + 3α̇σ̇+) . (31)

3.1 Energy-momentum tensor and field equations

The energy-momentum tensor of this model can be shown to
be

T a
b = −�ga

b + 1

ε

[
κ2Sa Sb − κ2

2
Sc Scga

b + Hac Hbc

−1

4
Hcd Hcd ga

b

]
(32)

by choosing the unitary gauge φ = 1 and setting λ = ε� in
the field equation Ga

b = T a
b.

Moreover, the BI-compatible Weyl vector Sa [84] can be
shown to be

Sa = (0, S1(t), 0, 0) . (33)

As a result, the energy-momentum tensor reduces to

T a
b = −�ga

b + κ2S2
1

2ε
g11

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

+ Ṡ2
1

2ε
g11

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (34)

Consequently, the Friedmann equation (G0
0 = T 0

0) reads

3α̇2 − 3σ̇ 2+ − 3σ̇ 2− = � + 1

2ε
e−2α+4σ+

[
κ2S2

1 + Ṡ2
1

]
. (35)

In addition, the G2
2 − G3

3 = T 2
2 − T 3

3 equation reads

σ̈− + 3α̇σ̇− = 0. (36)

Finally, the G2
2 +G3

3 −2G1
1 = T 2

2 + T 3
3 −2T 1

1 equation
becomes

6(σ̈+ + 3α̇σ̇+) = 2

ε
e−2α+4σ+

[
−κ2S2

1 + Ṡ2
1

]
. (37)

Furthermore, the Weyl gauge field equations for S1 can be
shown to be

S̈1 + (α̇ + 4σ̇+)Ṡ1 + κ2S1 = 0 . (38)

Therefore, we need to solve a set of four equations (35)–(38)
with the four field variables α, σ−, σ+, S1.

First of all, the field equation (36) can be integrated
directly to give

σ̇− = Aκe−3α (39)

with A a dimensionless constant. Moreover, Eq. (37) can also
be integrated to give

σ̇+ = B0 κe−3α + 1

3ε
e−2α+4σ+ S1 Ṡ1 (40)

with the help of (38). Here B0 denotes an integration con-
stant. σ− and σ+ in Eqs. (35) and (38) can be eliminated
according to Eqs. (39) and (40). As a result, we are left with
two equations, Eqs. (35) and (38), and two independent field
variables, α and S1.

3.2 WI BI solution in the background of an isotropic field
energy-momentum tensor

For simplicity, we will assume that the associated energy-
momentum of the system is isotropic in large scale. As a
result, we are lead to the following equations:

Ṡ2
1 − κ2S2

1 = 0, (41)

σ̈+ + 3α̇σ̇+ = 0, (42)

by comparing Eqs. (36) and (37). Note that Eq. (41) can be
solved directly to give

S1 = √
εQe−κt . (43)

In addition, Eq. (42) can be integrated to give

σ̇+ = B1 κe−3α (44)

with B1 the dimensionless integration constant. Finally, Eq.
(38) can be written as

α̇ = 2κ − 4Bκe−3α (45)

with the help of Eqs. (43) and (44). As a result, Eq. (45) can
be integrated to obtain the solution of α:

e3α = Ce6κt + 2B (46)

123



Eur. Phys. J. C (2017) 77 :805 Page 5 of 13 805

with C a dimensionless integration constant. We will write
D ≡ B/C for convenience and express the field parameters
by

α̇ = 2κe6κt

e6κt + 2D
, (47)

σ̇+ = Dκ

e6κt + 2D
. (48)

We will also set the time now as t0 = 0 for convenience.
Or equivalently, t will represent t − t0 throughout this paper
from now on. In addition, α0 ≡ α(t = 0), σ0 ≡ σ+(t = 0).
Consequently, we can also integrate Eqs. (47) and (48) to
obtain the solutions for α and σ+:

α = 1

3
ln

(
e6κt + 2D

1 + 2D

)
+ α0, (49)

σ+ = −1

12
ln

(
1 + 2De−6κt

1 + 2D

)
+ σ0. (50)

As a result, the Friedmann equation (35) can be shown to
give the following constraint:

3κ2(4e12κt − D2 − E2)

(e6κt + 2D)2 = � + κ2 Q2(1 + 2D)

e6κt + 2D
e−2α0+4σ0 (51)

with the help of the expressions for α and σ+ given above.
Here we have written E ≡ A/C for convenience. Conse-
quently, the solution to the Friedmann equation exists only
when

E2 = 15D2 , (52)

� = 12κ2 , (53)

D

1 + 2D
= − Q2

48
e−2α0+4σ0 . (54)

Note that Q, κ , α0 and σ0 are integration constants to be set
by appropriate boundary conditions.

Note also that the energy-momentum tensor can be shown
to be

T a
b = −�ga

b + κ2g11S2
1

⎛
⎜⎜⎝

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (55)

with T 0
0 = −ρ. Hence the energy-momentum tensor given

above is similar to the energy-momentum tensor of the
�CDM model in the absence of the RD field. Indeed, by
writing the CDM energy density as

ρm(t) ≡ κ2g11S2
1 = −48Dκ2

e6κt + 2D
, (56)

we can show that � = 12κ2 leads to the current �/ρ ratio

� : ρm(0) = 1 : −4D

1 + 2D
. (57)

Note that the standard �CDM model is a model with a
cold dark matter (CDM) energy density ρM ∝ �M (1 + z)3.
Here �M denotes the density parameter of the CDM. In our
approach, the Weyl gauge field behaves similarly to the CDM
field when t 
 1 even it is not a CDM field. The comparison
done here also shows that the gauge field S1 does behave as
a CDM at large t era.

By setting the current ratio of dark energy density and
dark matter density [90,91]

� : ρm(0) = 7 : 3 , (58)

the consistent solution for D requires that D = −3/34. Con-
sequently, the current anisotropies become

σ̇+(0)

α̇(0)
= D

2
, (59)

σ̇−(0)

α̇(0)
= ±√

15D

2
. (60)

Therefore the current anisotropies of this model are of the
order O(10−1). It is not small enough to accommodate the
latest observations. Hence the isotropic model shown in this
section, without the inclusion of radiation hot matter, can-
not produce a universe with small enough anisotropies. In
order to minimize the anisotropies, we will try to introduce
an additional scalar field ψ that will evolve with a rate given
by ψ̇ ∝ σ̇± ∝ e−3α . In Sect. 4, a quartic term will also be
included.

4 Quartic interactions

We will show in this section that the inclusion of another free
scalar field ψ and the quartic interaction terms is capable
of resolving the small anisotropy problem plagued with the
model shown in Sect. 3. The WI model we are interested in
is given by

S =
∫

d4x
√

g

[
1

2
εR − ε� − κ2

2
Sa Sa − B

2
Sa Sa Sb Sb

−1

4
Hab Hab − 1

2
(∂aψ)(∂aψ)

]
(61)

with a coupling constant B. Note that the unitary gauge φ =
φ0 = 1 has also been adopted in writing the action (61).
The quartic term and the ψ-Lagrangian can be derived from
the WI interaction terms

∫
d4x

√
g(∇aφ)(∇aφ)(∇bφ)(∇bφ).

Note that ∇aψ = ∂aψ for a dimensionless scalar field ψ .
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In fact, there are more quartic terms that can be included
for a more complete higher derivative theory. Many of them
can be shown to be related to each other via proper integration
by parts. Note, however, that the gauge field Sa always shows
up in the covariant derivative ∇a along with the ordinary
derivative, e.g. ∇aφ = (∂a − Sa)φ. Hence Sa should be
considered effectively as the order of one-derivative term.
Hence the quartic S4 term can be considered as being of the
same order as the H2 term. In addition, the BI-compatible Sa

solution ensures that Da Sa = 0 in unitary gauge. Hence the
Da Sa related terms will not contribute to the effective action.
As a result, the only compatible quartic term not included in
the model is the term proportional to Da Sb Da Sb. Therefore,
the quartic term considered in this paper is quite unique in
this sense. Note that the model (61) will be referred to as
quartic Weyl-invariant gravity (QWI) model throughout this
paper.

Note that the main purpose of this paper is to show that the
effect of the quartic term does have some significant contri-
bution to the evolution of our universe. Hence, we will focus
on the effect of the quartic term introduced in action (61). We
will also try to show that it will resolve the anisotropy prob-
lem mentioned in Sect. 3. In addition, we will also show that
this model also provides a better fit to the Hubble diagram.
Moreover, the current � prediction will also agree reasonably
well with the prediction of the �CDM model.

Note that the energy-momentum tensor associated with
the action (61) can be shown to be

T a
b = −�ga

b + 1

ε

[
κ2Sa Sb − κ2

2
Sc Scga

b + 2BSa Sb Sc Sc

− B

2
Sc Sc Sd Sd ga

b + Hac Hbc − 1

4
Hcd Hcd ga

b

+(∂aψ)(∂bψ) − 1

2
(∂cψ)(∂cψ)ga

b

]
. (62)

Similar to Sect. 3, the field equations can be written as

3α̇2 − 3σ̇ 2+ − 3σ̇ 2− = � + 1

2ε
e−2α+4σ+

[
κ2S2

1 + Ṡ2
1

]

+ B

2ε
e−4α+8σ+ S4

1 + ψ̇2

2ε
, (63)

2
√

3(σ̈− + 3α̇σ̇−) = 0, (64)

6(σ̈+ + 3α̇σ̇+) = 2

ε
e−2α+4σ+

[
−κ2S2

1 + Ṡ2
1

]

−4B

ε
e−4α+8σ+ S4

1 , (65)

S̈1 + (α̇ + 4σ̇+)Ṡ1 + κ2S1 + 2Be−2α+4σ+ S3
1 = 0, (66)

ψ̈ + 3α̇ψ̇ = 0, (67)

in a BI metric space. Note that these equations correspond to
G0

0, G2
2 − G3

3, G2
2 + G3

3 − 2G1
1, S1, and ψ equations

respectively. Here we have also assumed that ψ = ψ(t)
as a consistent solution that is compatible with the BI metric
space. We will also assume that the energy-momentum tensor
is isotropic for convenience. Hence, the left-hand side (LHS)
of Eq. (65) becomes

σ̈+ + 3α̇σ̇+ = 0. (68)

For convenience, we will define a new variable p

p ≡ Ṡ1

S1
. (69)

As a result, the right-hand side (RHS) of Eqs. (65) and (66)
imply that

e−2α+4σ+ S2
1 = p2 − κ2

2B
, (70)

ṗ + p2 + (α̇ + 4σ̇+)p + κ2 + 2Be−4α+8σ+ S2
1 = 0. (71)

Moreover, Eq. (71) can be written as

ṗ + 2p2 + (α̇ + 4σ̇+)p = 0, (72)

with the help of Eq. (70). Hence we have

α + 4σ+ = − ln(−S1 Ṡ1) + 2 ln A (73)

with A an integration constant. Hence Eq. (70) can be solved
to give

e−3α = −1

2B A2 (p2 − κ2)p (74)

with the help of Eq. (73) and the proper rearrangement of
the field variables according to e−2α+4σ+ = eα+4σ+e−3α .
For convenience, we will also define a new variable f (t)
according to the definition

p ≡ −κ√
1 + f

. (75)

As a result, S1 and α can be written as

e−2α+4σ+ S2
1 = κ2

2B

− f

1 + f
, (76)

e−3α = κ3

2B A2

− f

(1 + f )3/2 , (77)

α̇ = − ḟ

3 f
+ ḟ

2(1 + f )
, (78)

with the help of Eqs. (70) and (74). Note that f/B < 0 is
required to accommodate real solutions. The results show that
the presence of the quartic term (B) affects every component
of the field variables. Note also that Eqs. (64), (67), and (68)
imply σ̇± and ψ̇ are both proportional to e−3α . Therefore we
can write the solutions as
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σ̇+ = K+
f

(1 + f )3/2 , (79)

σ̇− = K−
f

(1 + f )3/2 , (80)

ψ̇ = ψ0
f

(1 + f )3/2 , (81)

with K± and ψ0 appropriate constants of integration. There-
fore, Eq. (72) reduces to

ḟ = −6κ f√
1 + f

+ 12K+ f 2

(1 + f )3/2 . (82)

In addition, Eq. (78) can be written as

α̇ = 2κ√
1 + f

− (3κ + 4K+) f

(1 + f )3/2 + 6K+ f 2

(1 + f )5/2
(83)

with the help of Eq. (82). Finally, the Friedmann equation
(63) can be treated as a polynomial equation of f . The result
generates a few constraints relating all field parameters. First
of all, by checking the term proportional to f 2/(1+ f )5/2, it is
easy to show that a consistent solution implies that K+ = 0
if f is not a constant. Hence we are lead to the constraint
equation:

σ̇+ = 0. (84)

As a result, Eqs. (82) and (83) also reduce to

ḟ = −6κ f√
1 + f

, (85)

α̇ = 2κ√
1 + f

− 3κ f

(1 + f )3/2 . (86)

In addition, the Friedmann equation (63) reads

12κ2

1 + f
− 36κ2 f

(1 + f )2 + (27κ2 − 3K 2−) f 2

(1 + f )3

= � + 1

8εB

−κ4 f

(1 + f )

[
3

(1 + f )
+ 1

]
+ 1

2ε
ψ2

0
f 2

(1 + f )3 .

(87)

Hence this polynomial equation implies that the following
constraints must be obeyed:

� = 12κ2, (88)

K 2− + ψ2
0

6ε
= 9κ2, (89)

B = κ2

96ε
. (90)

Hence Eq. (89) implies that the scalar field ψ does help in
decreasing the anisotropy (related to K−) given by σ̇−/α̇.
Moreover, the limit ψ2

0 = 54εκ2 will lead us back to the
isotropic background shown in Sect. 3. Indeed, we can show
that the anisotropy becomes

σ̇−
α̇

= K− f

κ(2 − f )
. (91)

It is apparent that the current anisotropy (i.e. the anisotropy
measured now) can be accommodated with a proper choice
of the field parameters.

4.1 Energy-momentum tensor

With the constraints given above, the isotropic energy-
momentum tensor can be arranged as

T a
b = −12κ2ga

b + 48(p2 − κ2)

⎛
⎜⎜⎝

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

+12

κ2 (p2 − κ2)2

⎛
⎜⎜⎝

−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

+ψ2
0

2ε

p2(p2 − κ2)2

κ6

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (92)

The result can be determined by appropriate choice of p and
other constants. On the RHS of Eq. (92), the first term rep-
resents the effective cosmological constant with � = 12κ2.
The second term and the third term are the WI matter that
act effectively as CDM and radiation hot matter (RHM). The
fourth term is the contribution of the scalar field ψ that domi-
nates in the early epoch. Hence the QWI model does approach
�CDM at current epoch as shown in Eq. (92) with appropri-
ate terms corresponding to the cosmological constant, MD
term and traceless RD term.

Note, however, that these effective coupling constants are
constrained by the field equations. They also act effectively
in a nontrivial way shown above even though they are not
belonging to a genuine CDM model. In particular, the trace-
less RD term comes from the p4 order term of the QWI
action. It is well known that an isotropic gauge field can-
not accommodate a traceless energy-momentum tensor in BI
space. This model does provide a nice resolution in a dynam-
ical way. In short, the existence of a set of analytic solutions
shown earlier drives the QWI model to act effectively in a
way quite similar to the �CDM model.

Note also that the total energy densities is ρ = −T 0
0.

Hence the ratios of energy densities can be defined as

�� = 12κ2

ρ
, (93)

�M = 48(p2 − κ2)

ρ
, (94)
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�R D = 36(p2 − κ2)2

ρκ2 , (95)

�ψ = ψ2
0

2ε

p2(p2 − κ2)2

ρκ6 . (96)

Here ��, �M , �R D and �ψ represent the ratio of energy
density for the dark energy density �, CDM, RD matter and
the scalar field ψ associated with the WI matter, respectively.

In addition, Eq. (85) can be integrated to give

3κ(t − ti ) = y − tanh y (97)

with a change of variable f ≡ −1/ cosh2 y. Here ti denotes
the initial time along with the initial conditions set as yi ≡
y(ti ) = 0, fi ≡ f (ti ) = −1, eαi ≡ eα(ti ) = 0.

4.2 The Hubble diagram

We can show that the complicated expression of Eq. (97)
can be reduced to a very simple expression in terms of the
conformal time η through the definition

η ≡
∫

e−αdt. (98)

First of all, we will start by defining the current conditions
as

f (t0) ≡ f0, (99)

α(t0) ≡ α0, (100)

η(t0) ≡ η0, (101)

with t = t0 denotes the current time today. As a result, Eq.
(77) can be written as

e−3α = f (1 + f0)
3/2

f0(1 + f )3/2 e−3α0 . (102)

With the help of Eq. (85), Eq. (102) can therefore be written
as

e−3α = f (1 + f0)
3/2

f0(1 + f )3/2

(
ḟ
√

1 + f

−6κ f

)3

e−3α0 . (103)

Consequently, the conformal time can be integrated directly
to give

η − η0 =
√

1 + f0

−2κ

[(
f

f0

)1/3

− 1

]
e−α0 . (104)

Therefore, the function f can be expressed as

f = f0

[
1 − 2κ(η − η0)eα0

√
1 + f0

]3

(105)

in terms of the conformal time η as promised earlier.

Note that the luminous distance dL [1] is defined as

dL ≡ (1 + z)
∫ z

0

dx

H(x)
= (1 + z)|η − η0| (106)

with the redshift defined as 1 + z ≡ e−α . As a result, the
luminous distance dL can be shown to be

dL = 1 + f0

2κ
√

1 + f

[(
f

f0

)1/3

− 1

] (
f

f0

)1/3

(107)

from Eqs. (102) and (104). In addition, the parameter κ and
the current Hubble parameter H0 = α̇0 are related by the
following equation:

κ = H0
(1 + f0)

3/2

2 − f0
(108)

according to Eq. (86). As a result, we have

dL = 2 − f0

2H0(1 + f0)1/2(1 + f )1/2

[(
f

f0

)1/3

− 1

](
f

f0

)1/3

.

(109)

Note that the current value of H0 is known to be around

H0 � 70 km/s/Mpc. (110)

Note also that H0 � 70/300000 (c/Mpc).
The Hubble diagram (distance modulus vs. redshift) is the

plot of distance modulus μ against the redshift z. In addition,
the distance modulus μ is defined as

μ = 5 log(dL) + 25, (111)

with dL measured in units of Mpc.
In Fig. 2, we choose f0 = −0.06 and H0 = 0.70(100 km/

s/Mpc) for the QWI model. The result shows that the QWI-
prediction agrees very well with the result of �CDM model
in the small z region. In addition, the QWI result also agrees
within small deviation from the GRBs Hubble diagram [92]
in the large z region. Note also that the observation data
fluctuates along the fitting curves indicating that enriched
physics is involved. Nonetheless, the QWI model appears
to provide a reasonable resolution as shown above. Note
also that the best-fit Hubble constant also varies from H0 =
0.73(100 km/s/Mpc) [93] to H0 = 0.68(100 km/s/Mpc)
from the Planck base �CDM model [90,91] indicating that
the hidden physics unknown to us is probably far more inter-
esting than we can imagine. In summary, our result agrees
better with the �CDM model in the small z region, and it
agrees better with the CPL model in the large z region.

Note that the Chevalier–Polarski–Linder (CPL)
parametrization [92] of the equation of state is defined as

w(z) = w0 + w1
z

1 + z
(112)

123



Eur. Phys. J. C (2017) 77 :805 Page 9 of 13 805

Fig. 2 The red-dotted curve represents the Hubble diagram for the
�CDM model with H0 = 0.68(100 km/s/Mpc), �� = 0.69 and
�M = 0.31 [90,91]. The blue-solid curve is the distance modulus
of the QWI model with f0 = −0.06 and H0 = 0.70(100 km/s/Mpc).
The green-dashed curve represents the best-fit result for the Chevalier–

Polarski–Linder (CPL) parametrization [92] by choosing �M =
0.24, �� = 0.76, w0 = −0.29, w1 = −0.12 and H0 =
0.74(100 km/s/Mpc). The observation data (shown in gray points) is
taken from the gamma-ray bursts (GRBs). [92]

with w0, w1 the constant fitting parameters. As a result, the
Hubble parameter can be shown to be

H(z) = H0

[
�M (z + 1)3 + ��g(z)

]1/2
(113)

with

g(z) = exp

[
3
∫ z

0

w + 1

x + 1
dx

]

= exp

[
− 3w1z

z + 1

]
(1 + z)3(w0+w1+1). (114)

In addition, we have chosen �M = 0.24, �� = 0.76,
w0 = −0.29, w1 = −0.12 and H0 = 0.74(100 km/s/Mpc)
in plotting the green-dashed curve of the Fig. 2. Note also
that the Hubble parameter is

H(z) = H0

[
�M (z + 1)3 + ��

]1/2
(115)

for the �CDM model shown in Fig. 2.
In addition, Eqs. (93)–(96) with ψ2

0 /(2ε) = 27κ2 and
f0 = −0.06 imply that the current ratios of energy densities
can be shown to be

�� : �M : �R D : �ψ � 0.78 : 0.20 : 0.01 : 0.01. (116)

Note that the error bar of �� is ±0.02 [90,91]. Therefore, the
result with �R D and �ψ close to 0.01 is within a reasonable

range. The ratio �M = 0.2 is a little bit off the prediction of
�CDM model. As we mentioned earlier, QWI model pro-
vides a dynamical approach to the matter contributions that
behave similar to the CDM at out current stage. The most
important thing is, however, the agreement in the predictions
of Hubble diagram. Nonetheless, the QWI model does lead
to a similar effect close to the physical evolution of the CDM
model.

In summary, we have introduced a quartic interaction pro-
portional to Sa

4 and an additional free scalar ψ in the BI
metric space. The presence of the free scalar field is capa-
ble of minimizing the current anisotropy σ̇−/α̇ as expected.
Indeed, we have shown that

K 2− + ψ2
0

6ε
= 9κ2 ,

σ̇−
α̇

∣∣∣∣
0

= K− f0

κ(2 − f0)
,

κ = H0
(1 + f0)

3/2

2 − f0
(117)

in Eqs. (89), (91) and (108). As a result, by choosing f0 =
−0.06, H0 = 0.70(100 km/s/Mpc) and ψ2

0 /ε ∼ 54κ2 for
the QWI model when we plot Fig. 2, we can successfully
minimize the current anisotropy consistent with the CMB
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observations. It is also apparent that K− cannot be minimized
in the absence of the free scalar field ψ .

The existence of a consistent analytic solution shown in
this paper requires that the cosmological constant is related
to κ (affecting the mass term of Sa) through the relation
� = 12κ2. In addition, the QWI model behaves similarly to
the prediction of the �CDM model at the current stage as
shown in Eq. (92). Moreover, the QWI model prediction of
the Hubble diagram also agrees reasonably well with current
observations. These results show that quartic term and the
free scalar field ψ do play an important role in the evolution
of our universe.

5 Perturbations and stability analysis

In Sect. 4 we have obtained a set of analytic solutions for
the QWI model in BI space. We wish to show that this set of
analytic solutions are stable solutions when small perturba-
tions are introduced in this section. The stability analysis will
show that the QWI model does provide a useful approach for
the physical universe with a consistent and stable state for
the evolution.

Recalling that Eqs. (85), (76), and (77) are the solutions
of the field parameters f, α, and S1:

ḟ = −6κ f√
1 + f

, (118)

e−3α = κ3

2B A2

− f

(1 + f )3/2 , (119)

e−2α+4σ+ S2
1 = κ2

2B

− f

1 + f
. (120)

We would like to find the stability behavior of these solutions
by performing perturbations on the field parameters accord-
ing to α → α + δα, σ± → σ± + δσ±, ψ → ψ + δψ and
S1 → S1(1 + δq). As a result,

δp = δq̇, (121)

following from the definition of p ≡ ∂t ln S1. Consequently,
we can show that perturbing the field equations (63), (64),
(65), (66)/S1, and (67) will lead to the following set of per-
turbation equations:

6α̇δα̇ − 6σ̇−δσ̇−

= 1

ε
e−2α+4σ+ S2

1

[
(δq − δα + 2δσ+) (κ2 + p2) + pδq̇

]

+2B

ε
e−4α+8σ+ S4

1 (δq − δα + 2δσ+) + ψ̇δψ̇

ε
, (122)

δσ̈− + 3α̇δσ̇− + 3(δα̇)σ̇− = 0 , (123)

δσ̈+ + 3α̇δσ̇+

= 2

3ε
e−2α+4σ+ S2

1

[
pδq̇ − 2Be−2α+4σ+

S2
1 (δq − δα + 2δσ+)

]
, (124)

δq̈ + α̇δq̇ + (2δq̇ + δα̇

+4δσ̇+)p + 4Be−2α+4σ+ S2
1 (δq − δα + 2δσ+) = 0 ,

(125)

δψ̈ + 3α̇δψ̇ + 3(δα̇)ψ̇ = 0. (126)

First of all, δψ̇ and δσ̇− can be integrated directly as func-
tions of δα:

δψ̇ = 3ψ0 f

(1 + f )3/2 δα , (127)

δσ̇− = 3K− f

(1 + f )3/2 δα , (128)

with the help of Eqs. (80), (81), and (119).
Consequently, there are three remaining equations (125),

(124) and (122) left to be analyzed. Note that we also have
the identity

σ̇−δσ̇− + ψ̇δψ̇

6ε
= − 27κ2 f 2

(1 + f )3 δα, (129)

following from Eq. (89), relating the parameters K−, ψ0 and
κ .

As a result, the perturbation equations can be written as

δq̈ + α̇δq̇ + p(4δq̇ + δα̇ + 4δσ̇+ − δu̇) = 0 , (130)

δσ̈+ + 3α̇δσ̇+ = 2

3ε
e−2α+4σ+ S2

1 pδu̇ , (131)

α̇δα̇ + 27κ2 f 2

(1 + f )3 δα

= 1

6ε
e−2α+4σ+ S2

1

[
2p2 (−δα + 2δσ+ + δq) + pδq̇

]
.

(132)

Note that Eq. (130) is derived with the help of Eq. (129).
Here the new variable δu(t) is also defined as

pδu̇ ≡ pδq̇ − 2Be−2α+4σ+ S2
1 (δq − δα + 2δσ+) (133)

for convenience. Note that Eq. (130) can be integrated
directly to give the following identity:

δq̇ = −p(δα + 2δq − 2δu + 4δσ+) (134)

with the help of Eq. (72). Indeed, α̇ = −2p − ṗ/p when
σ̇+ = 0.

With the background solutions (119) and (120) for α and
S1 along with the constraints B = κ2

96ε
and p = −κ/

√
1 + f ,

Eq. (131) can be integrated directly as

δσ̇+ = 32κ f

(1 + f )3/2 δu . (135)
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Finally, with Eqs. (120), (135), and (134), Eq. (132) can be
written as
[

2κ√
1 + f

− 3κ f

(1 + f )3/2

]
δα̇ + 27κ2 f 2

(1 + f )3 δα

= 8κ2 f

(1 + f )2 [3δα − 2δu] . (136)

With the re-scaling of the variables

δq ≡ 1√
1 + f

X , (137)

δα ≡ (−2 + f )

(1 + f )3/2 Y, (138)

the perturbation equations (133), (134), and (136) can be
further simplified as

√
1 + f Ẋ − δu̇ = κ f√

1 + f

[
−2δu +

∫
192κ f δu

(1 + f )3/2 dt

]
,

(139)
1√

1 + f
Ẋ = κ√

1 + f

[
(−2 + f )(Y − X)

(1 + f )3/2

−2δu +
∫

128κ f δu

(1 + f )3/2 dt

]
, (140)

(2 − f )2

(1 + f )
Ẏ = 16κ f δu. (141)

Note that δu has already been written as a function of Ẏ
according to Eq. (141). Hence we are left with the two inde-
pendent equations (139) and (140) for the variables X and
Y . As a result, Eq. (141) implies that

δu̇ = 3(2 − f )

8(1 + f )3/2

[
2

f
+ 3

1 + f

]
Ẏ + (2 − f )2

16κ f (1 + f )
Ÿ .

(142)

Note that there is a particular solution δu = 0 that leads to
constant δσ+, X , and Y solutions. Hence the perturbations δq
and δα will all be constants as f → 0 representing a stable
mode.

Finally, the perturbation equations in terms of X and Y
can be shown to be

√
1 + f Ẋ = (2 − f )2

16κ f (1 + f )
Ÿ

+ (2 − f )

8(1+ f )3/2

[
6

f
+ 9

(1 + f )
− 2 + f

]
Ẏ

+ 12κ f√
1 + f

∫
(2 − f )2

(1 + f )5/2
Ẏ dt, (143)

κ X = (2− f )

16κ f
Ÿ + 1√

1 + f

[
1

f
+ 9

8(1 + f )
− 1

8

]
Ẏ

+κY − 4κ
√

1 + f
∫

(2 − f )2

(1 + f )5/2
Ẏ dt . (144)

Hence differentiation of Eq. (144) leads to a non-linear dif-
ferential equation of Y :

( f − 2)
√

1 + f

16κ2 f

...
Y −

[
9

8
+ 3(2 − f )(7 f + 4)

16 f (1 + f )

]
Ÿ

κ

+
[
−27 + 9(2 − f )(5 f 2 + 7 f − 2)

8 f (1 + f )

]
Ẏ

(1 + f )3/2 = 0.

(145)

Note that we are interested in the large t behavior of these
equations with f → − exp[−6κt] as t → ∞. Hence Eq.
(145) can be shown to approach
...
Y
κ2 + 12

κ
Ÿ + 36Ẏ � 0 (146)

with the solution

Ẏ � y1e−6κt (147)

at t → ∞. Here y1 is an integration constant. As a result,
Eq. (144) can be solved to give

κ X � −1

4
y1, (148)

implying that X and Y are both constants. Therefore, we
have shown that the set of solutions parametrized by Eqs.
(118)–(120) is indeed a set of stable solutions.

6 Conclusion

In this paper, we have shown that the inclusion of a free scalar
field ψ to the �CDM model changes the RD phase signifi-
cantly. We have shown that the WI model without a quartic
interaction and scalar field could not produce a compatible
resolution for a current universe with a small anisotropy. The
inclusion of a quartic interaction terms of the Weyl vector
meson and scalar field ψ is thus introduced in Sect. 4. As
a result, the QWI model is shown to provide a compatible
resolution to the small anisotropy problem. In addition, the
quartic WI model also provides a successful alternative to
the fitting of the Hubble diagram. Its current EOS prediction
also agrees reasonably well with the �CDM model.

To be more specific, we have introduced a quartic inter-
action proportional to Sa

4 and an additional free scalar ψ

in the BI metric space. The presence of the free scalar field
is capable of minimizing the current anisotropy σ̇−/α̇, as
expected. As a result, we have shown that Eqs. (89), (91)
and (108) constrain the field parameters K−, κ, ψ0, H0 and
f0 in a harmonic way such that consistent anisotropy can
be induced. In addition, by choosing f0 = −0.06, H0 =
0.70(100 km/s/Mpc) and ψ2

0 /ε ∼ 54κ2 for the QWI model
in plotting the Hubble diagram (Fig. 2), we can successfully
minimize the current anisotropy consistent with the CMB
observations.

123



805 Page 12 of 13 Eur. Phys. J. C (2017) 77 :805

It was shown apparently that K− cannot be minimized in
the absence of the free scalar field ψ . The existence of a con-
sistent analytic solution shown in this paper requires that the
cosmological constant is related to κ (affecting the mass term
of Sa) through the relation � = 12κ2. In addition, the QWI
model can also resemble the �CDM model at current stage
as shown in Eq. (92). In addition, the QWI model prediction
of the Hubble diagram also agrees reasonably well with cur-
rent observations. These results show that quartic term and
free scalar field ψ do play important roles in the evolution of
our universe.

The result shown in this paper indicates that the WI model
provides a successful resolution to the evolution of our phys-
ical universe. Hopefully, a more detailed study of related
models will shed light to the underlying importance of the
scale symmetry and its generalized alternative.
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