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Concurrent intersection point of magnetization and magnetoconductivity curves
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The thermal fluctuations contribution to magnetization and magnetoconductivity of type-II layered super-
conductors is calculated in the framework of the Lawrence-Doniach model. For numerous high-temperature
cuprate superconductors, it was discovered that the magnetization dependence on temperature in a wide range of
fields exhibits an intersection point at a temperature slightly below Tc. We notice a similar intersection point of
the magnetoconductivity curves at the approximate same temperature. The phenomenon is explained by strong
(non-Gaussian) thermal fluctuations with interactions treated using a self-consistent theory. All higher Landau
levels should be included. Dimensionality of the fluctuations is defined, and the two- to three-dimensional
crossover is the key for the existence of intersection points.
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I. INTRODUCTION

The discovery of high-temperature superconductors
(HTSC) has attracted attention to the effects of thermal fluctua-
tions on the thermodynamic, magnetic, and transport of type-II
superconductors. In these materials, even at zero magnetic
field, the role of thermal fluctuations is enhanced by several
factors, including high critical temperature, short coherence
length, and large anisotropy. A very large second critical
magnetic field makes the highest available fields accessible for
experiments in the superconducting states. A strong magnetic
field greatly enhances the effect of the fluctuations, making
the magnetic phase diagram very complicated by creating the
vortex liquid state over a large range of temperatures below
Tc (clearly seen in magnetization [1] and specific heat [2,3]),
and broadening the resistance drop in magnetoresistance upon
transition.

More recently, the fluctuations effects well above Tc

have been studied in detail for magnetization [4], electric
conductivity [5], and Nernst effect [6,7]. The magnitude of
thermal fluctuation is quantified by the Ginzburg number Gi,
which can reach 10−2 − 10−1 in high-Tc cuprate supercon-
ductors, in contrast with 10−9 − 10−6 for conventional low-Tc

superconductors. In other unconventional superconductors like
pnictides, the fluctuations are still very significant. Though
the multiband structure of the iron-based superconductors
is different from cuprate superconductors, they show many
similarities, like the two-dimensional layered structure.

If a superconductor is strongly fluctuating, “virtual” or
“preformed” Cooper pairs exist above Tc, but the order
parameter � is not phase coherent. The average of its
amplitude (related to the superfluid density- 〈|�|2〉) might be
sufficiently large to dominate electromagnetic properties like
magnetization and magnetotransport over the typically small
normal background.

*lidp@pku.edu.cn
†baruchro@hotmail.com

When magnetization was measured, it was found, sur-
prisingly, that when the magnetization is a function of
temperature, M(T ), plotted at different magnetic fields H ,
the curves intersect at the same temperature T ∗. The first clear
demonstration of this observation in YBa2Cu3O7−δ (YBCO)
[8] and Bi2Sr2CaCu2O8 (BSCCO) [9] was made in the early
1990s and later extended to Tl2Ba2CaCu2O8 (TBCCO) [10],
HgBa2Ca2Cu3O8+δ (HgBCCO) [11], and La2−xSrxCuO4+δ

(LSCO) [12]. The physics in the relevant part of the magnetic
phase diagram is that of the vortex liquid. The basic vortex
liquid theory was developed in the 1980s [13,14], based on the
idea of a homogeneous state with finite correlation determined
by the energy gap ε characterizing short-range order. Typically
the energy gap is estimated theoretically in a self-consistent
manner.

Over the years there have been several attempts to explain
the appearance of the intersection point of the magnetization
curves. First the theory was restricted (due to the complexity
of a nonperturbative problem) to the lowest Landau level
(LLL). The restriction allowed us to obtain nonperturbative
expressions even in the strongly fluctuating cases both in two
(2D) and three dimensions (3D), see Ref. [15] and references
therein. Tešanović et al. [16] attempted to use the 2D version of
the theory to explain the intersection point in YBCO; however
it was subsequently realized that the exact intersection is
inconsistent with the strict LLL scaling [17].

When the restriction on the first Landau level was lifted
[18] (while still retaining the self-consistent fluctuation theory
of the vortex liquid), the Ginzburg-Landau (GL) theory
extended to layered materials became capable to describe
magnetization in LSCO, BSCCO, and YBCO in wide range of
fields and temperatures (even above Tc) with a small number of
parameters. Both experimentally and theoretically it became
apparently that the intersection point is never exact. It depends
slightly on magnetic field in a surprisingly wide range of fields,
but beyond this range the phenomenon quickly disappears.

An interesting question arises as to whether the similar “in-
tersection point” also appears in other fluctuation phenomena
like fluctuation transport, for example, the magnetoresistance.
Ullah and Dorsey [19] obtained expressions for the scaling
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FIG. 1. The intersection points of conductivity times magnetic
field vs temperature T of YBCO.

behavior as a function of magnetic field and temperature
of various thermodynamic and transport quantities within
the self-consistent Hartree approximation and under the
LLL restriction. They demonstrated that the product of the
superconducting part of conductivity σs (due to the order
parameter) and magnetic field, K ≡ σsH , scales exactly as
the magnetization M in the LLL restriction. The 3D LLL
scaling in part of the magnetic phase diagrams was later
confirmed experimentally [8] in optimally doped YBCO and
later in other cuprates [20,21] and pnictides [22,23]. As a
consequence, one would expect intersection points for K . We
therefore have replotted K as a function of temperature for
YBCO [24], see Fig. 1, and one iron pnictide superconductor,
LaFeAsO0.9F0.1−δ [25] discussed below. The curves intersect
approximately at the same temperature T ∗ for different
magnetic fields H .

As the vortex pinning is the mechanism for the existing
of superconducting states in type-II superconductors and
therefore it cannot be ignored. However the intersection point
region is close to the critical temperature, and in highly
fluctuating superconductors (large Ginzburg number), due to
strong thermal fluctuation the pinning effect for vortex liquid
is very small due to thermal depinning. Therefore the pinning
and the pair-breaking scattering due to pinning can be ignored
in this paper.

In this paper we present a quantitative theory of mag-
netization and magnetoconductivity and explain the inter-
section points within the phenomenological GL framework.
It turns out that the layered structure, determining the di-
mensionality of the thermal fluctuations, is crucial for the
appearance of the concurrent intersection points of various
physical quantities, so the Lawrence-Doniach (LD) model
should be used. The calculation of conductivity requires the
time-dependent version of the model. The same sufficiently
precise self-consistent method in the vortex liquid phase
should be used to simultaneously obtain magnetization and
conductivity.

The formulas of the magnetization and conductivity are
used to fit the experimental data of various materials. It turns
out that T ∗ is located in the 2D-3D crossover temperature
regime in which the coherence length ξc(T ) in the direction

perpendicular to the layers is roughly equal to the interlayer
spacing.

The paper is organized as follows. The theoretical calcu-
lation of fluctuation magnetization and conductivity based on
the LD model and time-dependent Ginzburg-Landau (TDGL)
theory are introduced in Sec. II. The intersection points of
fluctuation magnetization is calculated in Sec. III. The intersec-
tion points of conductivity curves of cuprate superconductors
and pnictide superconductors are discussed in Sec. IV. We
conclude in Sec. V that the intersection points of magnetization
and conductivity are due to the 2D-3D dimensional crossover.

II. FLUCTUATION MAGNETIZATION AND
CONDUCTIVITY IN THE LAWRENCE-DONIACH MODEL

A. Model

The Lawrence-Doniach model is used to study the vortex
matter in layered superconductors in the Ginzburg-Landau
phenomenological approach. The Ginzburg-Landau free en-
ergy is expressed in terms of complex order parameter �n(r)
in the nth superconducting layer:

FGL = d ′ ∑
n

∫
dr

[
h̄2

2m∗ |D�n|2 + h̄2

2mcd ′2 |�n − �n+1|2

+α(T − T�)|�n|2 + β

2
|�n|4

]
. (1)

Here r is the position in the superconducting plane. The second
term describes the Josephson coupling between the planes
separated by the interlayer distance d ′. The applied field is
assumed to be perpendicular to the planes and much larger that
the lower critical field Hc1 so that in the vortex liquid phase
the magnetic induction B is homogeneous and magnetization
is small compared to it. Therefore the vector potential in the
Landau gauge in the covariant derivative, D = ∇+i(2e/h̄c)A,
can be approximated by A =(−By,0).

The parameters are as follows. The effective mass of a
Cooper pair in the a-b plane is m∗, while the one along the c

axis is mc, so that the anisotropy parameter is γ = √
mc/m∗.

The mean-field critical temperature in Eq. (1) is denoted by T�

to stress its dependence on the ultraviolet cutoff � (of the order
of inverse lattice spacing). Thermal fluctuations of the order
parameter on the mesoscopic scale, described by a Boltzmann
sum, are generally characterized by the dimensionless 3D
Ginzburg number,

Gi = 1

2

(
8e2κ2ξ�Tcγ

h̄2c2

)2

. (2)

The Ginzburg-Landau parameter κ is the ratio of the pen-

etration depth, λ� = c
2e∗

√
m∗β
παT�

, and the in-plane coherence

length, ξ� = h̄/
√

2m∗αT�, and Tc is the critical temperature.
To study the transport properties of a layered superconduc-

tor, the TDGL Lawrence-Doniach model is used in a magnetic
field near the mean-field transition temperature [26]:

h̄2γD

2m
Dτ�n = − 1

d ′
δFGL

δ�∗
n

+ ζn. (3)
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Here, Dτ ≡ ∂/∂τ − i(e∗/h̄)φ is the covariant time derivative,
with φ = −Ey being the scalar potential describing the
electric field E applied along the y direction. The thermal
noise term ζn should satisfy the fluctuation-dissipation theorem
and ensure that the system relaxes to the proper equilibrium
distribution,

〈ζ ∗
m(r,τ )ζn(r′,τ ′)〉 = h̄2γD

m∗d ′ T δm,nδ(r − r′)δ(τ − τ ′), (4)

where the 〈· · · 〉 denotes a thermal average. The TDGL
Lawrence-Doniach equation is extensively used for studying
the transport properties of the layered superconductor. Various
physics, for example, the dynamical phase diagram of the
cuprate superconductor where the pinning or disorder effect
shall be taken into account for the free energy, or the Josephson
vortex ratchet in a mesoscopic system, can be revealed by the
TDGL equation [27,28]. In this paper, the intersection point
region is close to the critical temperature, and the pinning
effect will be ignored throughout this paper.

B. Static properties of the vortex liquid phase within
the self-consistent approximation

The self-consistent fluctuation approximation (SCFA) in
the static Ginzburg Landau model has been used to derive the
magnetization in the vortex liquid phase in Ref. [18], in which
the full derivations of the magnetization formula used below
can be found. The basic characteristics of the vortex liquid
are the excitation energy gap, which will be denoted by ε in
the physical energy unit 2h̄eHc2

m∗c (Hc2 = h̄c/2eξ 2
� is the upper

critical field). It is determined by the gap equation

ε = −ah − ωt

π
ln(1 + �d2 +

√
2�d2 + �2d4)

+ ωtd

2π2

∫ 2π/d

kz=0
ψ(g(k) + �/b) − ψ(g(k)), (5)

where k is the wave vector along the magnetic field direction
and � is the dimensionless cutoff energy in the physical energy
unit. The dimensionless “distance” from the Hc2 line is ah =
(1 − t − b)/2, where t = T/Tc, b = B/Hc2. The parameter
ω describes the thermal fluctuation strength of the layered
superconductors, often expressed via the Ginzburg number,
Eq. (2),

ω = π

d

√
2Gi, (6)

where � and γ are the gamma function and the digamma
functions, respectively, and the dimensionless layer distance
is d = d ′γ /ξ�. It is convenient to introduce a function of the
perpendicular wave vector k frequently used in the equations
below:

g(k) = 1

b

(
1 − cos kd

d2
+ ε

)
. (7)

The critical temperature Tc is often smaller than the
mean-field critical temperature T� due to strong thermal
fluctuations on the mesoscopic scale [18]. Within the Gaussian
approximation the relation is given by

Tc = T�

[
1 − 2ω

π
ln(1 + �d2 + d

√
2� + �2d2)

]
. (8)

FIG. 2. Magnetization data of Ref. [4] and theoretical fits (purple
lines) of LSCO crystal for various values of H . The comparison
between the fluctuation magnetization calculated using the self-
consistent fluctuation approximation (SCFA) vs the 2D lowest Landau
level (2D-LLL) approximation.

Magnetization was calculated in the framework of SCFA
including all Landau levels [18]:

M = − 2eT

hcd ′

{
�

b
+ d

2π

∫
k

[
ln �

(
g(k) + �

b

)

−
(

g(k) + �

b
− 1

2

)
ψ

(
g(k) + �

b

)

+
(

g(k) − 1

2

)
ψ(g(k)) − ln �(g(k))

]}
. (9)

Dynamical properties of the vortex liquid require the time-
dependent equation Eq. (3) involving an extra parameter, the
diffusion constant γD .

C. Conductivity within the self-consistent approximation

While for a BCS superconductor the diffusion constant γD

is related to parameters in the GL model by γBCS = πh̄

8T�ξ 2
�

, for
unconventional superconductors, this relation can be modified,
γD = ηγBCS (η is a fitting parameter of order 1).

FIG. 3. The intersection point lines T ∗(H ) of magnetization vs
magnetic fields H for different interlayer spacing d ′ of LSCO crystal.
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FIG. 4. The energy gap of the vortex liquid ε(b)/b as a function
of magnetic field with fixed d ′ = 6.58 Å and T ∗ = 21.4 K of LSCO
crystal.

The magnetoconductivity of the layered superconductor
due to superconducting fluctuation in the vortex liquid phase
using SCFA was studied in Refs. [29] and [30], including
high Landau levels. The Cooper pair contribution to the
conductivity in terms of the excitation energy ε, determined
by the gap equation Eq. (5), is

σs = e2tηγ

8hbξ�

∫
k

{
(2g(k) − 1)

[
ψ(g(k))+ψ

(
g(k)+�

b
+ 1

2

)

−ψ

(
g(k) + 1

2

)
− ψ

(
g(k) + �

b

)]

+ �

� − b/2 + g(k)b

}
. (10)

The detailed derivation of Eq. (10) can be found in [30]. Having
expressed both the static and the dynamical physical quantities
within the same approximation, we now can turn to the main
point of the present study: the intersection points at different
magnetic fields. Let us start withmagnetization.

FIG. 5. ξc(H ) as a function of magnetic field with fixed d ′ =
6.58 Å (d = 5.87) and T ∗ = 21.4 K of LSCO crystal.

TABLE I. Fitting parameters for YBa2Cu3O7, LaFeAsO0.9F0.1−δ .

Material Tc (K) d ′ (Å) Hc2 (T ) γ � Gi ω k

YBCuO 87.5 11.68 200 7.5 0.30 0.0011 0.022 1.4
LaFeAsO 20 8.717 50 7.64 0.30 0.0015 0.066 0.7

III. INTERSECTION POINTS OF MAGNETIZATION
CURVES

As mentioned in Introduction, the intersection points for
the magnetization, defined as,

∂M

∂H

∣∣∣∣
T =T ∗

= 0, (11)

were measured in many high-Tc cuprates [11,12,31,32] and
explained within the “lowest Landau-level” approximation
[16,17]. To calculate the intersection curve determined by
Eq. (11) from Eq. (9), the derivative of magnetization with
respect to the magnetic field is required:

∂M

∂b
= − eT γ

πhcξ�b

∫
k

[
−

(
g(k) + �

b
−1

2

)(
ε′
b − g(k) − �

b

)

×ψ ′
(

g(k) + �

b

)
+

(
g(k) − 1

2

)

×ψ ′(g(k))ε′
b − g((k)) − �

b

]
. (12)

Here the derivative ε′
b = ∂ε/∂b, that can be calculated using

the gap equation, Eq. (5), and the intersection curve T ∗(H ) is
obtained numerically.

In Fig. 2 magnetization curves of the under-
doped La1.91Sr0.09CuO4 (Tc = 24 K, d ′ = 6.58 Å) at H =
2T , 3T , 5T , 8T fitted by Eq. (9) (purple lines) are shown.
The fitting parameters [18] are Hc2 = 31T , γ = 29,� =
0.3,Gi = 0.033, and ω = 0.138. The result of SCFA approx-
imation with all Landau-level approaches fits well with exper-
iments (points). The magnetization in 2D-LLL approximation
(detailed derivations are presented in Appendix A) is also
shown in Fig. 2 (green lines). The 2D-LLL approximation
theory predicts a single intersection point, in contrary to

FIG. 6. ε(b)/b as a function of magnetic field with fixed d ′ =
11.68 Å and T ∗ = 85.8 K of YBCO crystal.
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the experimental data. Furthermore, it gave too large a
diamagnetization (roughly twice) compared to the SCFA
result.

In Fig. 3, the intersection point lines T ∗(H ) of two
superconductors with different interlayer spacings are given.
The first is underdoped LSCO, with d ′ = 6.58 Å while
the second (hypothetical) has d ′ = 15 Å and all the other
parameters, Tc,Hc2,Gi, γ , the same. For the first material,
T ∗ is nearly independent of magnetic field in the range 1T

to 5T [T ∗(1T ) = 21.64 K, T ∗(2T ) = 21.27 K, T ∗(3T ) =
21.25 K, T ∗(4T ) = 21.5 K, T ∗(5T ) = 21.93 K]. The best
intersection point is at 21.4 K. For the hypothetical, more
anisotropic material, T ∗ exhibits stronger dependence on
H . Therefore in the 2D limit, there is no well-defined
intersection point. Since the earlier explanation of the
intersection point [16,17] made use of a 2D limit
and LLL approximation, let us clarify why it is not
likely.

In Fig. 4 the energy gap of the vortex liquid, ε(b)/b, in
underdoped LSCO at T ∗ = 21.4 K is given as a function of
magnetic field. The LLL approximation condition ε(b) 	 b is
questionable, since ε(b)/b exceeds 0.25. So one has to look for
an explanation elsewhere. An alternative is the dimensional
2D-3D crossover taking place when coherence length in
directions perpendicular to the layers becomes comparable
to the interlayer distance.

The correlation length ξc is calculated in Appendix B. In
Fig. 5, it is shown for underdoped LSCO at T ∗ as a function
of magnetic field. One notices that ξc(H ) = d ′ at H = 2.7T ,
just at the point in which the intersection point is defined the
best (see a minimum in Fig. 3). To conclude, the intersection
points lies near the 2D-3D crossover. This is one of the main
results of the present paper.

The quantity K also shows the intersection point as it will
be shown below. The definition of the intersection point for
this quantity is

∂

∂H
K

∣∣∣∣
T =T ∗

= 0. (13)

The derivative of K with respect to b simplifies to

∂K

∂b
= etηγ c

32πbξ 3
�

∫
k

{
2(εb − g(k))

[
ψ

(
g(k) + �

b
+ 1

2

)
− ψ

(
g(k) + �

b

)
+ ψ(g(k)) − ψ

(
g(k) + 1

2

)]

+ (2g(k) − 1)

{(
εb − g(k) − �

b

)[
ψ ′

(
g(k) + �

b
+ 1

2

)
− ψ ′

(
g(k) + �

b

)]

+ (εb − g(k))
[
ψ ′(g(k)) − ψ ′

(
g(k) + 1

2

)]}
− �b(εb − 1/2)

(� + (g(k) − 1/2)b)2

}
. (14)

By combining Eq. (14) and Eq. (13), the intersection
point T ∗(H ) is obtained. Detailed comparison with data
follows.

YBCO. The single-crystal magnetoresistivity data of
YBa2Cu3O7 (Tc = 87.5 K) of Ref. [24] is used to analyze
the intersection points of K . The superconducting fluctua-
tions component of the magnetoconductivity is obtained by
subtracting the normal part, σs = 1/ρ − 1/ρn. The normal
state resistivity ρn in the low-temperature region is given
by the linear extrapolation of the resistivity curve from the
high-temperature region. The experimental data σsH/Hc2

as a function of temperature for various magnetic fields of
YBa2Cu3O7 (Tc = 87.5 K) single crystal [24] are shown in
Fig. 1. The experimental curves intersect roughly at a point
between 5T and 10T , and T ∗ = 85.8 K is just below the
critical temperature Tc. We use Eq. (5) and Eq. (10) to fit
the data and the fitting parameters are listed in Table I. (The
interlayer distance d ′ = 11.68 Å is taken from Ref. [33].)
The solid curves are plotted using the fitting parameters. The
curves fit very well in the high-temperature region above T ∗ =
85.8 K, but the fitting in the low-temperature region is not
good. The reason can be attributed to pinning, whose influence
on the conductivity becomes significant in the low-temperature
region.

The energy gap ε(b)/b at T ∗ = 85.8 K is shown in Fig. 6.
The curve varies approximately from 0.2 to 0.3 for 5T to

10T . Therefore the LLL approximation is questionable in the
intersection point region.

Figure 7 shows the coherence length dependence on
the magnetic field at T ∗ = 85.8 K. ξc(H ) is quite near the
interlayer distance between 5T and 10T (good intersection
point region). Hence the appearance of the intersection point
is in the 2D-3D crossover region.

FIG. 7. ξc(H ) as a function of magnetic field with fixed d ′ =
11.68 Å and T ∗ = 85.8 K of YBCO crystal.
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FIG. 8. The comparison of intersection point lines between
magnetization and conductivity of YBCO crystal.

Both the intersection curves for magnetization M and
conductivity K are plotted in Fig. 8. There are quite small
differences for the two curves, and this means that the
appearance of intersection points for M and K is due to the
same physical mechanism.

Pnictides. For Fe-based superconductors, the intersection
points shall appear as they are mostly layered materials as well.
The strongly layered LaFeAsO0.9F0.1−δ (Tc = 20 K) [25] with
the anisotropy parameter γ = 7.64 is considered. In Fig. 9,
σsH/Hc2 vs T for various magnetic fields studied is shown for
LaFeAsO. The fitting parameters γ, ω,Hc2 had been already
established in Ref. [30] and are listed in Table I.

IV. SUMMARY AND CONCLUSIONS

To summarize, we noticed that in strongly fluctuating
layered type-II superconductors in the vortex liquid phase,
the product of the superconducting part of conductivity σs

and of magnetic field, K = σsH , as a function of temperature
has an “intersection point” similar to that noticed long ago
in magnetization curves. To explain the intersection point
phenomena, the self-consistent approximation theory of the
Lawrence-Doniach model was adapted to calculate both
quantities within the same framework.

FIG. 9. Intersection points in conductivity curves of
LaFeAsO0.9F0.1−δ (Tc = 20 K).

The underdoped LSCO and optimally doped YBCO high-
Tc cuprates are used as test cases. The Fe-based layered super-
conductor LaFeAsO0.9F0.1−δ [25] demonstrates the existence
of the intersection point phenomenon beyond cuprates. While
in the past the “intersection points” were attributed to the
2D-like superconducting fluctuation on the basis of the lowest
Landau-level theory of the vortex liquid phase [16], it was
demonstrated that the LLL is not valid near the intersection
point. For magnetization the value of 2D-LLL approximation
is much larger than the SCFA one, and these two temperatures
of the intersection point are not equal, so that higher Landau
levels must be taken into account.

The main observation is that the intersection point T ∗,
when it is well defined, is located in the vicinity of the
2D-3D fluctuation crossover where the coherence length ξc(T )
in the direction perpendicular to the layers is approaching
the interlayer spacing. Its location is not fixed but changes
moderately with magnetic field.
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APPENDIX A: 2D-LLL APPROXIMATION
OF MAGNETIZATION

Since the intersection points appear when the magnetic field
is small compared to Hc2 and temperature does not deviate
too far from Tc, let us simplify the expression, Eq. (9), for
b,ε 	 �. It takes the following form:

M = − eT γ

πhcξ�

∫
k

{
(g(k)−1/2)[ψ(g(k))−1]− ln

�(g(k))√
2π

}
.

(A1)

The gap equation also simplifies:

ε = −ah − ωt

π

[
ln(2bd2) + d

2π

∫
k

ψ(g(k))
]

. (A2)

In the LLL approximation, the inter-Landau energy is much
larger than the intra-Landau-level excitation, that is b 
 ε. The
magnetization formula of Eq. (A1) is

MLLL = − eT

hcd ′
b√

εLLL(2/d2 + εLLL)
, (A3)

with

εLLL = −ah + ωt

π

b√
εLLL(2/d2 + εLLL)

. (A4)

By taking both the 2D and the LLL approximation, the
intersection point can be found analytically. By taking the
d → ∞ limit of Eq. (A3), one obtains,

M2D
LLL  − eT

hcd ′
b

ε2D
LLL

, (A5)
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where the gap equation for ε2D
LLL within the 2D-LLL approxi-

mation becomes just

ε2D
LLL  −ah + ωt

π

b

ε2D
LLL

. (A6)

Using these expressions, the intersection point condition,
Eq. (11), allows an analytic solution:

T 2D∗
LLL = Tc

1 + 4ω/π
. (A7)

APPENDIX B: CALCULATION OF THE COHERENCE
LENGTH ALONG THE DIRECTION PERPENDICULAR

TO LAYERS

The interlayer coherence length ξc is determined from the
exponential decrease of the order parameter correlator 〈ψ∗

mψn〉
as a function of the interlayer distance (n − m)d ′. The method
correlator can be calculated using SCFA, and we will follow
Ref. [18]. To simplify the calculation, the field and length will
be expressed in physical units.

The dimensionless order parameter is φ = √
β/2αT��,so

that the GL Boltzmann factor in scaled units takes a form

f = F

T
= 1

2ωt

∑
n

∫
r
[|Dφn|2 + d−2|φn − φn+1|2

− (1 − t�)|φn|2 + |φn|4], (B1)

where the dimensionless covariant derivative D in the above
equation is [∇+i(2e/h̄c)A]/ξ�. The φn(r) is expressed by the
Fourier transform field φl,q,k:

φn(r) = 1

(2π )3/2

∑
l

∫
q

∫
k

eindkϕl,q(r)φl,q,k , (B2)

where ϕl,q(r) is the Landau’s quasimomentum wave function
[34]. The correlator is given by the statistical average within
SCFA:

〈
φ∗

l,q,kφl′,q′,k′
〉 = 1

Z0

∫
φ

φ∗
l,q,kφl′,q′,k′e−P ,

Z0 =
∫

φ

e−P , (B3)

where

P = 1

ωtd

∞∑
l=0

∫
q

∫
k

[
1

d2
(1 − cos kd) + lb + ε

]
φl,q,kφ

∗
l,q,k ,

(B4)

which leads to

〈
φ∗

l,q,kφl′,q′,k′
〉 = ωtd

(1− cos kd)/d2+lb+ε
δl,l′δ(q−q′)δ(k−k′).

(B5)

The correlator between different layers is defined as

〈φ∗
m(r)φn(r)〉 = 1

S

∫
r
〈φ∗

m(r)φn(r)〉, (B6)

where S is the area of the layer. Using Eq. (B2),

〈φ∗
m(r)φn(r)〉

= 1

(2π )3S

∫
r

∫
k,k′

e−i(mk−nk′)d

×
∑
l,l′

∫
q,q′

ϕ∗
l,q(r)ϕl′,q′ (r)〈φ∗

l,q,kφl′,q′,k′ 〉

= ωtd

(2π )3S

∫
r

∫
k

e−i(m−n)kd
∑

l

∫
q
ϕ∗

l,q(r)ϕl,q(r)

× 1

(1 − cos kd)/d2 + lb + ε

= ωtdb

(2π )2

∑
l

∫
k

e−i(m−n)kd 1

(1− cos kd)/d2+lb+ε
. (B7)

The result is

〈φ∗
m(r)φn(r)〉 = ωt

d2b

2π

∑
l

(Ql −
√

Q2
l − 1)n−m

√
Q2

l − 1
, (B8)

in which Ql = (lb + ε)d2 + 1. For n − m 
 1, the biggest

value of Ql −
√

Q2
l − 1 survives, which happens when l = 0,

〈φ∗
m(r)φn(r)〉n−m
1  ωt

d2b

2π

exp
[ − (n−m)d

ξc

]
√

(εd2 + 1)2 − 1
, (B9)

so the coherence length (in unit ξ�/γ ) is

ξc = − d

ln(εd2 + 1 −
√

(εd2 + 1)2 − 1)
. (B10)

This was used in Figs. 5 and 7.
When magnetization was measured precisely enough and

the normal background carefully subtracted [4], it was found,
surprisingly, that when the magnetization as a function of
temperature M(T ) is plotted at different magnetic fields H ,
the curves intersect at the same temperature T ∗.
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