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The life cycle of the policy for preventing road accidents: an empirical
example of the policy for reducing drunk driving crashes in Taipei
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Abstract

The purpose of this paper is to examine the temporal variation of the effect of preventive policy on reducing traffic accidents. The life cycle
theory was introduced to describe the safety effect of the intervening policy over time. Poisson regression models with dummy-based and
time-based specifications were used to evaluate the effect of an intervening policy over an observation period following its implementation.
The policy of “Criminal sanction for drunk driving (CSFDD)” in Taipei city was evaluated as an empirical example to determine whether the
temporal variation of safety effect happened to the CSFDD policy. The study results showed that alcohol consumption, arresting the drunk
driving offenders, and the implementation of the CSFDD were the significant factors affecting the rate of occurrence of fatal accidents in-
volving drunk driving. The effect of the CSFDD policy appeared to be a rapid initial response followed by a lower rate of decay. The existence
of the life cycle implies that employing different observation periods following the implementation of a specific policy to evaluate its perfor-
mance may obtain different effects. The results of this study are crucial for policy evaluation. The effects of safety policy should be carefully
interpreted in order to avoid misleading the relevant authorities in coming to the wrong conclusions and as such make the wrong decisions.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many intervention policies have been developed and im-
plemented all over the world during the past two decades in
order to reduce the number of traffic accidents. At the same
time, a lot of observational before-and-after studies have
been conducted to try and measure their effects on reducing
the accident rate. Basically, the safety effect of an interven-
tion policy either comes out quickly following its implemen-
tation (e.g. pavement resurfacing), or appears gradually (e.g.
safety education). In addition, once the safety effect appears,
it may increase with time over some period to reach its max-
imum, and then sustain this maximum effect indefinitely or
decline gradually. The effect of safety measures may vary
over time due to changes in the enforcement efforts, the
design of the measures, and changes in public attention or
social norms over time. Thus, the temporal variation of the
safety effect implies that each intervention policy may have
its own unique evolution process within a different context.
This means that researchers will face the problem of decid-
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ing when it is the appropriate time to measure the safety
effect of a prevention policy after its implementation.

The conventional methods employed to measure the ef-
fect of an intervention policy regarding accident reduction
can be classified into three categories. They are: pairt-test,
time series analysis, and causal factor analysis (Hauer, 1997;
Lacey and Jones, 2000; Chang and Yeh, 2003). In the pair
t-test approach, the average accident frequencies (or accident
rates) before and after implementing the intervention policy
are collected respectively, and the pairt-test is then applied
to determine whether these two average values are signif-
icantly different. Two problems are noted when using the
pair t-test to measure the safety effect. First, the accident re-
duction cannot guarantee to be the result of the intervention
policy for lack of comparison with controlled counterparts.
Second, if the safety effect following the implementation of
a policy is not constant over time, how long after implemen-
tation will be the right time to measure its safety effect?

Time series analysis is another commonly used evaluation
approach for measuring the safety effect of an intervention
policy. Through model estimation and prediction, time se-
ries analysis can explore the trend of accident occurrences
over time, and help the analysts to determine whether the
intervention policy was effective in reducing the rate of
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traffic accidents. However, time series analysis is argued by
its inherent drawback that it cannot discern the specific ef-
fects of individual factors affecting the accident occurrence.
Although, this drawback could be somewhat improved by
applying a multivariate time series model instead of a uni-
variate time series model, nevertheless, the complicated
technical requirements for modeling and computing often
discourage the analysts from trying to do so. Furthermore,
time series analysis involves a considerable amount of “data
mining” and needs more observational data in evaluating
the safety effect (Roger and Schoenig, 1994; DeYoung,
2000; Rehn and Gerhard, 2001). The end-result is that the
evaluation work is unable to be conducted within a short
period after the implementation of the intervention policy.

Causal factor analysis is the most popular tool for evalu-
ating the safety effect of policy intervention (Miaou, 1994;
Dionne et al., 1995; Agresti, 1996; Sohn, 1999; Li et al.,
2001; Chang and Yeh, 2003). This type of regression model
is usually estimated by the least squares or maximum likeli-
hood estimation methods (Agresti, 1996). The capability of
differentiating the safety effect of policy intervention from
other factors makes the causal factor analysis model supe-
rior to other models. However, in the literature, the effect of
a policy intervention is commonly formulated by a dummy
variable in the causal factor analysis models, like the lin-
ear regression or Poisson regression models (Miaou, 1994;
Chang and Yeh, 2003). It only shows the average safety ef-
fect of the intervening policy over the study period, and fails
to see the temporal variation of the safety effect during its
evolution process.

Neglecting the time variable of the safety effect may cause
the effect of the policy to be misunderstood by researchers,
and lead the relevant authorities to make poor decisions
concerning the status, enhancement or replacement, of the
existing policy. The temporal safety effect problem was men-
tioned byHauer (1997); however, little attention has been
paid on measuring its effect quantitatively in past literature.
This study was undertaken to explore the factors affecting
the safety effect of an intervention policy, and to determine
whether the time variability of the policy effect exists. The
life cycle theory (Wells and Gubar, 1966; Robbins, 1990;
Kotler, 1994) was applied to develop a conceptual frame-
work of the changing safety effect pattern brought about
by the intervention policy over time. A Poisson regression
model was used to formulate the relationship between the
monthly accident frequencies and the candidate affecting
factors, as well as the time following the implementation
of the intervention policy. The implementation of criminal
sanctions for drunk driving (CSFDD) in Taipei city was then
taken as an empirical example to determine whether the time
variability of the safety effect really existed for the CSFDD.

Following this section, the life cycle theory will be intro-
duced, and a conceptual framework for the temporal varia-
tion of the safety effect for the intervention policy will be
established inSection 2. The considerations for model for-
mulation are presented inSection 3. The CSFDD program

for Taipei city is introduced and available data for model
estimation are prepared inSection 4. Model specifications
for both dummy-based and time-based Poisson regression
models are presented inSection 5. Model estimations and
interpretations for both dummy-based and time-based Pois-
son regression models are presented inSection 6. Finally,
concluding remarks are made inSection 7.

2. A conceptual framework for the life cycle of safety
policy

A life cycle refers to a growth pattern with predictable
change over time. The life-cycle theory has received a great
deal of attention in marketing and organization studies
(Wells and Gubar, 1966; Robbins, 1990; Kotler, 1994). It is
commonly used to describe and analyze the lifetimes and/or
growth patterns for specific companies or of manufactured
products. The lifetimes of study objects are typically di-
vided into four stages, by the theory of life cycle, as shown
in Fig. 1. They are: emergence or formation, growth, ma-
turity, and decline. Different products will have different
life cycle patterns, which may have significant differences
between durations for the same stage.

If we assume the intervention policy on reducing traf-
fic accidents to be a product introduced by the government,
then the four stages of the life cycle theory can be applied
to formulate the safety effect of the intervention policy over
its lifetime. The safety effect of the policy intervention may
change with the passage of time due to two reasons (Hauer,
1997). First, the intervention itself may undergo changes
over time (e.g. a poor design of the education program, or
the gradual decay of some engineered improvement). Sec-
ond, people’s adaptation and perception of the particular in-
tervention may change over time. In addition, people need
time to adapt to, or perceive what has been implemented.

People need time to get familiar with the new policy
after it has been introduced, and so the safety effect usually
does not appear at the emergence stage. The duration of the
emergence stage varies from case to case, and depends on
the characteristics of policy, target group, promotion, en-
forcement, as well as the political environment. Once peo-
ple are aware of, and feel affected by the new policy, they
will begin to change their behavior to fit the requirements
of the policy. At this stage, called the growth stage, the
safety effect will become increasingly apparent. The more
the people obey the new policy, the more the safety effect
will increase. However, the safety effect of any intervention
policy cannot increase infinitely, and will eventually reach a
plateau of maturity. The maturity stage of some policies, like
traffic safety education, might be expected to be sustained
indefinitely. However, theoretically, most safety policies are
recognized to decline after some substantial period at the
maturity stage, due to various internal or external influences.
As mentioned earlier, the duration of the four stages of a
life cycle can vary significantly for different safety policies.
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Fig. 1. The four stages of the life cycle theory.

Therefore, in practice, not all of the four stages of the life
cycle of safety policies are necessarily found within limited
observational periods. For example, the maturity stage of the
safety education policy might not be found in 10 years of ob-
servation, however, the declining stages of some campaigns
against drunk driving might be arrived at within 5 years.

Based on the above discussions, four possible safety effect
patterns of the intervention policy will be found within an
observational periodT (seeFig. 2). For pattern A, the safety
effect of the intervention policy did not appear within the
observation period, and only the emergence stage was ob-
served. In this case, the intervention policy is ineffective, or
the observation period is not long enough to see the appear-
ance of the policy effect. In pattern B, both the emergence
and the growth stages of the safety effect are observed, and
the safety effect of the intervention policy can be verified.
However, the observers will fail to see the maximum effect
the policy can achieve. The emergence, growth, and the ma-
turity stages of the safety effect will be observed in pattern
C, and the safety effect has reached its ultimate and sus-
tained constant over some substantial period of time. And
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Fig. 2. Four possible safety effect patterns observed within an observation
period T.

finally in safety effect pattern D, the entire life cycle of the
intervention policy can be observed and the real safety effect
over time can be properly identified.

3. Considerations for model formulation

Enforcement is commonly thought of being an important
factor that influences the effect of the intervention policy
on accident reduction, especially the punishment related
treatments. Therefore, the effect of an intervening policy on
reducing traffic accidents over an observation period should
be influenced by the level of enforcement. For example,
the more enforcement is involved, the sooner the matu-
rity stage will be reached. Furthermore, public attention is
another important factor affecting the effect of the interven-
tion policy (Roger and Schoenig, 1994; DeYoung, 2000).
The promotion of a new policy through the mass media is
powerful enough to increase the public’s attention within a
short period of time, and is expected to have a significant
effect on accident reduction.

In order to clarify those effects corresponding to the life
cycle of a specific policy, the model employed is supposed to
have the capability of differentiating the safety effect of the
life cycle from those brought about by other factors. Based
on this requirement, the causal factor analysis models are
preferred to pairt-test models as well as time series models,
in order to explore the safety effect over time for a specific
policy.

Selecting an appropriate observation interval is another
important issue for model formulation. In order to collect
enough samples for model estimation, the longer the obser-
vation interval is, the longer after implementation the eval-
uation work can be done. Furthermore, if the observation
intervals are too long, the whole life cycle of an intervention
policy could possibly occur in one interval, and one would
fail to see the temporal variation of the policy effect over
time. On the other hand, if the observation intervals are too
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short, some important information might not be available in
the official statistics (e.g. daily enforcement data). There-
fore, for the above reasons, monthly observational data are
suggested for policy evaluation purposes.

Once the length of the observation interval has been
decided, two types of models are available for model for-
mulation. If the number of accidents that occurred in each
observation interval is large enough, the linear (or nonlin-
ear) regression models with least squares estimation method
could be considered for the sake of convenience. The linear
(or nonlinear) regression model is formulated as follows:

yt = β0 + β1xt + f(β2, t
′) + εt, t = 1, . . . , T (1)

whereyt is the frequency of accidents that occurred in the
observation intervalt, xt is a vector of contributing variables
in intervalt, t′ is the number of observation intervals since the
policy was implemented,βi

′s are the vectors of parameters
to be estimated, andεt is the error term. The values oft′ are
zero for the intervals before the policy was started, and a
function oft′, f(β2, t′), is used to catch the temporal variation
of the policy effect over the time after the implementation
of the policy.

When the number of accidents that occurred in each ob-
servation interval is small, then the Poisson regression mod-
els, through the maximum likelihood estimation approach,
could be considered for statistical robustness. The Poisson
distribution is known to describe well the random behavior
of the occurrence of discrete events such as accident fre-
quency (Agresti, 1996; Hauer, 1997; Fridstørm et al., 1995;
Sohn, 1999; Li et al., 2001; Shope et al., 2001; Chang and
Yeh, 2003). Poisson regression models can be employed to
formulate the discrete count accident data, and to evaluate
the effect of the intervention policy. The Poisson regression
model is defined in terms of its density function, i.e.

P(yt) = e−λt
λ

yt
t

yt !
, t = 1, . . . , T (2)

whereyt is the frequency of accidents that occurred in
the observation intervalt. The expected value of the Poisson
regression model,E(yt) = λt , equals the variance. In the
Poisson regression models, the function of mean is specified
as λt = f(xt, β), xt is the vector of explanatory variables
in the observation intervalt andβ is the corresponding pa-
rameter vector to be estimated. Generally, the function can
be any functional form. However, in order to restrict the
value ofλt to be positive, the exponential function is com-
monly used in practice. By applying the Poisson regression
model to formulate the accident occurrence over time, and
to explore the effect of the intervening policy on accident
reduction, we assume that the expected accident frequency
occurred in the observation intervalt is:

λt = eβ0+β1xt+f(β2,t
′) (3)

wherext is the vector of contributing variables in the ob-
servation intervalt, t′ is the number of observation intervals
since the policy was implemented,βi

′s are the vectors of

parameters to be estimated. The values oft′ are zero for the
intervals before the policy was started, and a function oft′,
f(β2, t′), is used to catch the temporal variation of the policy
effect over time after the policy was implemented.

4. Criminal sanction for drunk driving in Taipei city

In order to prepare for joining the World Trade Orga-
nization (WTO) as a member, the Taiwanese Government
introduced further deregulations of alcohol-related products
and industry during the past decade. The restrictions on
alcohol-related products and industry have been reduced
during the study period. For example, the advertising of
alcohol-related products in the mass media, including tele-
vision, has been permitted since 1996. As a result, the ag-
gressive marketing of alcohol-related products has begun to
encourage people to consume more alcohol. At the same
time, the prices of alcohol-related products gradually low-
ered due to strong competition and the reduction of the
import tax. This also has encouraged people to consume
more alcohol. Therefore, drunk driving has become a se-
vere social safety problem, and is a major concern for
the Taiwanese public. A lot of effort has been devoted to
deter people from driving while impaired during the past
10 years. The regulations in Taiwan stipulate that drivers
with a breath alcohol content higher than 0.25 mg/l will be
punished by a fine of NT$ 6000 (approximate US$ 180),
suspension of their driver licenses for 6 months, and the
mandatory attending of a four-hour education course. Drunk
drivers who are found guilty in a fatal traffic accident will
be deprived of their rights to drive a vehicle for the rest
of their lives. However, this severe punishment still cannot
stop people from driving while intoxicated.

At the end of 1998, two fatal accidents caused by drunk
drivers attracted the public’s attention and started some
heated debates against drunk driving. Those events finally
brought additional interventions to deter people from drunk
driving, and the law of CSFDD was passed in May 1999.
Under the new regulation, drivers with a breath alcohol con-
tent higher than 0.55 mg/l will be fined up to NT$ 60,000
(approximate US$ 1800), put into prison (for a maximum
of 1 year), and have their driver licenses suspended for up
to 3 years. These new rules for drunk driving were widely
broadcast by television channels, radio stations, published
on the Internet as well as in newspapers before they were
implemented. It started another series of nationwide hot
debates among the public.

Though the CSFDD policy was enacted to punish the
drunk drivers with breath alcohol contents higher than
0.55 mg/l, it also deters potential offenders from driving
while intoxicated, even with breath alcohol contents under
0.55 mg/l. Therefore, the CSFDD is expected to reduce the
numbers of fatal accidents involving drunk drivers not only
with a breath alcohol content higher than 0.55 mg/l but also
with a breath alcohol content between 0.25 and 0.55 mg/l.
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Thus, the drunk driving fatalities used in this study are
the accidents that involved drivers who were found guilty to
the accidents, and had a breath alcohol content higher than
0.25 mg/l. Fifty-eight monthly statistics for fatal traffic ac-
cidents involving drunk driving in Taipei city, from March
1996 to December 2000, were collected for model estima-
tion. For convenience, each month was designated with a
series number in numerical order. That is, the first month
of March 1996 was the 1st observation month and the last
month of December 2000 was the 58th observation month
in this study. The CSFDD policy was implemented as of the
39th observation month.

5. Model specifications

The number of monthly fatal drunk driving accidents
that occurred in Taipei city ranged from zero to seven.
Therefore, the Poisson regression models are preferred over
the linear regression models in this study for formulating
the accident occurrence involving drunk driving. Also, two
kinds of model specifications are considered in this study
in order to compare the temporal effect with the constant
effect for an introduced policy. The first one is to treat the
effect of CSFDD by a dummy variable, in which the average
safety effect over an observation period is measured. We
call models with this kind of specification: dummy-based
specification models. The second one is the time-based
specification model in which the effect of CSFDD is for-
mulated by various functional forms of time having elapsed
since its implementation.

Some regulations on drunk driving had already been de-
veloped prior to the implementation of CSFDD, and a lot
of effort had already been devoted to enforcement over the
past years. Therefore, the CSFDD can be thought of as an
additional treatment to enhance the effect of reducing the
traffic accidents involving drunk driving. In order to clarify
the additional effect that resulted from the CSFDD only, the
effects corresponding to policies existing prior to CSFDD
as well as the enforcement devotion over the whole obser-
vation period should be effectively separated in the model
specifications. Police manpower or financial resources de-
voted to drunk driving prevention seems to be an appropriate
variable to represent the devotion of enforcement. For lack
of reliable data about the manpower or financial support de-
voted to enforcement, the number of drunk driving offenders
arrested by police in time intervalt, X1t , is therefore consid-
ered as the proxy explanatory variable in model specifica-
tion to reflect the compound effect of existing policies and
enforcement on reducing the fatal accidents that involved
drunk driving.

Taiwan had been working towards the World Trade Orga-
nization (WTO) for several years when the CSFDD policy
was started being implemented. Consequently, several regu-
lations on alcohol-related products and industry were lifted
one by one over time in the periods before and following the

implementation of the CSFDD. The decrease of the import
tax on liquor, beer and wine dramatically reduced the prices
of alcoholic drinks, and significantly influenced the alco-
hol consumption of people in Taiwan. It has been demon-
strated that the more alcohol a society consumes, the more
drunk driving accidents will occur (Deshapriya and Iwase,
1996; Voas et al., 2000). Therefore, including the variable
of alcohol-consumption into the models is expected to avoid
the potential bias in model estimations.

Measuring the alcohol consumption for a specific city in
a given time interval is difficult in practice, and therefore
the sales of alcohol or alcoholic beverages are usually used
as a surrogate measure. However, only the yearly data for
beer, wine and liquor sales of Taipei city are available. This
forces us to include the yearly alcohol sales index into the
model instead of the monthly alcohol sales index. We set
the amount of sales of alcoholic beverages in Taipei city
in 1996 as the alcohol sales index of one for the purpose
of comparison. The values of the alcohol sales index for
other years are then defined as a ratio of the amount of
alcohol sales in a given year to the amount of alcohol sales
in 1996. The yearly alcohol sales and the corresponding
yearly alcohol sales index for Taipei city are summarized
in Table 1. The variable of yearly alcohol sales index,X2t ,
is served as a year-based covariate only, remaining constant
over each month during the same year.

5.1. Dummy-based specification of the Poisson
regression model

In the dummy-based specification model, we apply the
dummy variable,X3t , to represent the CSFDD policy being
implemented in thetth month. The dummy-based Poisson
regression model can then be formulated asEq. (4). The
dummy-based model can help us to catch the average safety
effect of the CSFDD policy over the entire observation pe-
riod. However, we fail to see the temporal variation of the
safety effect over time brought about by the intervention
policy in this type of model.

λt = e(β0+β1X1t+β2X2t+β3X3t ) (4)

An additional variable is then further considered in order
to test whether the series correlation exists when using the
time series accident data for model formulation. That is to
say, the number of fatal accidents involving drunk driving

Table 1
The yearly quantity of alcohol sales and the yearly alcohol sales index
in Taipei

Year Yearly quantity of alcohol
sales in Taipei (liters)

The yearly alcohol
sales index (1996= 1)

1996 72532700 1.00
1997 67258200 0.93
1998 69223200 0.95
1999 74136600 1.03
2000 78814500 1.09
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that occurred in the previous month,yt−1, is added toEq. (4)
to test the existence of series correlation as follows:

λt = e(β0+β1X1t+β2X2t+β3X3t+β4yt−1) (5)

5.2. Time-based specification of the Poisson regression
model

In the time-based specification of the Poisson regression
model, the most important issue is to find an appropriate
functional form off(β, t′) so as to catch the possible temporal
variation patterns of the effect of the intervention policy.
Basically, the function off(β, t′) is supposed to have the
capability to catch all the emergency, growth, maturity, and
decline stages of the policy effect over time, based on the
theory of the life cycle. The quadratic function of timet′ is
first considered as the candidate function off(β, t′)because of
its simplicity. Hence, the expected number of fatal accidents
involving drunk driving in thetth month is formulated as
Eq. (6). Similarly, if we add the fatal accidents that occurred
in the previous month toEq. (6), then we will getEq. (7)to
test the existence of series correlation.

λt = e(β0+β1X1t+β2X2t+β3t
′+β4t

′2) (6)

λt = e(β0+β1X1t+β2X2t+β3t
′+β4t

′2+β5yt−1) (7)

The quadratic function oft′ has an intrinsic drawback
when applied to the formulation of the temporal variation
of the safety effect of the intervention policy. That is to say,
the quadratic function is a symmetric function, and will
force the rates of growth and decline corresponding to the
policy effect, to be equal. However, the CSFDD policy was
introduced with major penalties and considerable public
attention. The changing pattern of the CSFDD policy is
expected as a rapid initial response followed by a period
of decay. This implies that the CSFDD policy may have a
very short emergence stage, move rapidly into a very steep
growth stage, and is then followed by decay at a slower rate.
Thus, some modification to the quadratic functional form is
considered in order to provide the opportunity to catch the
decay with a slower rate. That is, the natural logarithm trans-
formation of time since the CSFDD was started, ln(t+1′), is

Table 2
The estimated results for the dummy-based specifications of Poisson regression models

Variables Coefficients estimated for corresponding variables (P-values in parentheses)

Model D1 Model D2 Model D3

Constant −7.6422 (0.0217)∗∗ −7.5530 (0.0198)∗∗ −9.7449 (0.0007)∗∗
The number of drunk driving offenders arrested in thetth month,X1t −0.0002 (0.0859)∗ −0.0002 (0.1157)
The yearly alcohol sales index intth month,X2t 9.0840 (0.0073)∗∗ 8.8975 (0.0058)∗∗ 10.7705 (0.0003)∗∗
The CSFDD was implemented or not in thetth month,X3t −1.3475 (0.0010)∗∗ −1.2956 (0.0005)∗∗ −1.4205 (0.0001)∗∗
Fatal drunk driving accidents occurring in the (t−1)th month,yt−1 −0.0067 (0.9224)
Log-likelihood value −32.1003 −33.1423 −34.3931

∗ Significant atα = 0.10.
∗∗ Significant atα = 0.05.

applied to replace thet′ in Eqs. (6) and (7)and generate the
following two new alternative models withEqs. (8) and (9).

λt = e(β0+β1X1t+β2X2t+β3 ln(t′+1)+β4(ln(t′+1))2) (8)

λt = e(β0+β1X1t+β2X2t+β3 ln(t′+1)+β4(ln(t′+1))2+β5yt−1) (9)

6. Model estimation results and interpretations

6.1. Dummy-based specification models

Three dummy-based specification models were estimated
in this study, differing only with respect to the set of ex-
planatory variables used. An overview of these estimated
models is shown inTable 2. Model D1 is the full model
containing the constant term with all candidate explanatory
variables. The results show that the coefficients ofX1t and
X3t are both negative as expected, and are significantly dif-
ferent from zero in Model D1. It implies that arresting drunk
driving offenders, and implementing the CSFDD policy are
shown to have significant effects on reducing fatal drunk
driving accidents in the full model.

As expected, the yearly alcohol sales index variable,X2t ,
is found to have a significant effect on the occurrence of
alcohol-related fatal accidents in Model D1. It means the
more the alcohol is consumed, the more the fatal accidents
involving drunk driving will occur. However, the estimated
results show that the parameter ofyt−1 is not significantly
different from zero. This means that the expected number
of fatal accidents involving drunk driving in thetth month
was not significantly affected by that of its previous month
(yt−1). Thus, we exclude the variableyt−1 from Model D1
to obtain Model D2.

The estimated results of Model D2 show that both the
parameters of variablesX2t andX3t are significantly different
from zero. However, the estimated parameter of the variable
X1t is not significantly different from zero, even atα = 0.10
in Model D2. The insignificant effect ofX1t in Model D2
might be the case that the number of drunk driving offenders
arrested in thetth month was somewhat correlated with the
fatal accidents involving drunk driving that occurred in the
previous monthyt−1.
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If we further remove the variableX1t from Model D2, then
we can obtain Model D3. The estimated results of Model
D3 show that both the variablesX2t andX3t have significant
effects on the occurrence of alcohol-related fatal accidents.
While the implementation of the CSFDD policy appeared to
have significant effect on reducing number of fatal accidents
involving drunk driving, nevertheless, the increase in alco-
hol consumption will cause the opposite effect on accident
reduction during the observational period. Neither Model
D2 nor Model D1 has significantly better explanatory abil-
ity than Model D3. Therefore, Model D3 seems to be the
best one among the three dummy-based specification mod-
els in term of their statistical explanatory abilities. However,
the devotion to enforcement, as represented by the number
of arrested drunk driving offenders,X1t , has a marginally
significant effect (P = 0.1157) on reducing the fatal acci-
dents involving drunk driving in Model D2. For prediction
purposes, if only the dummy-based specification models are
available, we would choose Model D2 over Model D3.

6.2. Time-based specification models

Four time-based specification models were estimated in
this study, and their estimated results are summarized in
Table 3. The estimated result of Model T1 shows that the
coefficients ofX1t , t′ and t′2 are all significantly different
from zero atα = 0.05. The coefficient ofX2t is positive
as expected, and is significantly different from zero atα =
0.10. But, the variableyt−1 doesn’t appear to significantly
effect upon the occurrence of fatal accidents involving drunk
driving in thetth month. This implies that the variableyt is
not significantly affected by series correlation.

Thus, we excluded the variableyt−1 from Model T1 and
obtain Model T2. The estimated results of Model T2 show

Table 3
The estimated results for the time-based specifications of Poisson regression models

Variables Coefficients estimated for corresponding variables (P-values in parentheses)

Model T1 Model T2 Model T3 Model T4

Constant −5.1633 (0.0003)∗∗ −5.1036 (0.1470) −6.6616 (0.0616)∗ −6.2818 (0.0736)∗
The number of drunk driving offenders

arrested in thetth month,X1t

−0.0003 (0.0388)∗∗ −0.0002 (0.0421)∗∗ −0.0002 (0.0611)∗ −0.0002 (0.0933)∗

The yearly alcohol sales index intth
month,X2t

6.5594 (0.0721)∗ 6.4780 (0.0664)∗ 8.1702 (0.0245)∗∗ 7.6203 (0.0299)∗∗

The number of months since the CSFDD
was started,t′

−0.2437 (0.0108)∗∗ −0.2311 (0.0049)∗∗

The number of months since the CSFDD
was started,t′2

0.0106 (0.0204)∗∗ 0.0105 (0.0107)∗∗

The number of months since the CSFDD
was started, ln(t′ + 1)

−1.9649 (0.0032)∗∗ −1.8465 (0.0027)∗∗

The number of months since the CSFDD
was started,(ln(t′ + 1))2

0.5553 (0.0151)∗∗ 0.5258 (0.0149)∗∗

Fatal drunk driving accidents occurring in
the (t−1)th month,yt−1

0.0065 (0.9265) −0.0270 (0.7060)

Log-likelihood value −34.0923 −35.0939 −31.1359 −32.2255

∗ Significant atα = 0.10.
∗∗ Significant atα = 0.05.

that the coefficients ofX1t , t′ and t′2 are all significantly
different from zero atα = 0.05. The variable of the alcohol
sales index,X2t , is found to have a significant effect on the
occurrence of alcohol-related fatal accidents. Deleting the
variableyt−1 from Model T1 does not significantly reduce
its explanatory ability. Thus, Model T2 is thought to be better
than Model T1 in this study.

The coefficients of Model T3 are all significantly differ-
ent from zero, except the variableyt−1. This again indicates
that the variableyt is not affected by series correlation. Sim-
ilarly, excluding the variableyt−1 from Model T3 makes us
obtain a better Model T4. The estimated results show that all
the coefficients of Model T4 are significantly different from
zero, and their signs are as expected. For this reason, Model
T4 is thought to be better than the Model T3 in this study.

Model T4 has the same number of parameters to be esti-
mated as Model T2 has, but Model T4 has a much higher
log-likelihood value than Model T2. This verifies the ex-
pectation that Model T4 could catch the temporal variation
of the safety effect of CSFDD policy better than Model T2.
Furthermore, both the actual values and predicted values of
the alcohol-related fatal accidents are plotted and shown in
Fig. 3. The graph indicates that the residuals of Model T4
seem to be smaller than those of Model T2. Hence, Model
T4 is chosen as the best one among the four time-based
specification models estimated in this study.

6.3. Comparisons between dummy-based and time-based
specification models

According to the model estimation results, Model D2 and
Model T4 are the preferred models for dummy-based and
time-based specification models respectively. The number
of drunk driving offenders arrested, which was used as a
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Fig. 3. The actual values and predicted values of the alcohol-related fatal accidents for Models T2 and T4.

proxy variable to reflect the compound effect of policy en-
forcement as well as the intervening policies that already
existed, was a significant factor affecting the occurrence of
fatal drunk driving accidents in Model T4, but they were
only marginally significant in Model D2. Furthermore, the
negative values (−0.0002) for the coefficients ofX1t in both
Model T4 and Model D2, imply that the higher the level of
police enforcement, the more the fatal accidents involving
drunk driving will be reduced. It also indicates that if the po-
lice would arrest one hundred drunk driving offenders every
month, the expected fatal accidents involving drunk driving
in Taipei city will be reduced by 2% (i.e. e−0.0002×100 =
0.980). And, an 18% reduction of fatal accidents involving
drunk driving will be achieved, if one thousand drunk drivers
are arrested every month in Taipei city.

The use of alcohol was the second most significant factor
affecting the occurrence of fatal drunk driving accidents in
both Model D2 and Model T4. The positive values for the
coefficients of yearly alcohol sales index in Model D2 and
Model T4 (8.1701 and 7.6203, respectively) confirm that the
more alcohol was sold to people, the more fatal accidents in-
volving drunk driving will occur. According to the estimated
results of Model T4, if an extra one million liters of alcohol
were sold to the people of Taipei city in 1996, then the ex-
pected fatal accidents involving drunk driving in Taipei city
would be increased by 11.1% (i.e. e7.6203×0.014 = 1.111)
every month in that year.

The implementation of the CSFDD policy was the third
significant factor affecting the occurrence of fatal drunk
driving accidents in both Model D2 and Model T4. Al-
though, Model D2 and Model T4 were not significantly
different from each other in terms of their log-likelihood
values, Model T4 offered the opportunity to see the tempo-

ral variation of the safety effect of CSFDD over time, rather
than the average effect provided by Model D2. For com-
paring the changing patterns of the effects of the CSFDD
policy of different models, the safety effects of the CSFDD
policy for Model D2, Model T2, and Model T4 can be mea-
sured by the multipliers of (1−eβ3X3t), (1−eβ3t

′+β4t
′2

), and
(1− eβ3 ln(t′+1)+β4(ln(t′+1))2

), respectively. These multipliers
are called safety effect factors. The values of safety effect
factors over timet′ for Model D2, Model T2, and Model
T4 are plotted and shown inFig. 4.

Fig. 4 shows that the safety effect factor for Model D2
kept constantly at the value of 0.726 over time. This implies
that the implementation of the CSFDD policy would reduce
the fatal drunk driving accidents constantly by 72.6% over
time. According to the estimated results of Model T2, the
safety effect factor of the CSFDD policy grew with timet
until reaching its maximum value of 0.720 in the 11th month.
It then started to decline at the same rate as it had increased.
The safety effect factor was 0.344 when we stopped our
observation in the 20th month.

The safety effect factor of Model T4 increased sharply
since the implementation of the CSFDD policy, until it
reached the maximum value of 0.802 in the 5th month. Then
the safety effect factor started to decline, but at a slower
rate. The values of the safety effect factor in the 10th, 15th,
and 20th month are 0.754, 0.659, and 0.526, respectively
for Model T4. Because the CSFDD policy was introduced
with major penalties and considerable public attention, its
safety effect pattern appeared to be a rapid initial response
followed by a slow rate of decay. All the four stages of life
cycle, emergence, growth, maturity, and decline, were ob-
served within the 20 months following its implementation
in this study.
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Fig. 4. The predicted values of the safety effect factor of the CSFDD over time for Models D2, T2, and T4.

7. Concluding remarks

The effect of the preventive policy on reducing the fatal
accidents associated with drunk driving was estimated by
controlling the level of enforcement as well as the use of
alcohol in this study. The theory of life cycle was used to de-
scribe the effect of an intervening policy over time, and four
possible safety effect patterns observed within an observa-
tion period were introduced. An evaluation of the effect of
the CSFDD policy over time in Taipei city was conducted
as an empirical example to demonstrate the existence of
temporal variation for the effect of this preventive policy.

Poisson regression models with dummy-based and
time-based specifications were developed to provide an in-
sight into the occurrence of fatal drunk driving accidents.
The estimated results of the preferred dummy-based spec-
ification model showed that both the use of alcohol and
the implementation of the CSFDD policy had significant
effects on reducing the occurrence of alcohol-related fatal
accidents, but that the enforcement devotion had only a
marginally significant effect. The study results showed that
the CSFDD policy reduced the expected number of fatal
drunk driving accidents on average by 72.6% over the 20
months following its implementation.

The results gained from the time-based specification
models showed the quadratic function of natural logarithm
transformation of time elapsed (i.e. ln(1 + t′)), could rea-
sonably catch the safety effect pattern of the CSFDD policy
over time. That is to say that the effect of the CSFDD pol-
icy appeared to be a rapid initial followed by a slow decay.
The expected number of fatal drunk driving accidents was
reduced by 64.2% in the 1st month following the implemen-

tation of the CSFDD policy, 75.2% in the 2nd month, and
it obtained the maximum value of 80.2% in the 5th month.
The safety effect factor started to decline with a slower rate
over time starting at the 6th month, and reduced to 0.524
in the 20th month, when we ended our observation. As ex-
pected, both the number of drunk driving offenders arrested,
and the yearly alcohol sales index appeared to have signif-
icant effects on the occurrence of fatal accidents involving
drunk driving. All of the four stages introduced by the life
cycle theory were observed in this empirical example, and
the temporal variation for the safety effect of the CSFDD
was verified in this study. It also indicated that different
safety effects might be obtained if different approaches, or
different observation periods following its implementation,
are employed to evaluate the performance of an interven-
tion policy. Hence, the results of safety effect evaluations
for intervention policies should be interpreted carefully. An
overly optimistic or pessimistic interpretation might lead
the relevant authorities to make the wrong decision.

The time-based specification model was demonstrated
to be better than the dummy-based specification model
in evaluating the effect of safety policy on reducing the
alcohol-related crashes in this study. Excluding the influ-
ences brought about by enforcement and alcohol consump-
tion, the safety effect pattern over time for the CSFDD
policy was explored in an observation period of 20 months
following its implementation. This study found that there
existed a temporal variation for the intervening policy.
However, little attention has been paid on the mechanism
that results in the temporal variation of safety effects for
these intervening policies over their lives. It is suggested
that more in-depth studies be conducted in the future on
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the factors affecting the temporal variation of intervening
policies over their lives.

For lack of reliable and available information about the
devotion of enforcement to the CSFDD policy, the number
of drunk driving offenders arrested by police was used as
a proxy variable to represent the enforcement devotion in
this study. Some more appropriate data for the enforcement
devotion should be considered in further studies. And, the
information about the use of alcohol and the use of differ-
ent types of alcoholic products, such as liquor versus beer
versus wine consumption has met with similar problems as
did the enforcement devotion. Furthermore, more functional
forms (e.g. piecewise linear or nonlinear) about the safety
effect patterns over time are suggested, in order to catch the
possible evolution processes of the preventive policies. Fi-
nally, according to our results, the adoption of alcohol con-
trol policies may be a direction that is beneficial for reducing
alcohol-related accidents.
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