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We study Lorentz violation effects on flavor transitions of high energy astrophysical neutrinos. It is
shown that the appearance of a Lorentz-violating Hamiltonian can drastically change the flavor transition
probabilities of astrophysical neutrinos. Predictions of Lorentz-violation effects on flavor compositions of
astrophysical neutrinos arriving on Earth are compared with IceCube flavor composition measurement
which analyzes astrophysical neutrino events in the energy range between 25 TeV and 2.8 PeV. Such a
comparison indicates that the future IceCube-Gen2 will be able to place stringent constraints on a Lorentz-
violating Hamiltonian in the neutrino sector. We work out the expected sensitivities by IceCube-Gen2 on
dimension-3 CPT-odd and dimension-4 CPT-even operators in a Lorentz-violating Hamiltonian. The
expected sensitivities can improve on the current constraints obtained from other types of experiments by
more than two orders of magnitudes for certain ranges of the parameter space.
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I. INTRODUCTION

Although physical laws are believed to be invariant
under Lorentz transformation, violations of Lorentz sym-
metry might arise in string theory as discussed in [1,2]. It is
possible to incorporate Lorentz-violation (LV) effects in an
observer-independent effective field theory, the so-called
standard model extension (SME) [3,4], which encompasses
all the features of standard model particle physics and
general relativity plus all possible LV operators [5–7].
While LV signatures are suppressed by the ratio ΛEW=mP
with ΛEW being the electroweak energy scale and mP the
Planck scale, experimental techniques have been developed
for probing such signatures [8,9]. The effects of LV on
neutrino oscillations were pointed out in [10–12]. One can
categorize LVeffects on neutrino flavor transitions into three
aspects: the modifications to energy dependencies of neu-
trino oscillation probabilities, the directional dependencies
of oscillation probabilities, and themodifications to neutrino
mixing angles and phases. In the standard vacuum oscil-
lations of neutrinos, the oscillatory behavior of flavor-
transition probability is determined by the dimensionless
variable Δm2L=E with Δm2 the neutrino mass-squared
difference, L the neutrino propagation distance, and E the
neutrino energy. This dependence results from the
Hamiltonian HSM¼UM2U†=2E with M2

ij ¼ δijðm2
j −m2

1Þ.
The extra terms in Lorentz-violating Hamiltonian HLV
introduces L and LE dependencies into the oscillation
probability, in addition to the standard L=E dependence.
The directional dependence of oscillation probability is due

to the violation of rotation symmetry in HLV. The coef-
ficients of LV operators change periodically as the
Earth rotates daily about its axis. This induces temporal
variations of neutrino oscillation probability at multiples of
sidereal frequency ω⊕ ≈ 2π=ð23 h 56 minÞ. Finally, the full
Hamiltonian H ≡HSM þHLV is diagonalized by the uni-
tary matrix V, which differs from U due to the appearance
of HLV. Hence, the values of neutrino mixing angles and
phases associated with V deviate from those associated with
U. Such deviations increase with neutrino energies since
HSM isOðE−1Þ, whileHLV containsOðE0Þ andOðEÞ terms.
Experimentally, effects of Lorentz violation on neutrino

oscillations have been investigated in short-baseline neu-
trino beams [13–16], in long-baseline neutrino beams
[17,18], in reactor neutrinos at Double Chooz [19,20],
and in atmospheric neutrinos at IceCube [21] and Super-
Kamiokande [22]. These experiments probe either the
spectral anomalies of the oscillated neutrino flux or the
sidereal variations of neutrino oscillation probabilities. In
this paper, we shall focus on LVeffects on neutrino mixing
angles and phases. As mentioned before, these effects grow
with neutrino energies. Thus, it is ideal to probe such
effects through the flavor transitions of high-energy astro-
physical neutrinos [23]. For simplicity, we only consider
isotropic LV effects.
The observation of high-energy astrophysical neutrinos

by IceCube [24–27] is a significant progress in neutrino
astronomy and provides new possibilities for testing
neutrino properties. The first result by IceCube on the
flavor composition of observed astrophysical neutrinos has
been published in [28], and was updated in [29] by a
combined-likelihood analysis taking into account more
statistics. Meanwhile, independent efforts have been made
to determine neutrino flavor compositions from IceCube
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data [30–34]. As we shall see in latter sections, the flavor
measurement in [29] is not yet able to constrain HLV more
stringently than the previous experiments. Fortunately,
there is an active plan for extending the current IceCube
detector to a larger volume, which is referred to as IceCube-
Gen2 [35,36]. This extension shall increase the effective
area of the current 86-string detector up to a factor of 5. The
expected improvement on neutrino flavor discrimination by
IceCube-Gen2 has been studied in [37]. Using this result,
we shall study sensitivities of IceCube-Gen2 to the param-
eters of HLV.
Astrophysical neutrinos are commonly produced by

either pp or pγ collisions at astrophysical sources. For
sufficiently high energies, pp collisions produce equal
number of πþ and π−, which decay to neutrinos through
πþ→ μþþνμ → eþþνμþνeþ ν̄μ and π−→ μ−þ ν̄μ →
e−þ ν̄μþ ν̄eþνμ. This leads approximately to the flux
ratio Φ0ðνeÞ∶Φ0ðνμÞ∶Φ0ðντÞ ¼ 1=3∶2=3∶0 for both neu-
trinos and antineutrinos. Here Φ0ðναÞ denotes generically
the flux of neutrino or antineutrino of flavor α. This
type of source is referred to as the pion source. A more
detailed study on the neutrino flavor fraction with the
consideration of neutrino spectral index is given in [38].
For an E−2 spectrum, the neutrino flavor fraction at
the source is ðf0e;f0μ;f0τÞ¼ ð0.35;0.65;0Þ, where f0α ≡
Φ0ðναÞ=ðΦ0ðνeÞþΦ0ðνμÞþΦ0ðντÞÞ. However, for the pur-
pose of this work, it suffices to take ðf0e; f0μ; f0τÞ ¼
ð1=3; 2=3; 0Þ. We note that the secondary muons in some
astrophysical objects can lose energy quickly by synchro-
tron cooling in magnetic fields or interactions with matter
before their decays. Hence, the neutrino flavor fraction at
the source becomes (0, 1, 0). This type of source is referred
to as the muon-damped source [39–41]. In fact, there are
also cases in which the flavor fraction of astrophysical
neutrinos at the source is energy dependent. For example,
the flavor fraction of neutrinos can gradually change from
ð1=3; 2=3; 0Þ at lower energies to (0, 1, 0) at high energies.
Such a phenomenon has been discussed in [39,40] and
investigated systematically in [41]. The latter work also
discusses sources with flavor fractions different from those
of the pion source and muon-damped source. While a
general study should consider the energy dependence of
neutrino flavor fraction and variations of neutrino flavor
fractions among different sources, we shall only focus on
the simplified scenario where all sources of astrophysical
neutrinos arising from pp collisions possess an energy-
independent flavor fraction for neutrinos at ð1=3; 2=3; 0Þ.
The production mechanism of astrophysical neutrinos

with pγ collisions is more complicated. The leading process
of this category is pγ → nπþ, which gives rise to the flavor
fraction ð1=2; 1=2; 0Þ for neutrinos and (0, 1, 0) for anti-
neutrinos. The subleading process ispγ → pπþπ−, which is
non-negligiblewhen the spectral index β of the target photon
is harder than 1 [42,43]. This process produces equal

numbers of neutrinos and antineutrinos with a common
flavor fraction ð1=3; 2=3; 0Þ. Since the flavor fraction of
neutrinos produced by pγ collisions is relatively uncertain,
we will not consider astrophysical neutrinos produced by
such a mechanism.
We note that effects of a new physics Hamiltonian (with

Lorentz violation as a special case), parametrized as
ðEν=ΛnÞnUnOnU

†
n, on the flavor transitions of astrophysi-

cal neutrinos were discussed in [44,45] for n ¼ 0 and 1
(similar discussions were also given in [46–49]), and
comparisons with earlier IceCube flavor measurement
[28] were made. The authors scan all possible structures
of the mixing matrix Un for given new physics scales Λn
and On and determine the allowed range of astrophysical
neutrino flavor fractions on Earth resulting from the full
Hamiltonian H ¼ HSM þ ðEν=ΛnÞnUnOnU

†
n. In our work,

we shall focus on LV effects which are parametrized in a
different form from the above new physics Hamiltonian.
We shall discuss current and future constraints on LV
effects by comparing the predicted neutrino flavor fraction
with the range of flavor fraction measured by the current
IceCube detector [29] and that expected [37] in the future
IceCube-Gen2 detector. Our results can be directly com-
pared with the previously most stringent constraints
obtained by Super-Kamiokande [22].
This paper is organized as follows. In Sec. II, we

incorporate LV effects into the full neutrino Hamiltonian
in the framework of SME. We then study analytically the
flavor transition of astrophysical neutrinos assuming the
dominance of HLV over HSM. As stated before, such a
dominance is possible for high-energy astrophysical neu-
trinos. We discuss constraints on LV effects by the current
IceCube flavor measurement. Such discussions pave the
way for detailed numerical studies in the next section. In
Sec. III, we study the flavor transitions of astrophysical
neutrinos with the full Hamiltonian H ¼ HSM þHLV. The
expected sensitivities of IceCube-Gen2 to HLV are studied.
We conclude in Sec. IV.

II. LORENTZ VIOLATION IN NEUTRINO
OSCILLATIONS

LV effects in neutrino oscillations are incorporated by
introducing an additional Lorentz-violating termHLV to the
full Hamiltonian of the neutrino. Hence.

H ¼ HSM þHLV; ð1Þ

where HSM ≡UM2U†=2E is the standard model neutrino
Hamiltonian in vacuum with M2 the neutrino mass matrix

M2 ¼

0
B@

0 0 0

0 Δm2
21 0

0 0 Δm2
31

1
CA ð2Þ
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and U the PMNS matrix. Here we do not consider matter
effects due to neutrino propagations inside the Earth. This
is because we only focus on neutrino events with energies
higher than a few tens of TeV. In this case the Earth
regeneration effect to the neutrino flavor transition is
negligible. For neutrinos, the general form of the LV
Hamiltonian is given by

Hν
LV ¼ pλ

E

0
BB@

aλee aλeμ aλeτ

aλ�eμ aλμμ aλμτ

aλ�eτ aλ�μτ aλττ

1
CCA−

pρpλ

E

0
BB@

cρλee cρλeμ cρλeτ

cρλ�eμ cρλμμ cρλμτ

cρλ�eτ cρλ�μτ cρλττ

1
CCA:

ð3Þ

Since we shall only consider isotropic LV effects, we have
the simplified form for Hν

LV given by [10]

Hν
LV ¼

0
BB@

aTee aTeμ aTeτ

aT�eμ aTμμ aTμτ

aT�eτ aT�μτ aTττ

1
CCA−

4E
3

0
BB@

cTTee cTTeμ cTTeτ

cTT�eμ cTTμμ cTTμτ

cTT�eτ cTT�μτ cTTττ

1
CCA;

ð4Þ

where T is the time component of a Sun-centered celestial
equatorial coordinate ðT; X; Y; ZÞ. For antineutrinos, we
have

Hν̄
LV ¼ −

0
BB@

aTee aTeμ aTeτ

aT�eμ aTμμ aTμτ

aT�eτ aT�μτ aTττ

1
CCA

�

−
4E
3

0
BB@

cTTee cTTeμ cTTeτ

cTT�eμ cTTμμ cTTμτ

cTT�eτ cTT�μτ cTTττ

1
CCA

�

:

ð5Þ

The two terms on the right hand side of Hν;ν̄
LV are

distinguished by their CPT transformation properties and
the dimensionality of the operators they are originated
from. The first term is CPT-odd and originated from a
dimension-3 operator while the second term is CPT-even
and originated from a dimension-4 operator. Diagonalizing
the full Hamiltonian in Eq. (1) yields a new mass-flavor
mixing matrix V. The neutrino flavor transition probability
Pαβ ≡ Pðνβ → ναÞ is then given by

Pαβ ¼ δαβ − 4
X
j>i

ℜðVβjV�
βiV

�
αjVαiÞsin2ðLΔEji=2Þ

þ 2
X
j>i

ℑðVβjV�
βiV

�
αjVαiÞsin2ðLΔEjiÞ; ð6Þ

where ΔEji ≡ Ej − Ei is the difference between the energy
eigenvalues. For high-energy astrophysical neutrinos, L is
so large that the rapid oscillating terms are averaged
out so that

Pαβ ¼
X3
i¼1

jVαij2jVβij2: ð7Þ

Since Pαβ depends only on the elements of V, the neutrino
flavor composition observed on Earth for a given astro-
physical neutrino source is affected by LV parameters.
Therefore, the measurement of neutrino flavor fraction
by neutrino telescopes such as IceCube is useful for
constraining LV parameters. For convenience in discus-
sions, we shall first concentrate on constraints on aTαβ by
setting cTTαβ ¼ 0. The constraints on cTTαβ will be commented
on later.
Recently, Super-Kamiokande [22] has set upper limits

for jaTαβj, which are of the order 10−23 GeV. With jaTαβj of
this energy scale, it is interesting to note that Δm2

ij=E is
smaller than jaTαβj by more than 3 orders of magnitude for
neutrino energies beyond a few tens of TeV. Hence, for
neutrino events analyzed in IceCube flavor measurements
[29], the LV term HLV dominates over the standard model
Hamiltonian UM2U†=2E if any aTαβ term is set at the
SK limit, ∼10−23 GeV. Therefore, IceCube measurements
of flavor ratios should be useful for constraining the LV
mass scale.
To illustrate the current IceCube capability of con-

straining LV parameters, we calculate the accessible ranges
of neutrino flavor fractions on Earth resulting from the full
HamiltonianHν;ν̄

SM þHν;ν̄
LV and the astrophysical pion source

for neutrinos with the flavor fraction ð1=3; 2=3; 0Þ. For an
illustrative purpose, we consider special scenarios for Hν;ν̄

LV
where only one pair of matrix elements in the LV
Hamiltonian—for instance, aTαβ and its complex conjugate
aT�αβ—are nonvanishing. We classify these special scenarios
as jaTeμj ≠ 0, jaTeτj ≠ 0, jaTμτj ≠ 0, and aTμμ;ττ ≠ 0, respec-
tively. For the last scenario we take aTττ ¼ −aTμμ. In each
special scenario for Hν;ν̄

LV, the magnitude of the relevant
matrix element jaTαβj is varied from zero to the current
Super-Kamiokande 95% C. L. limit, the phase of aTαβ is
varied from 0 to 2π, and the neutrino mixing parameters in
Hν;ν̄

SM are taken to be their best-fit values [50]. The predicted
ranges of flavor fractions on Earth by the full Hamiltonian
Hν;ν̄

SM þHν;ν̄
LV for all considered scenarios of the LV

Hamiltonian are shown in Fig. 1. We stress that Hν;ν̄
LV

dictates the neutrino flavor fraction when jaTαβj is taken at
the current SK limit in each special scenario. For com-
parison, the standard model–predicted neutrino flavor
fractions with neutrino mixing angles and CP phase in
Hν;ν̄

SM varied over 3σ range [49] is also shown as the green
area [51] in Fig. 1. It is clear that, except for a tiny piece of
area, the predicted ranges of flavor fractions of neutrinos by
the full Hamiltonian Hν;ν̄

SM þHν;ν̄
LV are all within the current

IceCube 3σ contour. Therefore, a stringent constraint on
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Hν;ν̄
LV requires IceCube-Gen2, which is the main target of

our study in the next session.

III. THE SENSITIVITY OF ICECUBE-GEN2 TO
THE LV PARAMETERS

In this section, we apply the projected flavor discrimi-
nation sensitivity of IceCube-Gen2 [37] to estimate the
future constraints on LV parameters. In the above projected
sensitivity, only the pion source produced by pp collisions
is considered. Therefore, we shall only consider this type of
source in the following discussions.
Before studying constraints on the most general flavor

structure ofHν;ν̄
LV, it is useful to summarize our analysis in the

previous section. Let us take fα≡ΦðναÞ=ðΦðνeÞþΦðνμÞþ
ΦðντÞÞ as the neutrino flavor fraction on the Earth. Since
we shall focus on the pion source caused by pp collisions,
there are equal numbers of neutrinos and antineutrinos
produced with the flavor fraction ð1=3; 2=3; 0Þ at the
source for both neutrinos and antineutrinos. Therefore,
we have fe ¼ Pee=3þ 2Peμ=3. Since Pαβ ¼ Pβα still
holds with the addition of the LV Hamiltonian, we thus
have Pee ¼ 1 − Pμe − Pτe ¼ 1 − Peμ − Peτ. Hence, fe ¼
1=3þ ðPeμ − PeτÞ=3. Similarly, we can show that

fμ ¼ 1=3þðPμμ−PμτÞ=3, and fτ ¼ 1=3þ ðPμτ − PττÞ=3.
Clearly for astrophysical neutrinos arising from the pion
source, the deviation of their flavor fraction on Earth to
ð1=3; 1=3; 1=3Þ is due to μ − τ symmetry-breaking effects in
the transition probability matrix. For the standard model
Hamiltonian HSM, the μ − τ symmetry-breaking effects are
small. To leading orders in cos 2θ23 and sin θ13, one has
ðPeμ − PeτÞ ¼ 2ϵ, ðPμμ − PμτÞ ¼ ðPμτ − PττÞ ¼ −ϵ with

ϵ¼2cos2θ23=9þ
ffiffiffi
2

p
sinθ13 cosδ=9 (taking sin2θ12¼1=3)

[52], where δ is the CP violation phase. Hence, LV effects
can be detectable provided they introduce sizable μ − τ
symmetry-breaking effects in the neutrino flavor transition
probability matrix.
In the case that only aTeμ and aT�eμ are nonvanishing in

Hν;ν̄
LV, μ − τ symmetry is clearly broken. If Hν;ν̄

LV dominates
over Hν;ν̄

SM, the flavor transition probability is determined
by the LV Hamiltonian and we find ðPeμ−PeτÞ¼
ðPμμ−PμτÞ¼1=2 and ðPμτ−PττÞ¼−1 in this limit.
Consequently, the flavor fraction of astrophysical
neutrinos arriving on Earth deviates significantly from
ð1=3; 1=3; 1=3Þ. This corresponds to the tip of the purple
area in Fig. 1, which represents the flavor fraction
ð1=2; 1=2; 0Þ. Similarly, large μ − τ symmetry breaking
occurs in the scenarios jaTeτj ≠ 0 and aTμμ;ττ ≠ 0 (aTμμ ≠ aTττ).
On the other hand, μ − τ symmetry is preserved in the
scenario jaTμτj ≠ 0.
We have just seen that the μ − τ symmetry-breaking

effect in Hν;ν̄
LV can be probed with the pion source produced

by pp collisions. Since we have assumed that all astro-
physical neutrinos come from the pion source, it is essential
to quantify the μ − τ symmetry-breaking effect in Hν;ν̄

LV. To
do that, it is useful to write Hν

LV ¼ Hν
1 þHν

2 with

Hν
1 ¼

0
B@

0 0 0

0 aTμμ aTμτ

0 aT�μτ aTττ

1
CA; ð8Þ

and

Hν
2 ¼

0
BB@

0 aTeμ aTeτ

aT�eμ 0 0

aT�eτ 0 0

1
CCA: ð9Þ

Similar decomposition can be applied to Hν̄
LV.

We note that the simplified structure Hν
1 has been

considered as the LV coupling between dark energy and
neutrinos, and the measurement of astrophysical νμ and ντ
event difference was proposed to constrain Hν

1 in the future
[53]. Here we shall begin with simplified scenarios that
Hν;ν̄

LV ¼ Hν;ν̄
1 and Hν;ν̄

LV ¼ Hν;ν̄
2 . We then proceed to discuss

the general case with Hν;ν̄
LV ¼ Hν;ν̄

1 þHν;ν̄
2 . We shall study

the sensitivities of IceCube-Gen2 to these Hamiltonians.

FIG. 1. The flavor fractions of astrophysical neutrinos arriving
on Earth. These neutrinos are assumed to come from the
astrophysical pion source with the flavor fraction
ð1=3; 2=3; 0Þ. The predicted ranges of flavor fractions on Earth
by the full Hamiltonian Hν;ν̄

SM þHν;ν̄
LV are denoted by purple, red,

gray, and orange areas for the special scenarios of Hν;ν̄
LV with

jaTeμj ≠ 0, jaTeτj ≠ 0, jaTμτj ≠ 0, and aTμμ;ττ ≠ 0, respectively. In
each scenario, the magnitude of the relevant matrix element jaTαβj
is varied between 0 and the current Super-Kamiokande limit. The
green area is the accessible range of neutrino flavor fraction by
Hν;ν̄

SM with neutrino mixing angles and CP phase varied over 3σ
range. Regions inside the brown lines are the current IceCube
measurements with the blue cross denoting the best fit values
[29]. Regions inside the blue curves are the expected IceCube-
Gen2 1σ − 3σ sensitivity regions given in [37].
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A. Hν;ν̄
LV =Hν;ν̄

1

For Hν;ν̄
LV ¼ Hν;ν̄

1 , we can write

Hν
1 ¼

 
aTμμ þ aTττ

2

!0B@
1 0 0

0 1 0

0 0 1

1
CA

−
1

2

0
BB@

aTμμ þ aTττ 0 0

0 aTττ − aTμμ −2aTμτ
0 −2aT�μτ aTμμ − aTττ

1
CCA: ð10Þ

The first term of Hν
1 is proportional to the identity matrix

and does not affect the neutrino flavor transition proba-
bility. One can ignore this term and rewrite Hν

1 as

Hν
1 ¼ −M

0
BB@

γ 0 0

0 cos 2α −eiβ sin 2α
0 −e−iβ sin 2α − cos 2α

1
CCA; ð11Þ

where M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaTττ − aTμμÞ2 þ 4aTμτaT�μτ

q
=2, γ ¼

ðaTμμ þ aTττÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaTττ − aTμμÞ2 þ 4aTμτaT�μτ

q
, cos 2α ¼

ðaTττ − aTμμÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaTττ − aTμμÞ2 þ 4aTμτaT�μτ

q
, sin 2α ¼ 2jaTμτj=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaTττ − aTμμÞ2 þ 4aTμτaT�μτ
q

, and β is the phase of aTμτ.

Since sin 2α is positive by definition, α varies between 0
and π=2. The Hamiltonian Hν̄

1 can be inferred from Hν
1 by

the replacements −M → M and β → −β. Taking into
account the total Hamiltonian, Hν;ν̄ ¼ Hν;ν̄

SM þHν;ν̄
1 , one

can predict the neutrino flavor fraction on Earth assuming
the initial neutrino flavor fraction at the source to be
ð1=3; 2=3; 0Þ. We note that the neutrino energy appearing
in Hν;ν̄

SM should, in principle, follow the E−2.2 distribution
with the threshold at 100 TeV according to Ref. [37].
However, for simplicity, we fix E ¼ 100 TeV. This is a
conservative choice that makes Hν;ν̄

SM less suppressed in
comparison to the dominant Hν;ν̄

1 .
Given the IceCube-Gen2 sensitivity shown in Fig. 1, we

obtain the expected constraints on the LV mass scaleM as a
function of mixing angle αwith the phase β varied between
0 and 2π and the ratio γ of the order of unity. The expected
constraints on M are shown in the part of Fig. 2 labeled by
Hν;ν̄

LV ¼ Hν;ν̄
1 . To derive the expected constraints on M, we

first fix the μ − τ symmetry-breaking parameter Sμτ ≡
sin2 2α while allowing the parameters β and γ to vary.
We then identify the critical value of M such that the
resulting neutrino flavor fraction on Earth reaches the
boundary of the IceCube-Gen2 3σ C.L. contour. In this
way we obtain an expected constraint on M for a specific
sin2 2α. We repeat the above procedure for different values

of sin2 2α so that the entire sensitivity curve is obtained.
The parameter range above the sensitivity curve will be
ruled out at 3σ if no deviation to the standard neutrino
flavor transition mechanism is observed.
We note that the μ − τ symmetry limit inHν;ν̄

1 corresponds
to sin2 2α ¼ 1while the maximum breaking corresponds to
sin2 2α ¼ 0. This can be seen from the matrix structure
given by Eq. (11) or the neutrino flavor transition proba-
bilities resulting from the Hamiltonian Hν;ν̄

1 . For the latter
we found ðPeμ − PeτÞ ¼ 0, ðPμμ − PμτÞ ¼ 1 − sin2 2α, and
ðPμτ − PττÞ ¼ −1þ sin2 2α. It is clear that sin2 2α indeed
determines the above μ − τ symmetry breaking effects in
neutrino flavor transition probabilities. For 0 ≤ sin2 2α ≤
0.35, the sensitivity of IceCube-Gen2 to M is about
2 × 10−26 GeV. The sensitivity to M diminishes for
sin2 2α > 0.46 (sin 2α > 0.68). In our numerical studies,
the neutrino mixing parameters inHν;ν̄

SM are taken as the best
fit values given in [50]. This will be our choice for neutrino
mixing parameters throughout the rest of the paper. We also
vary each neutrinomixing parameter over 1σ range to see the
effect. No appreciable effect in the sensitivity to M is
found. We note that the current SK 95% C.L. limits on
the related matrix elements are ReðaTμτÞ < 6.5 × 10−24 GeV
and ImðaTμτÞ < 5.1 × 10−24 GeV [22]. It is clear that the
expected bounds by IceCube-Gen2 shall improve the current
bounds by more than two orders of magnitudes provided
sin 2α < 0.68. Particularly, the IceCube Gen2 sensitivity
presented here is at 3σ C.L.

FIG. 2. The sensitivity of IceCube-Gen2 to the LV mass scale
as a function of μ − τ symmetry-breaking parameter Sμτ. The
parameter range above each sensitivity curve will be ruled out at
3σ if no deviation to the standard flavor transition of neutrinos is
observed. These excluded ranges are obtained assuming the
flavor fraction of astrophysical neutrinos from each source is
ð1=3; 2=3; 0Þ for all neutrino energies beyond 100 TeV threshold.
The LV mass scales for Hν;ν̄

LV ¼ Hν;ν̄
1 and Hν;ν̄

LV ¼ Hν;ν̄
2 are M and

M0 defined in Eqs. (11) and (12), respectively, while Sμτ for these
two cases are sin2 2α and sin2 2ρ, respectively. The LV mass scale
for Hν;ν̄

LV ¼ Hν;ν̄
1 þHν;ν̄

2 is M under the assumption M ¼ M0, and
Sμτ for this case is sin 2α × sin 2ρ.
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B. Hν;ν̄
LV =Hν;ν̄

2

For Hν;ν̄
LV ¼ Hν;ν̄

2 , we can write

Hν
2 ¼ M0

0
B@

0 eiσ cos ρ eiλ sin ρ

e−iσ cos ρ 0 0

e−iλ sin ρ 0 0

1
CA; ð12Þ

where M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTeμaT�eμ þaTeτaT�eτ

q
, cosρ¼ jaTeμj=M0, sinρ ¼

jaTeτj=M0, and σ and λ are phases of aTeμ and aTeτ, respec-
tively. The Hamiltonian Hν̄

2 can be inferred from Hν
2 by

the replacements M0 → −M0, σ → −σ, and λ → −λ.
Since both cos ρ and sin ρ are positive by definition, the
angle ρ is between 0 and π=2. Taking into account the total
Hamiltonian, Hν;ν̄ ¼ Hν;ν̄

SM þHν;ν̄
2 , one can predict the

neutrino flavor fraction on Earth assuming the initial
neutrino flavor fraction at the source is ð1=3; 2=3; 0Þ.
Given the IceCube-Gen2 sensitivity shown in Fig. 1, we

obtain the expected constraints on the LVmass scaleM0 as a
function of mixing angle ρ with the phases σ and λ varied
between 0 and 2π. The sensitivity toM0 is shown in that part
of Fig. 2 labeled by Hν;ν̄

LV ¼ Hν;ν̄
2 . We have varied each

neutrinomixing parameter over 1σ range and no appreciable
effect on the sensitivity to M0 is found. The parameter Sμτ
that characterizes the degree of μ − τ symmetry breaking in
Hν;ν̄

2 is sin2 2ρ. The μ − τ symmetry limit corresponds to
sin2 2ρ ¼ 1, i.e., ρ ¼ π=4. On the other hand, the maximum
breaking corresponds to sin2 2ρ ¼ 0, i.e., ρ ¼ 0 or π=2. This
is seen from the matrix structure given by Eq. (12) or the
neutrino flavor transition probabilities resulting from the
Hamiltonian Hν;ν̄

2 . For the latter one can show that the
neutrino flavor transition probabilities depend on both sin 2ρ
and cos 2ρ. Hence a specific value of Sμτ ≡ sin2 2ρ corre-
sponds to two different neutrino flavor transition probabil-
ities distinguishedby the sign of cos 2ρ. In principle there are
two sensitivity points for each Sμτ but we have chosen the
more conservative one to plot the sensitivity curve.
For 0 ≤ sin2 2ρ ≤ 0.2, the sensitivity of IceCube-Gen2 to

M0 varies slowly from 4 × 10−26 GeV to 7 × 10−26 GeV.
In comparison, the current SK 95% C.L. limits on
related matrix elements are ReðaTeμÞ < 1.8 × 10−23 GeV,
ImðaTeμÞ < 1.8 × 10−23 GeV, ReðaTeτÞ < 4.1 × 10−23 GeV
and ImðaTeτÞ < 2.8 × 10−23 GeV [22]. One can see that
the expected bounds by IceCube-Gen2 shall improve the
current bounds by more than two orders of magnitude
provided sin2 2ρ ≤ 0.2. The sensitivity toM0 diminishes for
sin2 2ρ > 0.27 (sin 2ρ > 0.52).

C. Hν;ν̄
LV =Hν;ν̄

1 +Hν;ν̄
2

For the general case with Hν;ν̄
LV ¼ Hν;ν̄

1 þHν;ν̄
2 , the mass

scales M and M0 of Hν;ν̄
1 and Hν;ν̄

2 , respectively, are
independent parameters. These two scales can be compa-
rable or one of the scales is suppressed in comparison to the

other. Since the latter scenario has already been discussed,
we only focus on the former case. To simplify our
discussions, we take M ¼ M0. The sensitivity of
IceCube-Gen2 to M is shown in the part of Fig. 2 labeled
by Hν;ν̄

LV ¼ Hν;ν̄
1 þHν;ν̄

2 . The parameter Sμτ that character-
izes the degree of μ − τ symmetry breaking is
sin2α×sin2ρ. For sin 2α × sin 2ρ ¼ 1, one must have both
sin 2α and sin 2ρ equal to unity, i.e., the μ−τ symmetry is
respected in both Hν;ν̄

1 and Hν;ν̄
2 . For sin2α×sin2ρ¼0,

either Hν;ν̄
1 or Hν;ν̄

2 (or both) breaks μ − τ symmetry
maximally. The sensitivity of IceCube-Gen2 to M is
3 × 10−26 GeV for 0 ≤ sin 2α × sin 2ρ ≤ 0.04. The sensi-
tivity becomes 10−25 GeV for sin 2α × sin 2ρ ¼ 0.08. All
these sensitivities improve significantly from the current
SK bounds. The sensitivity of IceCube-Gen2 to M dimin-
ishes for sin 2α × sin 2ρ > 0.11. We also vary the neutrino
mixing parameter in 1σ range, and no appreciable effect on
the sensitivity to M is found.

D. Sensitivities to cTTαβ
So far we have only discussed IceCube-Gen2 sensitiv-

ities to aTαβ. One can also study the sensitivities to
parameters cTTαβ by turning off aTαβ. Clearly −4EcTTαβ =3
replaces aTαβ when the latter is turned off. It should,
however, be noted that, for the antineutrino case, cTTαβ is
changed into cTT�αβ , while aTαβ is turned into −aT�αβ .
Following the previous treatment, one can also decom-

pose the dimension-4, CPT-even LV Hamiltonian into two
terms such that

~Hν
1 ¼ −

4E
3

0
B@

0 0 0

0 cTTμμ cTTμτ

0 cTT�μτ cTTττ

1
CA; ð13Þ

and

~Hν
2 ¼ −

4E
3

0
B@

0 cTTeμ cTTeτ

cTT�eμ 0 0

cTT�eτ 0 0

1
CA; ð14Þ

where we have used ~Hν;ν̄
1;2 to denote the CPT-even LV

Hamiltonian. The LV Hamiltonian for antineutrinos can be
obtained by taking complex conjugates. Analogous to our
definitions of M and M0 from aTαβ, we can define dimen-

sionless parameters W ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcTTττ − cTTμμ Þ2 þ 4cTTμτ cTT�μτ

q
=2

and W0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTTeμ cTT�eμ þ cTTeτ cTT�eτ

q
, respectively. Let us con-

sider the full LV Hamiltonian Hν;ν̄
LV ¼ ~Hν;ν̄

1 þ ~Hν;ν̄
2 and take

W ¼ W0. The sensitivity of IceCube-Gen2 toW is shown in
Fig. 3. We have taken sin 2η × sin 2ξ as the parameter to
characterize the degree of μ − τ symmetry breaking, with
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sin2η¼2jcTTμτ j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcTTττ −cTTμμ Þ2þ4cTTμτ cTT�μτ

q
and sinξ¼jcTTeτ j=

W0. Furthermore, we also take E ¼ 100 TeV in Hν;ν̄
LV

for simplicity. The sensitivity of IceCube-Gen2 to W is
about 10−31 for 0 ≤ sin 2η × sin 2ξ ≤ 0.12. Such a sensi-
tivity shall improve significantly from the current SK
95% C.L. limits, ReðcTTμτ Þ < 4.4 × 10−27, ImðcTTμτ Þ<4.2×
10−27, ReðcTTeμ Þ < 8.0 × 10−27, ImðcTTeμ Þ < 8.0 × 10−27,
and much less stringent constraints on cTTeτ . The sensitivity
curve rises up immediately for sin 2η × sin 2ξ > 0.12.
This behavior is quite distinct from the behavior of the
sensitivity curve in Fig. 2, which rises mildly in the range
0.04 ≤ sin 2α × sin 2ρ ≤ 0.08 before its sharp rise at
sin 2α × sin 2ρ ¼ 0.11. We attribute the shape difference
between the two sensitivity curves to the sign difference
between the aTαβ and cTTαβ terms. To see this, we change the
sign of the cTTαβ (cTT�αβ ) terms in the neutrino sector while
keeping the sign of cTT�αβ (cTTαβ ) in the antineutrino sector
unchanged. It is found that the shape ofthe sensitivity curve
in Fig. 3 is completely identical to the shape of the
sensitivity curve in Fig. 2, as it should be according to
Eqs. (4) and (5).

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we discuss the sensitivities of future
IceCube-Gen2 to Lorentz-violation parameters in the neu-
trino sector. We consider the effects of a Lorentz-violating
Hamiltonian on the flavor transitions of astrophysical
neutrinos coming from the pion source produced by pp
collisions. In such a case, there are equal numbers of
neutrinos and antineutrinos produced with the flavor
fraction ð1=3; 2=3; 0Þ at the source for both neutrinos

and antineutrinos. We have shown that the flavor fraction
of such neutrinos as they arrive at Earth is ð1=3; 1=3; 1=3Þ
if the neutrino Hamiltonian respects μ − τ symmetry.
The deviation to such a flavor fraction is therefore con-
trolled by the breaking of μ − τ symmetry in the neutrino
Hamiltonian. For both a CPT-odd and a CPT-even LV
Hamiltonian, we decompose the LV Hamiltonian into two
matrix structures as shown in Eqs. (8), (9), (13), and (14).
For each matrix structure we define the parameter that
characterizes the degree of μ − τ symmetry breaking and
the scale of the matrix to be probed by the measurement of
astrophysical neutrino flavor fractions.
Since the neutrino Hamiltonian in the standard model

is approximately μ − τ symmetric, the effect from the
new physics Hamiltonian is important only when this
Hamiltonian significantly breaks the μ − τ symmetry.
Taking Fig. 2 as an example, the LV Hamiltonian Hν;ν̄

1

breaks the μ − τ symmetry significantly for sin2 2α ≤ 0.46
(sin 2α ≤ 0.68) such that the expected constraint on the LV
mass scaleM by IceCube-Gen2 is stringent. It is of interest
to see how restricted the parameter range 0 ≤ sin 2α ≤ 0.68
is. Without specific preference to the detailed structure of
Hν;ν̄

1 , one can assume the angle α to be uniformly
distributed from 0 to π=2 for a fixed LV mass scale M.
The condition 0 ≤ sin 2α ≤ 0.68 requires either 0 ≤ 2α ≤
0.75 or π − 0.75 ≤ 2α ≤ π. Such a range for α occupies
1.5=π ≡ 48% of the total parameter space for α. For Hν;ν̄

2 ,
the LV mass scale M0 is testable for the parameter range
0 ≤ sin 2ρ ≤ 0.52. Assuming ρ is uniformly distributed
between 0 and π=2, the range for ρ required by the above
condition occupies about 35% of the total parameter space
for ρ. Finally, for the case of the full LV Hamiltonian
with M ¼ M0, the LV mass scale M is testable in the
parameter range sin 2α × sin 2ρ ≤ 0.11. This is 21% of the
total parameter space of α and ρ evaluated by a simple
Monte Carlo. In the case of theCPT-even LVHamiltonian,
the dimensionless LV scale W (W ¼ W0) of ~Hν;ν̄

1 þ ~Hν;ν̄
2 is

testable for sin 2η × sin 2ξ ≤ 0.12. Clearly, the percentage
of total parameter space of η and ξ that satisfies this
condition is also around 20%.
In summary, we have taken a phenomenological

approach that incorporates all LV effects in the neutrino
sector with a set of local operators [3–7]. We only focus on
the isotropic LV effects [10] so that the structure of the LV
Hamiltonian is given by Eqs. (4) and (5). We have worked
out the sensitivities of IceCube-Gen2 to the CPT-odd LV
parameter aTαβ originated from a dimension-3 operator and
the CPT-even LV parameters cTTαβ originated from dimen-
sion-4 operators. We have shown that the expected
IceCube-Gen2 sensitivities to LV mass scales can improve
the current SK bounds [22] by at least two orders of
magnitude for sufficiently large μ − τ symmetry-breaking
effects in the LV Hamiltonian. We reiterate that our results
are based upon the assumption that all sources of

FIG. 3. The sensitivity of IceCube-Gen2 to the LV scale W
(W ¼ W0) of the Hamiltonian ~Hν;ν̄

1 þ ~Hν;ν̄
2 as a function of μ − τ

symmetry-breaking parameter sin 2η × sin 2ξ. This sensitivity is
obtained assuming the flavor fraction of astrophysical neutrinos
from each source is ð1=3; 2=3; 0Þ for all neutrino energies beyond
100 TeV threshold. The parameter range above the sensitivity
curve will be ruled out at 3σ if no deviation to the standard flavor
transition of neutrinos is observed.
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astrophysical neutrinos have an energy-independent flavor
fraction for neutrinos at ð1=3; 2=3; 0Þ. It is worthwhile to
pursue further studies with both the energy dependence of
the neutrino flavor fraction and the variations of neutrino
flavor fractions among different sources taken into account.
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Note added.—Recently, we became aware of the newest
IceCube analysis on Lorentz-violation effects in the neu-
trino sector using atmospheric neutrino data [54], which
sets 99% C.L. bounds on ReðaTμτÞ and ImðaTμτÞ at 2.9 ×
10−24 GeV and 99% C.L. bounds on ReðcTTμτ Þ and ImðcTTμτ Þ
at 3.9 × 10−28.
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