
tion matrix are respectively the time mapping vector and
the space mapping matrix. Three kinds of conflict-free con-
dition are necessary to be satisfied: Dependence conflict-
free: if and only if the precedence constraints imposed by
the SURE are satisfied; computation conflict-free: if and
only if two different computations are not executed on the
same PE at the same time; and link conflict-free: if and
only if every dependence vector of the SURE is mapped
to one and only one interconnection link of the array.

It is easy to check these conflict-free conditions for map-
ping an nD SURE to an (n 2 1)D regular array [13]. So
previous researchers put their efforts on how to find an
optimal schedule vector [14] and an optimal processor as-
signment [15], as well as designing more efficient regular
arrays [16]. Yet, when mapping an nD SURE to an mD
regular array, n . m and m ? n 2 1, the check of computa-
tion conflict-free condition cannot be done by only examin-
ing whether the dependence matrix is nonsingular. And
link conflict may occur and should be detected. Such that,
the designer should select two index vectors from the com-
putation domain and then check the conditions of the com-
putation and link conflict-free; then the above check is
repeated until all pairs of index vectors in the computation
domain have been examined. This makes the mapping
problem more difficult and time-consuming.

Rao [5] proposed an iterative procedure (Procedure 3.3
in his dissertation) to design lower-dimensional regular
arrays. He guarantees the designed regular array satisfying
the conditions of dependence and computation conflict-
free. However, all link conflict-free may occur in his design.
Lee and Kedem [11] proposed the necessary and sufficient
conditions of link conflict-free. Yet, they have to examine
the whole computation domain to check whether the map-
ping is computation and link conflict-free. Shang and
Fortes [12] derived some necessary and sufficient condi-
tions for computation conflict-free. In some cases, the time-
consuming examination of the whole computation domain
can be avoided in their procedure. However, finding a
closed form necessary and sufficient conditions on conflict-
free mapping for general cases is still open and very diffi-
cult. Besides, the link conflict may occur in their designs.
Ganapathy and Wah [17] designed the lower dimensional
regular arrays by the parameter-based method rather than
spacetime mapping. They described the conditions of con-
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In this paper, we will propose a polynomial-time method
to design m-dimensional regular arrays for n (n $ m 1 1)
dimensional algorithms with uniform dependencies, regular
algorithms. The proposed method has two steps: the first one
is to transform an independently partitioned regular algorithm
to a new one, which has an identity dependence matrix. We
call this step identity transformation, which is an affine one.
In the second step, we propose a spacetime mapping in a fixed
form to map the new regular algorithm to a lower-dimensional
regular array. Thus, an affine spacetime mapping is constructed
by combining the identity transformation and the fixed form’s
spacetime mapping together. With the proposed affine space-
time mapping, the original regular algorithm can be mapped
to a lower-dimensional regular array in polynomial time, which
depends only on the number of dimensions of the regular algo-
rithm. Meanwhile, the designed regular array is asymptotically
optimal in time and space.  1996 Academic Press, Inc.

1. INTRODUCTION

The systolic array or regular array [1, 2] is a special
purpose parallel device, in which the processing elements
(PEs) are regularly and locally connected. It follows that
systolic architecture is very suitable for implementing on
VLSI chips. Nevertheless, due to the limitations of current
technology, most popular regular arrays have lower dimen-
sions, such as 1-dimensional (1D) linear arrays [3] and 2D
mesh ones [4].

Designing regular arrays from a system of recurrence
equations includes two major steps: the first step is regular-
ization [5], or uniformization [6]. After regularization, the
original system of recurrence equations is transformed to
an equivalent system of uniform recurrence equations
(SURE) [7] or a regular iterative algorithm (RIA) [5]. An
SURE can be further partitioned [8–10] to several inde-
pendent ones, in which each one is independent on the
others and can be treated apart.

The second step is to decide a conflict-free spacetime
mapping [11, 12] to map the SURE to a regular array. The
spacetime mapping is in general represented as a transfor-
mation matrix. The first row and the rest of the transforma-

1 This work was supported by the National Science Council, Republic
of China, under Contract NSC85-2213-E-009-103.



DEFINITION 2.1 (SURE) [7, 21]. A system of uniform
recurrence equations (SURE) is a set of recurrence equa-
tions of the form v2(jW2) 5 f2(..., v1(jW1), ...), where jW1 , jW2([

Jn , Z n) are index vectors, v1 , v2 variables, f2 a function,
and jW2 2 jW1(; dW1 [ D) a dependence vector with constant
integral elements.

Herein, a small letter with a head W denotes a column
vector. We use AS 5 (Jn, D) to denote an SURE, because
only its structural information is useful in here. Jn is called
the computation domain of AS . D is in general represented
by a matrix form, called dependence matrix, in which each
column represents one dependence vector. detD denotes
the determinant of D. For simplicity, we only consider that
Jn 5 h[j1 j2 ??? jn]Tu1 # ji # N, 1 # i # nj with N @ n, and
D is an n 3 k matrix with k $ n. We say that a dependence
matrix D is lexicographically positive if every dependence
vector of D is lexicographically positive. The dependence
matrix D of a computable SURE can be transformed by
a unimodular matrix to a lexicographically positive one
[5]. Moreover, Wolf and Lam in [22] showed that an SURE
(or a loop nest) with a lexicographically positive D can be
made fully permutable by a skewing transformation (a
unimodular matrix). Therefore, there exists a unimodular
transformation matrix X, such that Xn3nDn3k 5 Fn3k , ;fih

[ F, fih $ 0. It follows that D 5 X 21F ; BF. Since every
element in F is greater than or equal to zero, columns of
B constitute a positive integral coordinate basis of D. That
is, every dependence vector dWh [ D can be constructed by
the positive integral combination of the column vectors
bWi’s of B, or dWh 5 on

i51 fihbWi . For example, if D 5 [0 1 1
1 22 21],

then we may have X 5 [1 0
2 1]. Thus, B 5 X 21 5 [ 1 0

22 1] and
F 5 [0 1 1

1 0 1], e.g., dW3 5 [ 1
21] 5 f13bW1 1 f23bW2 5 1 [ 1

22] 1 1 [0
1].

Consequently, the basis matrix Bn3n can be used to replace
Dn3k and becomes the new dependence matrix of the
SURE. In the following, D in AS 5 (Jn, D) represents the
basis matrix of the SURE AS if its original dependence
matrix is not a square one.

Now, we focus on the two types SURE: the indepen-
dently partitioned one and the one with identity depen-
dence matrix. An SURE AS 5 (Jn, D) can be independently
partitioned to several independent sets. The number of
independent sets is equal to the absolute value of the detD,
udetDu. In the following, we define the independently parti-
tioned SURE (IP-SURE), in which all index vectors belong
to the same independent set. It is reasonable that each IP-
SURE can be treated apart, because they are independent.

DEFINITION 2.2 (IP-SURE). An SURE AP 5 (Jn
p, D)

is said to be independently partitioned from an AS 5

(Jn, D) if Jn
p 5 Jn ` hjWujW 5 jW0 1 DeW j, where jW0 ;

[j0
1 j0

2 ??? j0
n]T is an index vector in an independent set of

AS and eW is an integral column vector.

It follows that if Jn
p and Jn

q are two partitions from AS ,
then either Jn

p 5 Jn
q or Jn

p ` Jn
q 5 B. The first step of our

method is to transform an IP-SURE to the SURE with an

flict-free mapping by bounding the parameters of period,
velocity, and data distribution. The optimal design can be
found in polynomial time. However, too many equations
are established by these parameters when the dimension
of SURE becomes large, which results in computation dif-
ficulty.

The major problem on designing lower dimensional reg-
ular arrays for SUREs is: it is time-consuming to check
conditions of computation and link conflict-free, because
the whole computation domain is necessary to be examined.
In contrast to previous methods, we propose a two-step
one that can avoid checking conditions every time. The first
step is to transform an independently partitioned regular
algorithm to a new one, which has an identity dependence
matrix. We call this step identity transformation. Since the
original regular algorithm does not always have a unimodu-
lar dependence matrix, the identity transformation is a
nonunimodular one; thus, it is important to keep every
index vector in the new regular algorithm with integral
elements. So, the identity transformation is not linear but
affine [18, 19], which has a linear part and a translation
one. The translation part is to guarantee that the new
regular algorithm has integral index vectors. In the second
step, we propose a spacetime mapping in a fixed form to
map the new regular algorithm to a lower dimensional
regular array. Thus, an affine spacetime mapping is con-
structed by combining the identity transformation and the
fixed form’s mapping together. With the proposed affine
spacetime mapping, the original regular algorithm can be
mapped to a lower dimensional regular array in polynomial
time, which depends only on the dimension of the regular
algorithm. Meanwhile, the designed regular array is asymp-
totically optimal in time and space.

One thing should be mentioned here: a similar design
concept has been proposed in [20] to design modular exten-
sible linear arrays for regular algorithms. Yet, in that paper,
we assume the original SURE has a unimodular depen-
dence matrix. Thus, the affine transformation and affine
spacetime mapping are not mentioned in that paper. On
the other hand, only 1D (linear) arrays can be synthesized
in that paper. Nevertheless, we can design not only 1D
regular arrays but also other lower-dimensional ones here.

Here is an outline of following sections: some prelimi-
nary definitions and the design concepts are given in Sec-
tion 2. In Section 3, we will propose an affine spacetime
mapping, and show that it is correct and asymptotically
optimal. Finally, the concluding remarks are in Section 4.

2. DEFINITION AND CONCEPT

In the following, we will give the definitions of SURE
and regular array. Two types of SURE are identified: one
is the independently partitioned SURE and the other is
the SURE with identity dependence matrix. The concepts
of affine transformation and affine spacetime mapping are
also given in this section.
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identity dependence matrix. Since the SURE of matrix
multiplication has an identity dependence matrix, we have
the following definition for the matrix-multiplication-like
SURE (MM-SURE).

DEFINITION 2.3 (MM-SURE). An SURE AM 5
(Jn

m, D) is said to be matrix-multiplication-like if Jn
m ,

Z n and D 5 I, where I denotes the identity matrix.

In the following, eih denotes the ijth element in I, and
eWi is a column vector corresponding to the ith column of
I. With the definitions of IP-SURE and MM-SURE, the
first step of our method can be described as: transforming
an IP-SURE AP 5 (Jn

p, D) to an equivalent MM-SURE
AM 5 (Jn

m, I). Since AM has an identity dependence matrix,
we call this step identity transformation. The following the-
orem tells us how to perform the identity transformation,
and shows its existence and that every element of hW [
Jn

m is an integral number. The proof of integral index vector
in Jn

m is important, because the identity transformation
includes inverting a nonunimodular matrix.

THEOREM 2.1 (Identity Transformation). An IP-SURE
AP 5 (Jn

p, D), with Jn
p 5 Jn ` hjWujW 5 jW0 1 DeW j, can be

transformed to an MM-SURE AM 5 (Jn
m, I), with Jn

m 5

hhW uhW 5 D21(jW 2 jW0) 1 jW0j, where jW0 [ Jn
p is mapped to

hW0(5jW0) [ Jn
m.

Proof. Existence of D21. Since D is an n 3 n full rank
matrix, its inverse matrix D21 must exist.

Integral index vector in Jn
m. Let D 5 [dik]n3n , D21 5

[d21
ik ]n3n .
Substituting jk 5 j0

k 1 on
l51 dklel to hi 5 on

k51 d21
ik (jk 2

j0
k) 1 j0

i , we have

hi 5 On
k51

d21
ik SOn

l51
dklelD1 j0

i 5 On
l51

el SOn
k51

d21
ik dklD1 j0

i .

From

On
k51

d21
ik dkl 5H1 if i 5 l

0 otherwise
,

we have hi 5 j0
i 1 ei . It follows that hW 5 jW0 1 eW [ Z. j

DEFINITION 2.4 (Affine Transformation) [18]. An affine
transformation kT, tW0l for transforming an n 3 1 column
vector jW to hW is defined as hW 5 TjW 1 tW0 , where T and tW0 are
respectively an n 3 n matrix (linear part) and an n 3 1
column vector (translation part) of the affine transfor-
mation.

The operation TlkT, tW0l is defined as kTlT, TltW0l, where
Tl is an (m 1 1) 3 n matrix. Obviously, the identity trans-
formation is an affine one and can be represented as kD21,
2D21jW0 1 jW0l. The purpose of the affine transformation’s
translation part is to let all index vectors still be integral
after inverting the nonunimodular matrix D.
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Theorem 2.1 states the fact that the time complexity of
our method’s first step is only a polynomial function of
the number of dimensions n of the IP-SURE, and is inde-
pendent on the problem size parameter N. Now, we will
turn our attention to the second step of our method: map-
ping an MM-SURE to a lower dimensional regular array.
First, the definition of regular array is given as follows:

DEFINITION 2.5 (Regular Array). An m-dimensional
regular array is defined as AY 5 (P m, L), where P m 5
h pW u pW 5 [ p1 p2 ??? pm]T, 1 # pi # Nij is a set of PEs and
L 5 hlW1 , lW2 , ???, lW,ulWi , 1 # i # ,, is an m 3 1 column vectorj
a set of links connecting neighboring PEs.

The regular arrays we want to design have Ni 5 ciN,
where ci is a constant value and 1 # i # m. One formal
method of designing regular arrays for SUREs is by space-
time mapping. In the past, it is a linear transformation
matrix, which only includes a schedule vector and a proces-
sor allocation matrix. Now, we extend the linear spacetime
mapping to an affine one.

DEFINITION 2.6 (Affine Spacetime Mapping) [19]. An
affine spacetime mapping kT, tW0l is a mapping that maps
an SURE AS 5 (Jn, D) to a regular array AY 5 (P m, L)
by the affine transformation kT, tW0l 5 k[fW S T]T, [f0 sWT

0 ]Tl,
where fW is an n 3 1 column vector, f0 an integer, S T an
n 3 m matrix, and sWT

0 an 1 3 m row vector. fW TjW 1 f0

and ShW 1 sW0 are respectively the time and space mapping
of the index vector jW.

An affine spacetime mapping kT, tW0l can be reduced to
a linear one T, if tW0 is a zero vector. By an affine spacetime
mapping kT, tW0l, an index vector hW is executed when time
t and at PE [ p1 p2 ??? pm]T, where [t p1 p2 ??? pm]T 5 TjW 1
tW0 . In addition, a dependence vector dW becomes a link lW,
where fW TdW and SdW represent the link delay and link vector,
respectively. A spacetime mapping is said to be correct,
if it satisfies three conflict-free conditions: computation,
dependence, and link. The following theorem states the
necessary and sufficient conditions of a correct mapping.

THEOREM 2.2. For an affine spacetime mapping h[fW
S T]T, [f0 sWT

0 ]Tl to be correct on mapping an IP-SURE
AP 5 (Jn

p , D) to a regular array AY 5 (P m, L), the necessary
and sufficient conditions are as follows:

• Dependence conflict-free: if and only if ;dWi [ D,
fW T dWi . 0.

• Computation conflict-free: if and only if ;jW1 , jW2(jW1 ?
jW2) [ Jn

p , if SjW1 5 SjW2 then fW TjW1 ? fW TjW2 .
• Link conflict-free: if and only if ;jW1 , jW2(jW1 ? jW2) [

Jn
p , for each dWi [ D, if fW T(jW1 2 jW2)SdWi 5 S(jW1 2 jW2)fW TdWi

then jW1 2 jW2 5 kdWi or SdWi 5 0W.

Proof.

• Dependence conflict-free: the precedence constraints
imposed by the SURE are satisfied. That is, if there exists



hW1 2 hW2 . Thus, from DhW 5 D21 DjW, DjW 5 jW1 2 jW2 , we have
if RD21 DjW 5 0 then fWTD21 DjW ? 0, or if S DjW 5 0 then
fW T DjW ? 0.

• Link conflict-free: Since Tl is conflict-free, ;hW1 , hW2 [
Jn

m , for each eWi [ I, if fW T DjWReWi 5 R DhW fW TeWi , then DhW 5
keWi or ReWi 5 0W, where DhW 5 hW1 2 hW2 . Thus, if fW T D21

DjWRD21dW i 5 RD21 DjWfW TD21 dW i then D21 DjW 5 kD21 dW i or
RD21 dW i 5 0W, where DjW 5 jW1 2 jW2 , or if fW T DhWS dW i 5 S DjWfW T

dW i then DjW 5 kdW i or SdW i 5 0W.

From the results of the above and Theorem 2.2, we know
that TlkT, tW0l is a correct affine spacetime mapping for
mapping AP to AY , if Tl is a correct linear one for mapping
AM to AY . j

3. DESIGN OF REGULAR ARRAYS

In this section, we first give an affine spacetime mapping
in a fixed form to design a regular array for an IP-SURE
and prove the correctness of the mapping. Then, two exam-
ples will be given for illustration. Finally, we will show the
regular array designed by our method is asymptotically
optimal in space and time.

THEOREM 3.1. Designing a regular array AY 5 (P m, L)
for an IP-SURE AP 5 (Jn

p , D) can be done by the
affine spacetime mapping TlkT, tW0l, where kT, tW0l 5 kD21,
2D21hW0 1 hW0l is the affine transformation for transforming
AP to an MM-SURE AM 5 (Jn

m , I), and Tl 5 [fW R T]T

(R 5 [rW1 rW2 ??? rWn]) is the (m 1 1) 3 n linear spacetime
mapping for mapping AM to AY , in which

fi 5HH n2m2i 1 # i # n 2 m

1 otherwise
,

rWi 5H0W 1 # i # n 2 m

eWi2n1m otherwise
,

and H 5 max1#i#n on
k51 ud21

ik uN (N @ n).

Proof. From Theorem 2.3, we only need to prove that
Tl is a correct spacetime mapping. Recall that, hW denotes
an index vector and eWi is a dependence vector in AM .

• Dependence conflict-free: fW TeWi . 0, ;1 # i # n.
• Computation conflict-free: If R DhW 5 0W, then Dhi 5 0,

n 2 m 1 1 # i # n. By contradiction, assume fW T DhW 5
0. Substituting Dhi 5 0, n 2 m 1 1 # i # n to fW T DhW 5
0, we have on2m

i51 fi Dhi 5 0. It follows that H n2m21 Dh1 1
H n2m22 Dh2 1 ??? 1 Dhn2m 5 0. Since Dhi 5 on

k51 d21
ik Djk ,

we have uDhiu , H, thus the above equation holds if and
only if Dhi 5 0, 1 # i # n 2 m. However, we already have
Dhi 5 0, n 2 m 1 1 # i # n. Thus, Dhi 5 0, 1 # i # n. It
is contradictory to that there should exist at least one
Dhi ? 0, 1 # i # n.

• Link conflict-free: For eWk , 1 # k # n 2 m, no link is
generated. For eWk , n 2 m 1 1 # k # n, from fW T

a dWi [ D, such that jW2 5 jW1 1 dWi , then fW TjW2 1 f0 . fW TjW1 1f0 .
It follows that fW T(jW2 2 jW1) 5 fW T dWi . 0.

• Computation conflict-free: two different computations
are not executed on the same PE at the same time. That
is, if SjW1 1 sW0 5 SjW2 1 sW0 then fW TjW1 1 f0 ? fW TjW2 1 f0 . It
follows that if SjW1 5 SjW2 then fW TjW1 ? fW TjW2 .

• Link conflict-free: every dependence vector of the
SURE is mapped to one and only one interconnection link
of the array. From the formula derived by Lee and Kedem
in [11], for a linear spacetime mapping, the condition of
link conflict-free is: if (S DjW)(fW TdWi) 5 (fW T DjW)(SdWi) then
DjW 5 kdWi , k ? 0, where DjW 5 jW1 2 jW2 . In the if part, the four
items S DjW, fW TdWi , fW T DjW, and SdWi represent respectively (after
linear spacetime mapping) two index vectors’ processor
difference vector, a link delay, two index vectors’ time
delay, and a link vector. Now, for an affine spacetime
mapping, these four items are still S DjW, fW TdWi , fW T DjW, and SdWi ,
respectively, since the effect of an affine transformation’s
translation part is eliminated from two vectors’ dif-
ference. j

To design regular arrays by finding a candidate of correct
spacetime mapping, it is necessary to check all conflict-
free conditions (dependence, computation, and link).
These examinations will take a lot of time when the prob-
lem size parameter N becomes very large. To avoid doing
these examining procedures for shortening design time,
our solution is first to find an affine transformation kT, tW0l,
to transform the given IP-SURE to an MM-SURE. Then,
we will propose (in Section 3) a conflict-free (linear) space-
time mapping matrix in a fixed form, say Tl , to map the
MM-SURE to a lower dimensional regular array. The fol-
lowing theorem not only shows that this method is valid
but also states how to obtain a transformation matrix from
kT, tW0l and Tl for mapping the given IP-SURE to a regu-
lar array.

THEOREM 2.3. Designing a regular array AY 5 (P m, L)
for an IP-SURE AP 5 (Jn

p , D) can be done by the affine
spacetime mapping TlkT, tW0l, where kT, tW0l is the identity
transformation for transforming AP to an MM-SURE
AM 5 (Jn

m , I), and Tl 5 [fW RT]T is an (m 1 1) 3 n correct
linear spacetime mapping for mapping AM to AY , where
fW T and R are the 1 3 n schedule vector and the m 3 n
processor assignment matrix, respectively.

Proof. From Theorem 2.1 we know that an IP-SURE
AP 5 (Jn

p , D) can always be transformed to an equivalent
MM-SURE AM 5 (Jn

m , I) by the affine transformation kT,
tW0l 5 kD21, 2D21jW0 1 jW0l. Now we want to prove that if
Tl 5 [fW R T]T is correct for mapping AM to AY , then
TlkT, tW0l ; k[fW S T]T, [f0 sWT

0 ]Tl is also correct for mapping
AP to AY .

• Dependence conflict-free: Since Tl is conflict-free,
;eWi [ I, fW TeWi . 0. Thus, from eWi 5 D21 dW i , we have fW TD21

dW i . 0 or fW TdW i . 0.
• Computation conflict-free: Since Tl is conflict-free,

;hW1 , hW2 [ Jn
m , if R DhW 5 0W then fWT DhW ? 0, where DhW 5
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DhW ReWk 5 R DhW fW TeWk , we can deduce Dhi 5 0, n 2 m 1 1 #
i # n, except i 5 k, as well as H n2m21 Dh1 1 H n2m22 Dh2

1 ??? 1 Dhn2m 5 0. Since Dhi 5 on
k51 d21

ik Djk , we have uDhiu
# H, thus Dhi 5 0, 1 # i # n 2 m. It follows that
Dhi 5 0, 1 # i # n, except i 5 k. Thus, if fW T DhW ReWk 5
R DhW fW TeWk , then DhW 5 peWk , where p is an integer. j

For an affine spacetime mapping k[fW S T]T, [f0 sWT
0 ]Tl 5

kTlT, TltW0l 5 kTlD21, 2TlD21jWo 1 TljW0l, a dependence vector
dW i is mapped to a link lWi with the delay fW T dW i and the vector
SdW i . When Tl 5 [fW R T]T, it follows that fW T dW i 5 fW TD21 dW i

5 fW TeWi and SdW i 5 RD21 dW i 5 ReWi . If we design regular
array by applying Theorem 3.1, then for every link (ReWi ?
0) we have ReWi 5 eWi2n1m , where n 2 m 1 1 #
i # n. That is, the designed regular array must be locally
connected that satisfies the definition of regular array. Be-
sides, the delay (fW TeWi , n 2 m 1 1 # i # n) for every link
is equal to 1. Meanwhile, the buffer size required in each
PE is H n2m21 5 O(N n2m21). Note that, whether H is an
integer will determine if the execution time of each index
vector is an integer. Thus, if H is a fraction number, say
H1N/H2 , then we can either expand the computation do-
main so that H2uN, or choose a minimal integral H such
that H $ max1#i#n on

k51 ud21
ik uN. There are two examples to

illustrate our method of designing lower dimensional regu-
lar arrays for IP-SUREs. The first example is to map a 4D
IP-SURE to a 2D mesh array and an 1-D linear one. The
second example is to design linear arrays for matrix multi-
plication and transitive closure.

EXAMPLE 3.1. In this example, we will design a 2D
mesh array and an 1-D linear one for an IP-SURE AP 5
(J4

p , D), with

D 5 3
1 0 21 0

0 1 21 0

0 0 2 0

21 0 1 2
4

and J4
p 5 J4 ` hjWujW 5 jW0 1 DeW j, where jW0 5 [1 1 1 1]T. The

dependence graph of AP is shown in Fig. 1a. First, we have

D21 5 3
1 0 As 0

0 1 As 0

0 0 As 0

As 0 0 As

4
According to Theorem 3.1 with n 5 4 and m 5 2, we have
H 5 3N/2 and

Tl 5 3
3N
2

1 1 1

0 0 1 0

0 0 0 1
4.
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Hence, the affine spacetime mapping is

kTlD21, 2TlD21jW0 1 TljW0l

5 73
3N 1 1

2
1

3N 1 4
4

1
2

0 0
1
2

0

1
2

0 0
1
2

4 , 32
3N
4

1
2

0
48 .

Thus, the spacetime mapping for an index vector jW [ J4
p

is

[t p1 p2]T

5 F(6N 1 2) j1 1 4 j2 1 (3N 1 4) j3 1 2 j4 2 3N
4

j3 1 1
2

j1 1 j4

2 GT

.

FIG. 1. (a) The dependence graph of Example 3.1. (b) The designed
2D mesh array (N 5 4) for Example 3.1. (c) The designed 1D linear
array (N 5 4) for Example 3.1.



D 5 3
1 0 21 21 0

0 1 21 0 21

0 0 1 1 1
4

is not a square one, D can be made fully permutable by
skewing. That is, X333D335 5 F335 , where X is the skew
transformation matrix and ;fih [ F, fih $ 0. Here

X 5 3
1 0 1

0 1 1

0 0 1
4 and F 5 3

1 0 0 0 1

0 1 0 1 0

0 0 1 1 1
4 .

Thus, we have D 5 X 21F ; BF, where

B 5 3
1 0 21

0 1 21

0 0 1
4 .

The basis matrix B is used to replace D to construct the
new dependence matrix of transitive closure. From

T 5 B21 5 3
1 0 1

0 1 1

0 0 1
4 ,

tW0 5 [0 0 ??? 0]T, and Tl 5 [2N
0

1
0

1
1], we have kTlT, TltW0l 5

k[2N
0

1
0

2N12
1 ], 0Wl. The designed linear array is shown in Fig.

3b for N 5 4. The execution time is Te 5 (2N 1 1 1
2N 1 2)(N 2 1) 1 1 5 4N 2 2 N 2 2. The number of PEs
used is iPi 5 (N 2 1) 1 1 5 N. Note that, there are three
basis vectors out of five dependence vectors. dW1(5 bW1),
dW2(5 bW2) and dW3(5bW3) are respectively mapped to the links
lW1 , lW2 , and lW3 , which have delays 2N, 1, and 1, and vectors
0W, 0W, and 1W, respectively. On the other hand, the dependence
vector dW4(dW5) is a positive combination of bW2 and bW3(bW1

and bW3). That is, we have the links lW4(5 lW2 1 lW3) for dW4

and lW5(5 lW1 1 lW3) for dW5 . These two links are shown in thick
and thin dash lines of Fig. 3b, respectively. The essence of
lWi 1 lWh for a dependence vector is: let lWi(lWh) have link delay
fW TbWi(fW TbWh) and link vector SbWi(SbWh). First, assuming that
a computation result is generated by a processor pWk when
t1 . Then, it is propagated to the processor pWk 1 SbWi when
t1 1 fW TbWi by the link lWi . Finally, it reaches to the processor
pWk 1 SbWi 1 SbWh when t1 1 fW TbWi 1 fW TbWh by the link lWh .

The following three theorems will show that the regular
arrays designed by Theorem 3.1 are asymptotically optimal
in space and time.

THEOREM 3.2. The execution time and the number of
PEs of the mD regular array, designed by Theorem 3.1 for
an nD IP-SURE, are O (N n2m) and O (N m), respectively.

Proof. From Theorem 3.1, we know that the execution
time Te 5 (fW TD21jW)max 2 (fW TD21jW)min 1 1. Let fW T 5 [f1 f2

??? fn] 5 fW TD21 and H 5 max1#i#n on
k51 ud21

ik uN ; hN. Thus,

The 2D mesh array is shown in Fig. 1b for N 5 4. If the
desired array is a linear one, then

Tl 5 39N 2

4
3N
2

1 1

0 0 0 1
4 .

It follows that the affine spacetime mapping is

kTlD21, 2TlD21jW0 1 TljW0l

5 73
9N 2 1 2

4
3N
2

9N 2 1 6N 1 4
8

1
2

1
2

0 0
1
2
4 ,

32
9N 2 2 6N 1 4

8

0 48 .

Thus, the spacetime mapping for an index vector hW [ J4
p is

[t p1]T

5 3
(18N 2 1 4) j1 1 12Nj2 1 (9N 2 1 6N 1 4) j3

1 4j4 2 9N 2 2 6N 1 4
8

j1 1 j4

2 4
T

.

The 1D linear array is shown in Fig. 1c.

EXAMPLE 3.2. Unidirectional linear arrays for the
problem of matrix multiplication and transitive closure are
designed as follows:

• Matrix multiplication: The dependence graph of ma-
trix multiplication is shown in Fig. 2a. Since it has an iden-
tity dependence matrix, we have T 5 I and tW0 5 [0 0 ??? 0]T.
According to Theorem 3.1 with n 5 3 and m 5 1, we have
Tl 5 [N 1 1

0 0 1]. It follows that the affine spacetime mapping is
kTlT, TltW0l 5 k[N 1 1

0 0 1], 0Wl, which is reduced to a linear one.
We draw the complete spacetime diagram in Fig. 2c, where
[Time
Space] 5 [Ni1j1k

k ] and 1 # i, j, k # N 5 4. From this diagram,
it is easy to see that in the case of matrix multiplication,
the designed linear array is time–optimal, because every
PE begins execution as soon as possible and does not stop
until all computations are done. The designed linear array
is shown in Fig. 2b for N 5 4. The execution time is Te 5
(N 1 1 1 1)(N 2 1) 1 1 5 N 2 1 N 2 1. The number of
PEs used is iPi 5 (N 2 1) 1 1 5 N.

• Transitive closure: The dependence graph of transi-
tive closure is shown in Fig. 3a. Although its dependence
matrix
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fk 5 on
i51 fi d21

ik 5 d21
1k H n2m21 1 o(H n2m21). Thus, the

execution time of the mD regular array designed by our
method is Te 5 (on

k51 ufku)(N 2 1) 1 1 5 (on
k51

(ud21
1k uH n2m21 1 o(H n2m21)))(N 2 1) 1 1 ; cN n2m 1

o(N n2m) 5 O (N n2m), where c is a positive constant value.
On the other hand, let R 5 [rW1 rW2 ??? rWm]T. We know that

the number of PEs used iPi 5 P m
k51 Nk , where Nk 5

(rWT
k D21jW)max 2 (rWT

k D21jW)min 1 1. It can be derived that
Nk 5 (on

i51 ud21
n2m1k,iu) (N 2 1) 1 1. Thus, we have

iPi 5 P m
k51 uNku 5 cN m 5 O(N m). j

THEOREM 3.3. Executing an IP-SURE AP 5 (Jn
p , D)

on an mD regular array, the lower bound of the execution
time is V(N n2m).

Proof. For a recurrence equation vh(hW i 1 dW i) 5 fh(???,
vi(hW i), ???) in an IP-SURE, if hW i Ó Jn

p , then the value of
vi(hW i) should be set by the initial value of the IP-SURE.
For an nD IP-SURE, there are at least c1N n21 initial values
for the variable vi . Executing the IP-SURE on an mD
regular array, there are at most c2N m21 input ports for
each variable, because the input ports of the mD regular
array are confined on the boundary PEs. Since the regular
array should satisfy the link conflict-free condition, the
time is at least c1N n21/c2N m21 ; N n2m/c for inputting all
c1N n21 initial values of a variable. Thus, the lower bound
of the execution time is V(N n2m). j

THEOREM 3.4. By Theorem 3.1 an asymptotically opti-
mal mD regular array can be designed in polynomial time
for any IP-SURE.

Proof. Optimality. The asymptotical optimality of time
can be proved directly from Theorem 3.2 and Theorem
3.3. On the other hand, the proof of the asymptotical opti-
mality of space is direct: it is obvious that the number of
PEs supported by an mD regular array is at least V(N m),
because Ni 5 ciN, where 1 # i # m. From Theorem 3.2,
the number of PEs used by Theorem 3.1 is O(N m). Hence
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the space optimality is proved.
Polynomial time. The time complexity is polynomial

for calculating the affine spacetime mapping kTlD21,
2TlD21jW0 1 TljW0l proposed in Theorem 3.1, because we
need only to calculate the inverse of D and to compute
products of martrices. It is easy to see that the design
time only depends on the number of dimensions of the
IP-SURE.

Hence the theorem is proved. j

4. CONCLUSION

In this paper, we have proposed a polynomial time
method to design lower-dimensional regular arrays for

FIG. 2. (a) The dependence graph of matrix multiplication. (b) The
spacetime diagram (N 5 4). (c) The designed 1D linear array (N 5 4)
for matrix multiplication.
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SUREs. Previous researchers solved this problem by
checking the conditions of dependence, computation, and/
or link conflict-free for a candidate of spacetime mapping.
However, this check step is time-consuming when the prob-
lem size of an SURE is very large. We avoid the previous
time-consuming step by proposing a new two-step method.
In the first step, an independently partitioned SURE (IP-
SURE) AP 5 (Jn

p , D) is transformed to a matrix-multiplica-
tion-like SURE (MM-SURE) AM 5 (Jn

m , I). The transfor-
mation is an affine one kT, tW0l that is equal to kD21, 2D21jW0

1 jW0l, where jW0 is an index vector in Jn
p . The purpose of

the affine transformation is to let all index vectors in Jn
m

be integral ones, because D is in general a nonunimodular
matrix, which results in that elements in D21 are not inte-
gral. In the second step, the MM-SURE is mapped to an
mD regular array AY 5 (P m, L) by a linear spacetime
mapping matrix Tl , which is in a fixed form. By combining
kT, tW0l and Tl obtained in the above two steps, the affine
spacetime mapping kTlT, TltW0l can be used to design an
mD regular array for the nD IP-SURE, where n $ m 1
1. The contribution of this paper is that we propose a
polynomial time method to design lower-dimensional regu-
lar arrays for SUREs; the time complexity of the method
is independent on the problem size and dependent only
on the number of dimensions of the regular algorithm.
Meanwhile, the designed regular array is asymptotically
optimal in space and time.
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