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Abstract

Forecasting the production of technology industries is important to entrepreneurs and govern-

ments, but usually suffers from market fluctuation and explosion. This paper aims to propose a

Litterman Bayesian vector autoregression (LBVAR) model for production prediction based on the

interaction of industrial clusters. Related industries within industrial clusters are included into the

LBVAR model to provide more accurate predictions. The LBVAR model possesses the superiority of

Bayesian statistics in small sample forecasting and holds the dynamic property of the vector

autoregression (VAR) model. Two technology industries in Taiwan, the photonics industry and

semiconductor industry are used to examine the LBVAR model using a rolling forecasting procedure.

As a result, the LBVAR model was found to be capable of providing outstanding predictions for

these two technology industries in comparison to the autoregression (AR) model and VAR model.
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1. Introduction

The production forecasting in technology industries is an important job in practice

because the perspective of a technology industry deeply impacts enormous investment plans

from private sectors and industrial policies from government. However, volatile waver and
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explosive growth are commonly observed in the development of technology industries. The

discontinuous path may be instigated by technological breakthrough, environmental change,

or explosive demand. Therefore, the production forecasting in technology industries is

much more intricate than in traditional industries such as food manufacturing. Such

circumstances necessitate efficient methods for production forecasting for entrepreneurs,

investors, and governments. Researches of time series forecasting for industrial production

have been burgeoning in recent years (e.g., Tseng et al. [29], Marchetti and Parigi [31]).

Some studies already revealed the applicability of time series models on industrial pro-

duction prediction.

The VAR model developed by Sims [1], which is a dynamic multivariate time series

model, has been widely applied to macroeconomics, regional economics, exchange rate,

and even consumption. After being first introduced, the VAR model aroused considerable

attention in both economics and statistics fields. Following Sims, Doan et al. [2] and

Litterman [3] proposed a Litterman Bayesian VAR (LBVAR) model to overcome the

pitfall of over-parameterizations in VAR and provide accurate forecasting in small

samples. The Bayesian approach uses flexible coefficients in spite of a hard shape in

classical statistics. Although there exist many applications of the VAR and the LBVAR

model, the production prediction of the technology industry has not, to our knowledge,

been addressed. In this paper, we present two samples — Taiwan’s photonics industry and

semiconductor industry — to examine the forecasting ability of AR, VAR, and LBVAR

models for industrial production.

There are three reasons for us to recommend the LBVAR model, a model that covers

clustering industries to forecast production: first of all, the multivariate time series model has

been proved to be valid in forecasting dependent time series like macroeconomics indexes,

consumption, and industrial production. Next, in the fleeting development of technology

industries, the prediction model is destined to be a short-term sample method. For instance, it

is obviously improper to consider old data from over 10 years ago for the dynamic

circumstance of technology industries. As a result, we have a good reason to use the

Bayesian statistical methodology, which is regarded as superior to classical statistics in a

small-sized case, as in this study. Lastly, industrial clusters are known as a crucial factor in

supporting technology industries [38], and the relative industries can provide important

information to make predictions. Therefore, the LBVAR model is believed to provide better

prediction than the univariate AR model and conventional VAR model.

In examining the forecasting performance in two industries, it is found that the LBVAR

model outforecasts the VAR model and the naive AR model in magnitude measures. This

outcome corroborates that the LBVAR model that covers clustering industries can provide

an accurate prediction for industrial production. The remaining parts of this study are as

follows: Literature and methodology of LBVAR forecasts are reviewed in Section 2. Then

an overview of Taiwan’s photonics industry and semiconductor industry is provided in

Section 3. The detailed procedure of modeling and estimating of VAR and LBVAR models

is described in Section 4. Empirical results of VAR and LBVAR forecasts for two

technology industries are compared and analyzed in Section 5, and some conclusions are

drawn in Section 6.
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2. Review of LBVAR forecasts

Since first proposed by Box and Jenkins in the 1970s, the time series model has

experienced fast development throughout the past decades. The vector autoregression

(VAR) model proposed by Sims [1] has been widely applied in macroeconomics, regional

economics, and finance. In the Bayesian approach, Litterman proposed a Bayesian autore-

gression (BAR) [4] and a Bayesian vector autoregression that is known as Litterman BVAR

(LBVAR) model [3]. Spencer [5] developed an eight-step procedure including VAR modeling

and Bayesian prior estimating for establishing a LBVAR model. In literature, the forecasting

application of LBVAR model covers electricity consumption quantity and price, monthly

GDP, steel consumption, sales of homes, and marketing management. Dua and Ray [7]

developed a LBVAR to predict Connecticut’s economy in competition with univariate

ARIMA and an unrestricted VAR. They found that the loose prior generally produces more

accurate forecasts. Finally, it was verified again that the LBVAR model produces the most

accurate outcomes in both short-term and long-term and also predicts the change in direction.

Their conclusion presents that LBVAR prediction is more precise than unrestricted VAR and

best-fit ARIMA models, and the best LBVAR model in Connecticut economy forecasting is

LBVAR(1). Sarantis and Stewart [8] compared the out-of-sample forecasting accuracy of a

wide class of structural, VAR, and LBVAR models for sterling exchange rates. They observed

the impacts of lag-length selection in VAR models and the impacts of the hyperparameters

setting in LBVAR models. After the trial of a large class of models, they concluded that the

LBVAR outpredicts other models in the short term and, with loose priors, produces more

accurate forecasts. Besides macroeconomic data, several researchers attempted to expand

LBVAR forecasting to other fields. For instance, Dua and Smyth [9] used LBVAR to examine

whether the survey data on households’ purchasing attitudes was helpful in predicting the

sales of homes. Similarly, Kumar et al. [10] applied LBVAR in evaluating the usefulness of

Katona’s ‘‘ability and willingness to buy’’ framework for business forecasting. Curry et al.

[11] applied LBVAR to decide the best strategy in category management in marketing fields.

Three conclusions can be drawn from these previous studies. First, a multivariate time

series model is useful in examining the informative interaction between different data series.

Second, LBVAR is verified to be better than VAR in most short-term horizons by multiple

measures. As Holden’s conclusion [6]: ‘‘The evidence is that the forecasts produced by

LBVAR models are at least as accurate as forecasts from traditional economic models’’ (p.

162). Since the LBVAR is of much advantage in macroeconomic foresight, it is expected to

be helpful in production prediction of industrial clusters.

In themodel establishment of the LBVARmodel, Litterman [3] assumed that the ith equation

in the VAR model is as follows:

Yi;t ¼ Ci þ fð1Þ
i1 y1;t�1 þ . . .þ fð1Þ

in yn;t�1 þ fð2Þ
il Yl;t�2 þ . . .þ fð2Þ

i;n yn;t�2 þ . . .þ fðpÞ
il y1;t�p

þ . . .þfp
i;nYn;t�p þ eit; ð1Þ

variable j refers to the jth variable listed in (Eq. (1)). By Litterman’s assumption, the fij
(1)�N

(1,g2) for i = 1,. . .,n because the covariancematrix for the prior distribution is set to be diagonal,
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with g denoting the standard deviation of the prior distribution for fij
(1). The g is also regarded

as the overall tightness of the prior on the first own lag in each equation. Other coefficients are

fij
(d)�N (0, S (i, j, l)) for d 6¼ 1, where each fij

(d) gives the coefficient relating yi,t to yi,t� d.

Therefore, the mean is one in the first own lag and zero in others in each equation. The standard

deviation for the lag l of variables j in the ith equation, proposed by Litterman, is

Sði; j; lÞ ¼ ½ggðlÞf ði; jÞsi	=sj; ð2Þ

here f(i,i) = g(1) = 1, and si is the standard error of the univariate AR on the ith equation (Eq. (2)).

The number in the square bracket includes tightness and weight of the prior on coefficient i, j, l.

The tightness on lag l relative to lag 1 is g(l); the tightness on variable j in equation i relative to

variable i is f(i,j). Therefore, the most important hyperparameter in the construction of the

LBVAR model is f(i,j). Such a Bayesian prior system is known as ‘‘Litterman’s BVAR

(LBVAR)’’ or ‘‘Minnesota prior BVAR.’’ There are many types of hyperparameter in LBVAR,

and the most frequent one is the symmetric type as:

f ði; jÞ ¼
1 if i ¼ j;

w otherwise;

8<
: ð3Þ

here Eq. (3) gives the relative tightness (w) applied to all off-diagonal variables in the system.

As one reviewer pointed out, considering the cointegration and error-correction model

(ECM) is important. We know that there are two main streams of the development of the VAR

model: the Bayesian VAR (BVAR) and the cointegration. In literature, the BVAR model and

cointegration are two separable issues because some studies focused on BVAR without

cointegration (e.g., Ref. [8]). Three recent papers combined these two streams to discuss the

Bayesian error-correction (BECM) model [13,35,37]. Though some studies revealed that the

cointegration within a data series requires ECM to provide better forecasting than BVAR

(e.g., Ref. [36]), it is still arguable whether to consider cointegration or not. Some studies

discovered that the ECM and BECM are not necessarily better than the BVAR model. For

instance, Joutz et al. [13] regarded the LBVAR model as good as the ECM and BECM. After

these reviews, we concluded that considering the ECM or not is selective and not necessary.

Since the goal of our article is to propose a forecasting application of VAR and LBVAR to

technology industries, the ECM is not considered in this study.

3. Overview of Taiwan’s photonics industry and semiconductor industry

The clustering effect is a critical factor in developing the information industry in Taiwan. In

the 1980s, the success of the electronic calculator industry promoted the following semi-

conductors and desktop personal computer (PC) industries. Subsequently, the PC peripherals

and key components industries grew quickly and prospered over the past 10 years. Today,

emerging industries like photonics, telecommunications, and software have largely benefited
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from existing industrial clusters in Taiwan. These phenomena suggest that the clustering effect

of technology industries plays a crucial role and requires more inspection and discussion.

3.1. Photonics industry

Taiwan’s photonics industry has become one of the fastest growing sectors in recent years

and is regarded as a high potential technology industry for the next century. The photonics

industry includes light-emitting diode dice (LED dice), LED display, solar cell, laser diode,

semiconductor laser diode, laser diode indicator, liquid crystal display (LCD), and other opto

devices. The production value of Taiwan’s photonics industry, shown in Fig. 1, has grown

from US$235.5 million in 1996 to US$367.7 million in 1999, a 16% compound average

growth rate. It is predictable that the scale of Taiwan’s photonics industry will keep escalating

due to the mushrooming investments. For instance, there are up to seven large plants of Thin

Film Transistor-Liquid Crystal Displayer (TFT-LCD) that had trial productions or runs up this

year (2000). Moreover, another seven plants are going into the TFT-LCD industry with

capital of over 6 billion US dollars.

The clustering effect is a main propelling factor for Taiwan’s photonics industry because

the existing industries have formed strong cornerstones. Like other technology industries in

Taiwan, the photonics industry is demand-driven, and most photonics products are combined

in downstream industries to finally be exported. The well-developed industrial cluster

performs as a strong bolster for the emerging photonics industry in human resource, raising

capital, technology transfer, and other fields. As a result, when forecasters make predictions

on the photonics production value, the production value of related sectors, like peripheral and

downstream industries, are believed to contribute as leading indicators.

Fig. 1. Production value of photonics industry in Taiwan.
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3.2. Semiconductor industry

Since the foundation of Taiwan Semiconductor Manufacturing Company and United

Microelectronics in the late 1980s, Taiwan’s semiconductor industry has experienced a

big boom. There are four main components in Taiwan’s semiconductor industry:

integrated circuit (IC) design, IC manufacturing (including IC foundry), packaging, and

testing. The main products of Taiwan’s semiconductor industry include IC materials,

memory (DRAM, SRAM), logic IC, analog IC, lead frame, and foundry. The IC

Manufacturing, especially in foundry and DRAM, brings up whole semiconductor clusters

in Taiwan.1 In recent years, the IC design part jumped up and ranked second globally in

both number and revenue in 1998 [12]. There are three characteristics in Taiwan’s

semiconductor industry: First, Taiwan’s semiconductor industry operates in a disintegrated

but tight-linked structure that is unique worldwide. Second, vast capital is continuously

invested in this industry, which maintains the advantage of massive production. Finally,

the Taiwanese quick-to-respond entrepreneurship forms the excellence in manufacturing

capability and flexibility.

The production value of Taiwan’s semiconductor industry from 1990 to 1999 is plotted

in Fig. 2. In 1995, the monthly revenue continued to rise from January and finally

reached the zenith of the year in November. From June 1996 to May 1997, world

semiconductor industry experienced a 12-month long recession. Moreover, the semi-

conductor industry worldwide suffered from the most severe downturn in history in 1998.

Taiwan’s semiconductor industry, inevitably, fluctuated accordingly with the global

Fig. 2. Production value of semiconductor industry in Taiwan.

1 For instance, wafer foundry and memory comprised 59.77% of the local fabrication business in 1998 [23].
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industry in this period. Though rocked by the great Chichi earthquake in 1999, Taiwan’s

semiconductor industry still showed strong recovery that year. Consequently, Taiwan’s

semiconductor industry generated a total revenue of US$12.5 billion in 1999 and a 48.1%

growth rate.

4. Methodology

4.1. Step 1: data collection

In this study, production data were drawn from the Department of Statistics, Ministry of

Economic Affairs of Taiwan. We consider the quarterly data in estimating, model fitting, and

forecasting for the following reasons: The quarterly data are usually used in national, local, and

industrial productions in literature (ex. Ref. [7,25,29,32–34]). The monthly data covers too

short a period of time in evaluating industrial production and is very inappropriate in Chinese

society.2 On the other hand, the annual data carries too long a period of time to reflect the

unstable and explosive development of technology industries. In collected data, there are up to

10 related industries as candidates that probably contribute to the photonics industrial and the

semiconductor industry (see Table 1). As in Joutz et al. [13], the production index is used to

substitute the production value in modeling and forecasting.3 Data of these 10 industries were

collected from 1990 Q1 to 2000 Q1, a total of 41 quarterly observations. The front 32

observations (1990 Q1 to 1997 Q4) are used in variables selection and model specification, and

the following nine observations are used to assess the predictive capability of AR, VAR, and

LBVAR models as the out-of-sample. The out-of-sample ratio is 22.5% (9/41).

4.2. Step 2: preliminary transformation of data series

Quarterly production indexes of all information and electronics industries in Taiwan were

collected and transformed into natural logarithmic numbers as shown in Refs. [13,30], which

is a common procedure that transforms exponentially growing data into linear data to stabilize

the volatility for VAR and LBVAR modeling.4

To factor out the seasonality within small-sample data, we decided to make seasonal

adjustment before modeling in spite of seasonal dummy variables in the model setting.5

2 The Chinese (Lunar) New Year vacation may occur in January, February, and March on occasion. Such

uncertainty and irregularity prompts us to discard monthly data into our consideration.
3 The production index means the percentile of production value per year divided by the production value of

the base year 1996. The reason we consider production indexes in substitution of production value is that the

indexes can reduce enormous numbers in monetary unit and can keep equivalence in arithmetic operation.
4 The graphics of original production index are not shown here due to limited space.
5 Such preliminary deseasonalization is also found in papers by Doan et al. [2], Dua and Ray [7], Kumar et al.

[10], Salazar and Weale [24], and Marchetti and Parigi [31].
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Besides, such a deseasonalization is much preferable in LBVAR estimation because a series

with a season factor will make large coefficients in high-order lag that makes inefficient

parameterization (e.g., Ref. [14,15,28,34]). The census X-11 method was applied in multi-

plicative and half-weighted endpoints.6

4.3. Step 3: variables (series) selection

The models for the photonics industry and semiconductor industry are established

individually. The industrial relation and pairwise Granger causality test are two filters to

cull effective variables (series) into VAR and LBVAR models. According to the industrial

relation, we first select the directly dependent industries of the photonics industry or

semiconductor industry into the model and filter off others.7 Six candidates were selected

for the photonics industry (codes 3141, 3142, 3143, 3144, 3145, and 3179) and three

candidates were selected for the semiconductor industry (codes 3144, 3145, and 3149). Then,

the pairwise Granger causality test, which examines whether the explanatory degree is

improved by adding one variable into the univariate equation, is used in further filtering.

6 Census X-11 methods, including multiplicative and additive methods, are standard methods used by the US

Bureau of Census to make seasonal adjustments.
7 Here the ‘‘directly dependent industries’’ mean downstream, upstream, and peripheral industries.

Table 1

Data code and product items of collected industrial production value

Code Groups Product items

3141 Data processing

and storage equipment

Desktop computer, portable computer, work station, electric counter

3142 Data storage media units Hard disk, floppy disk, compact disc, video disc, IC card

3143 Data terminal equipment Tube monitor, LCD monitor, terminal

3144 Data I/O

peripheral equipment

Hard disc driver, floppy disc driver, compact disc driver, printer, plotter,

keyboard, scanner, mouse, card reader, other input/output peripherals

3145 Computer components Internetwork, server, wiring concentrator, PC-LAN, network card,

fax card, memory extension card, graphic card, control card, ISDN card,

sound card, other interface cards

3149 Other

computer equipment

Numerical controller, word processor, ROM programmer, network

operating system, case, other computer equipment

3172 Semiconductors Wafer, mask, IC package, foundry, IC manufacturing, diode,

transistor, lead frame

3173 Photonics materials

and components

LED, LED display, solar cell, laser diode, LCD display, other opto

devices, other displayers.

3179 Other electronic parts PCB, board, copper-clad laminate, UPS, filter, electronic rectifier,

other power suppliers, others parts

3190 Other electrical and

electronic machinery

Switch, coil, socket, and others

This table is based on definition provided by Department of Statistics, Ministry of Economic Affairs, Taiwan,

Republic of China, 2000.
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Since the pairwise Granger causality test is sensitive to the number of lag [17], we execute it

from lag 1 to lag 4 to cover the possible model order,8 and the main results of the causality

test are reported in Table 2. In the photonics industry all six candidates were found to be of

pairwise causality under a=.05. This outcome is harmonic with our presupposition that the

development of Taiwan’s photonics industry is highly dependent on the pull power from local

clusters. In the semiconductor industry, only one of three candidates manifested causality in

semiconductors production: the Data I/O Peripheral Equipment (code 3144). Based on the

industrial relation and pairwise Granger causality test, we considered seven variables (codes

3142, 3142, 3143, 3144, 3145, 3173, and 3179) in the model for the photonics industry and

two variables (codes 3144 and 3172) in the model for the semiconductor industry.

4.4. Step 4: order selection

4.4.1. VAR model

At this stage, we had to decide the appropriate lag-length of the VAR model. To decide the

appropriate order of VAR and LBVAR, we focused on three criteria, including Akaike

Information Criterion (AIC), Hannan–Quinn Criterion (HQ) [18,19], and Schwarz Criterion

Table 2

Results of pairwise Granger causality test

P value Data processing

and storage

equipment,

# 3141

Data storage

media units,

# 3142

Data terminal

equipment,

# 3143

Data I/O

peripheral

equipment,

# 3144

Computer

components,

# 3145

Other

electronic

parts,

# 3179

Photonics Lag 1 .0112a .0310a .3846 .0407a .0244a .0152a

materials and Lag 2 .0437a .0383a .0368a .1238 .0833 .0289a

components Lag 3 .0067a .1050 .0475a .0432a .0642 .0168a

# 3173 Lag 4 .00327a .2245 .1653 .1131 .1305 .0059a

P value Data I/O

peripheral

equipment,

# 3144

Computer

components,

# 3145

Other computer

equipment,

# 3149

Semiconductors Lag 1 .0560 .0975 .0912

# 3172 Lag 2 .1362 .2393 .0994

Lag 3 .0731 .5735 .2524

Lag 4 .0448a .2605 .2232

All series are considered in level.

Null hypothesis: the suspicious series does not Granger Cause the production series of the photonics industry or

semiconductor industry.
a Points out the rejection under significant level a=.05.

8 We start the pairwise Granger Causality Test from lag 4 as 1-year-long because we have made seasonal

adjustment in quarters. Moreover, 1 year is long enough for information diffusion in technology industry.

According to Lütkepohi [26], reasonable lags used in the pairwise Granger causality test corresponding to the

longest time over which one of the variables could help to predict the other.
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(SC) [20] to specify the appropriate lag-length.9 According to criteria outcomes in Table 3,

the criteria of VAR model for the photonics industry decline simultaneously because the

determinant slumps with the number of lag. Consequently, we decided to fit the VAR model

with lag 1 for the photonics industry. In the semiconductor industry, we accept the VAR

model in lag 1 (VAR(1)) as a qualified model.

4.4.2. LBVAR model

In order selection, the LBVAR is usually in lag one and is seldom in lag over three [8,13].

We followed the parsimonious parameterization principle of the LBVAR model [21] and

considered the LBVAR model with a lag number that does not exceed the lag number of the

VAR model [5]. Therefore, we set the LBVAR in order 1 for both the photonics industry and

semiconductor industry. Then, we considered two symmetric priors: the standard symmetric

prior and the low-weighted prior. The standard prior is 0.2 in tightness and 0.5 in weight

(g= 0.2, w= 0.5) by the optimal experience of Litterman [3] and Doan [22]. We term it as the

‘‘Standard prior LBVAR.’’ For the ‘‘Low-weighted prior LBVAR,’’ we follow [5] and let the

weight approximate to zero (set g= 0.2, w= 0.001) as a low-weighted prior for better

prediction once a seemingly univariate system occurs in our modeling.10

Table 3

Order selection in VAR model for production forecasting

Criteria Lag 4 Lag 3 Lag 2 Lag 1

Photonics industry

VAR, 7 variables Determinant of

residual covariance

= 4.63E� 26 1.38E� 19 1.09E� 17

Log likelihood NA 557.8052 353.4566 297.4897

HQ NA � 25.5746 � 14.9949 � 7.3678

SC NA � 20.5878 � 11.6596 � 12.9896

AIC NA � 27.84863 � 16.56377 � 15.57998

Semiconductor industry

VAR, 2 variables Determinant of

residual covariance

3.27E� 05 4.32E� 05 5.72E� 05 6.10E� 05

Log likelihood 65.1415 63.4234 61.3963 62.4395

HQ � 3.1054 � 3.2018 � 3.27700 � 3.5508

SC � 2.5108 � 2.7484 � 2.9594 � 3.6413

AIC � 3.3672 � 3.4085 � 3.4264 � 3.3637

The number in the square bracket presents the endogenous variables to be considered (equations) in our VAR

estimation according to last stage because the determinant in lag 4 approximates zero in photonics industry, the log

likelihood, HQ, SC and A1C are unavailable (‘‘NA’’).

9 Generally speaking, the methods for order selection include: Likelihood Ratio Test (LR test), Final

Prediction Error Criterion (FPE), AIC, HQ, and SC. According to Lütkepohi [27], the LR, FPE, and AIC are not

suitable to process small sample problems. Therefore, HQ and SC are used to decide the VAR order in this study.

See Lütkepohi [27].
10 It is known that if the w of the LBVAR model approximates zero, then the LBVAR is going close to a

univariate AR model.
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4.5. Step 5: estimation and forecasting

The estimation and forecasting procedure in this study, following Refs. [5,16,32], was

conducted out using the RATS software package which was set up to accommodate BVAR

models with Litterman priors. The model is reestimated whenever new real data is available

and does forecasting for the next period. Therefore, one-step-ahead prediction and model

reestimation are repeated alternatively as a rolling procedure. This procedure reflects the

empirical rationalism: Practitioners always react promptly to the latest information.

The results of model prediction are assessed by magnitude measures, directional measures,

and residual correlation patterns. We used six magnitude measures: Root of mean square error

(RMSE), Theil U, mean absolute error (MAE), forecast error standard deviation (FESD), root

mean square percentage error (RMSPE), and mean absolute relative deviation (MARD).11

11 (1) RMSE

Set T to be the total number of observations in the prediction period; Y is the actual value in the prediction

period; Ŷ is the estimated value in the prediction period.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1

X
teT

ðYt � YtÞ2
r

(2) Theil U

U ¼ RMSE ðModelÞ
RMSE ðRandom WalkÞ ¼

P
teT

ðYt � ^
Y tÞ2P

teT

ðYt � Yt�1Þ2

2
64

3
75

1
2

Hence, if U < 1 means the estimated model performs better than random walk without a drift. On the other

hand, if U > 1, that means the estimated model underperforms random walk.(3) MAE

MAE ¼

P
teT

jYt � ^
Y tj

T

(4) FESD

FESD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1

X
teT

e2t

" #
� e�2

vuut here et ¼ Yt � Yt is the forecasting error

(5) RMSPE

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1

X
teT

ðYt � ^
Y tÞ2

jYtj

s

(6) MARD
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Besides magnitude measures, the directional measure is another important measurement for

evaluating the accuracy in direction prediction. In practice, the accuracy in direction is even

more important than in magnitude. We used the accuracy ratio in direction in two alternatives

(up or down) as the directional measure. As indicated by Curry et al. [11], the residual

correlation pattern is also an assessment for the forecasting ability of a model because a

model without serial correlation residuals in forecasting implies it performs better in

tolerating external disturbs. The Q statistic is considered to examine the existence of serial

correlation in forecasting residuals.

5. Empirical results

According to the modeling procedure just described, the AR(1), VAR(1), and LBVAR(1)

models are considered most effective for forecasting Taiwan’s photonics and semiconductor

industry. Seven variables are included in the VAR(1) and LBVAR(1) models for the photonics

industry, and two variables are covered in the VAR(1) and LBVAR(1) models for the

semiconductor industry. Detailed findings of the photonics industry in the AR, VAR, and

LBVAR models are illustrated in Fig. 3 and Table 4. Comparing the VAR(1) model and

AR(1) model, multivariate times series does not seem able to provide better prediction

because the VAR(1) model is less accurate than the AR(1) model. However, when we

consider the LBVAR models, both models (standard prior and low-weighted prior) show

excellent precision. The low-weighted prior LBVAR model, which hardly accounts for cross

impact, is less accurate than the standard prior LBVAR model as we anticipated. Such an

outcome validates that the existing industrial cluster indeed impacts Taiwan’s photonics

industry, and the related industries provide useful information for forecasting.

Fig. 3. The actual value and forecasting values of photonics Industry (1998:1–2000:1).
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In the semiconductor industry, the forecasting results are illustrated in Fig. 4 and Table 5. It

is noticeable that the standard prior LBVAR model outperforms the VAR model but

significantly underperforms the AR model. Two reasons explain this result: setting inappro-

priate hyperparameters or covering helpless variables in VAR and LBVAR models. Regarding

the first reason, we may use inappropriate hyperparameters (g and w) in an LBVAR

estimation but need to experiment more hyperparameters. However, the Litterman method

is inherently informative, and researchers need to try numerous hyperparameters to get the

best model. The latter reason means the causality between the semiconductor industry and

Fig. 4. The actual values and forecasting values of semiconductor industry (1998:1–2000:1).

Table 4

The performance of AR, VAR, standard LBVAR, and low-weighted LBVAR models for photonics industry

Criteria VAR(1) AR(1) Standard

prior

LBVAR(1)

Low-weighted

prior

LBVAR(1)

Magnitude RMSE 0.1348 0.1203 0.1116 0.1184

Theil U 1.1241 1.0034 0.9309 0.9875

MAE 0.1051 0.1054 0.0922 0.1041

RMSPE 0.0608 0.0533 0.0500 0.0525

MARD 0.0211 0.0208 0.0184 0.0206

FESD 0.1306 0.1134 0.1114 0.1121

Direction Accuracy in

direction (%) 62.5% 50% 50% 50%

Residual Serial correlation

of residual

(Q statistics)

No serial

correlation

No serial

correlation

No serial

correlation

No serial

correlation

‘‘Accuracy in direction ratio’’ indicates the ratio that the model predicts accurate direction in ‘‘up’’ or ‘‘down.’’

The serial correlation of residual is verified by Ljung–Box Q statistics of every lag under a=.05.
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other industries, provided by the pairwise Granger causality test, is ineffective for forecasting.

We attributed the latter reason to market globalization: over 40% of the total production of

Taiwan’s semiconductor industry is directly exported. However, the low-weighted prior

LBVAR model produces a more satisfactory outcome than the AR(1), so the LBVAR model

still ensures a better forecasting result.

Overall, the LBVAR model outforecasts corresponding VAR and AR models in both

industries. The Bayesian method is corroborated to be appropriate in small sample forecast-

ing, and the LBVAR forecasting method for technology industries is validated to be better.

However, the results of directional measure are similar in AR, VAR, and LBVAR models, so

there is no evidence for us to proclaim that the LBVAR model can foretell future direction.

6. Conclusions

In this paper, we utilized the LBVAR model to predict industrial production of technology

industries based on industrial clusters. In our two experiments, the development of Taiwan’s

photonics industry is proved to heavily rely on downstream and peripheral industries. The

downstream sectors include computer manufacturing and data terminal equipment industries

(ex. LCD monitor), and the peripheral sector is the data media industry (ex. compact disc).

Therefore, the industrial cluster in Taiwan has substantially contributed to the prosperity of

the photonics industry for the past decade. On the other hand, the semiconductor industry’s

development seems unaffected by other local industries in Taiwan. Such a circumstance may

be explicated by the worldwide market and specific business cycles. The predictive results of

the two industries show that the LBVAR model transcends the VAR and AR models in

magnitude measure using a rolling forecasting procedure. It was also found in the

semiconductor industry that the VAR prediction might underperform the naive AR model

Table 5

The performance of AR, VAR, standard LBVAR and Low-weighted LBVAR models for semiconductor industry

Criteria VAR(1) AR(1) Standard prior

BVAR(1)

Low-weighted

prior BVAR(1)

Magnitude RMSE 0.1073 0.0929 0.0975 0.0928

Theil U 0.8980 0.7775 0.8159 0.7764

MAE 0.0926 0.0702 0.0783 0.0701

RMSPE 0.0478 0.0413 0.0434 0.0413

MARD 0.0184 0.0139 0.0155 0.0139

FESD 0.1068 0.0873 0.0953 0.0873

Direction Accuracy in

direction (%) 75% 62.5% 75% 75%

Residual Serial correlation

of residual

(Q statistics)

No serial

correlation

No serial

correlation

No serial

correlation

No serial

correlation

‘‘Accuracy in direction ratio’’ indicates the ratio that the model predicts accurate direction in ‘‘up’’ or ‘‘down.’’

The serial correlation of residual is verified by Ljung–Box Q statistics of every lag under a=.05.
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if it covers helpless variables. It is concluded that when the main industry is dependent on

others, the standard prior LBVAR model is recommendable. Otherwise, lower-weighted prior

LBVAR model is preferable when the intended industry is independent of others.

Overall, the proposed LBVAR forecasts surpass VAR and AR forecasts. Furthermore, the

LBVAR model is capable of dynamic analysis in industrial clusters and performs superior

production prediction in magnitude. As a result, we have confidence in LBVAR forecasts for

industrial production based on industrial clusters, especially for technology industries.
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