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Quantum transport in the presence of a finite-range time-modulated potential
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Quantum transport in a narrow constriction and in the presence of a finite-range time-modulated potential is
studied. The potential takes the fovifx,t) = Vy60(x) 8(a—x)coswt), with a the range of the potential and
the transmission direction. Intrasubband transitions for the electrons and for arhiteagymade possible by
the finiteness in the potential range. Our results show that, as the chemical potertiedeases, the dc
conductances exhibits dip structures whep is at niw above the threshold energy of a subband. These
structures inG are found in both the smadl (a~X\) and the larga (a>\) regime. These dips are associated
with the formation of quasi-bound-states. Our results can be reduced to the limiting casé-pfoéile
oscillating potential when bot<<\ and Vya<1 are satisfied. The assumed form of the time-modulated
potential is expected to be realized in a gate-induced potential configuration.

[. INTRODUCTION trons by this time-modulated potential is both coherent and
inelastic.

Inelastic scattering processes in quantum transport have There is another reason why quantum transport in a NC in
drawn continuous attention in the recent past. One of théhe presence of a time-modulated, gate-induced potential is
common models used is to invoke a time-modulated poteninteresting. This is closely related to the density of state
tial, with a certain spatial profile, to the systéni. The (DOSY) structures in the NC. The energy levels in the NC are
model has also been extended to incorporate the inelastuantized into one-dimensional subbands so that the DOS is
effects due to phonons by introducing a time-modulated poSingular at the subband bottoms. In the presence of attractive
tential involving the phonon operatol$:'® These studies impurities, such singularities in the DOS lead to dip struc-
have demonstrated, among others, the interesting feedbaéies in the dc conductane®, as the chemical potential
effect of the inelastic scattering on the elastic channel. Eveiicreases’ **The dip structures occur whenis just below
though the above model is appropriate only for inelastic pro@ subband edge. According to Bagwélthese dip structures
cesses that preserve the phase coherence of the transmittidg associated with the formation of impurity-induced
particles, the model has practical importance because the cgliasi-bound-statés The wave function at this energy and
herent inelastic scattering can be realized, at least, in the cade this subband is evanescent along the longitudinal direc-
when the time-modulated potential is well specified. tion. Hence, for the case of an attractive impurity, a quasi-

A possible realization of the coherent inelastic scattering?ound-state splits off from each subbdfién electron origi-
processes in nanostructures is expected to be found in gatéally in a propagating state in other subband can thus be
controlled quantum point contact®PC’s, as shown in Fig. Scattered elastically into and be trapped by this quasi-bound-
1. A similar gate-induced potential configuration has beerftate. This gives rise to dip structuresGn
suggested by Gorelilet al,’® who considered microwave- The quasi-bound-state featuresGnare found also when
induced effects on the Josephson current through a narrofvPoint barrier oscillates in a NTIn this case, for a not-too-
constriction (NC). Their focus is on the resonance of the large oscillation amplitude, the dc conductar@eexhibits
microwave frequency with the energy levels of the Andreewdip or peak structures whem is atnfiw above a subband
bound states formed in the NC, which has both ends coredge. These structures correspond to the situation when the
nected to superconducting electrodes. For our purposes helectrons can make transitions, via inelastic processes, to the
a simple exhibition of the coherent inelastic scattering is exguasi-bound-state just below the subband edge. That there is
pected to be found readily in a normal state gate-controlled

QPC. Recent development in the split-gate technology has

made possible the fabrication of such gate-controlled

QPC's!*!® The split gates, when negatively biased, define Gate

electrostatically a NC on a two-dimensional electron gas
(2DEG). The dc quantum transport properties of these QPC 2DEG NC 2DEG

systems has been studied intensiVéff/ More recently, /7 ke
there is growing interest in the time-dependent properties, '
such as the effects of photons, in these QPC systérAslt

is thus legitimate to consider the quantum transport in a NC

that is acted upon by an additional, ac biased gate, as shown FIG. 1. Sketch of the gated QPC in which a narrow channel is
in Fig. 1. This ac biased gate, which is different from theconnected adiabatically at each end to a 2DEG electrode. The gate
split gates that define the NC, induces on the NC a timeinduces a finite-range time-modulated potential in the narrow con-
modulated potential. The scattering of the conduction elecstriction.
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quasi-bound-state, induced by the point oscillating barrierin the latter situation. The adiabatic turning on of the time-

below each subband edge is demonstrated by Bagwell ardkependent electric field is utilized to make a connection with
Lake’ from the energy poles in the current transmission cothe distribution of the electrons in the remote past. The
efficients. The existence of these quasi-bound-states is agaiifinite-range situation is different from the finite-range situ-

due to the singular DOS near a subband edge. It is importar@tion, both in the theoretical treatment and in the experimen-
to ask whether such quasi-bound-state feature@ jpersist ~ tal setting, but together they provide a complementary under-
in the case of a finite-range time-modulated potential. Thistanding to the time-dependent properties in QPC systems.

question has not been addressed before and if the quasi- N this work, the inelastic scattering is solved nonpertur-
bound-state features did persist in a finite-range time_batlvely and we find that even within the small-harmonic-

magnitude criterion the inelastic scattering has to be treated

modulated potential it will have important implications to eyond one sideband approximation. The sideband imdex
time- ndent properti f QP tems. Furthermor : ;
e-dependent properties of QPC systems. Furthermo i‘i‘:\bels those electrons whose net energy changé és. Fur-

since the potential is expected to be gate induced, the proby: L2
A : . hermore, our results can be reduced to the limiting case of a
lem is within reach of the recent experimental capability.

In this paper, we simplify the problem by assuming theg;grgglﬁsf?jglllatmg potential when bota<\ andVoa<1
gate-induced potential in the NC to be represented by the In Sec. Il we present the formulation for the inelastic

form Vo 6(x) 6(a—x)costt), wherea is the range of the gcatering and the connection of the current transmission co-
potential andx is the transmission direction. Our simplifica- gfficients with the conductancg. In Sec. Il we present
tion is in replacing the smooth longitudinal potential profile, nymerical examples illustrating the quasi-bound-state fea-
of which the potential builts up within a longitudinal distance yres in a finite-range time-modulated potential. Finally, Sec.
of order\, by an abrupt profile. The abruptness of the profile|y presents a conclusion.

is expected to do nothing but introduce additional multiple

scatterings between the two abrupt edges of the potential.

This results in additional harmonics @. Thus, for the case

when the magnitude of these harmonics is small, our results

are expected to resemble qualitatively the features in a II. THEORY

smooth profile potential. An explicit smooth-profile consid-  |n this section, the inelastic scattering problem is formu-

eration, however, is left to the further study. Using tisall-  |ated and the equations for the current transmission and re-

harmonic-magnituderiterion, we find the quasi-bound-state flection coefficients are obtained. The conducta@cis then

features inG in both the smalla (a~\) and the largea  expressed in terms of these coefficients.

(a>\) regime. The QPC is modeled by a NC connected adiabatically at
Our results show that intrasubband transitions for theeach end to a 2DEG. Hence the transmission of the electrons

electrons and for arbitrany are made possible by the finite- into or out of the NC region is adiabatfé The gate-induced

ness in the range of the time-modulated potential, whichpotential is assumed to affect only the NC region of the QPC.

breaks the longitudinal translation invariance in the narrowTherefore we need only to formulate the inelastic scattering

channel. With this understanding, we expect the quasiin the NC region. The NC is taken to have a quadratic trans-

bound-state features found in this paper to appear also in theerse confinement potentiajiyz. The gate-induced poten-

case of a time-dependent electric field, longitudinally ortial takes the finite-range time-modulated form

transversely polarized, as long as the field has a finite range.

The transversely polarized electric field gives rise to inter-

subband transitions, whereas the longitudinally polarized

electric field gives rise to intrasubband transitions. There are _ ) ) )

two important features associated with this finite-range con?/10Se connection with a smooth-profile potential has been

sideration. First, the range of the potential or the electric discussed in the preceding sect|(2)n2. _

field is assumed to be less than the phase-breaking length Choosing the energy unit* =7 °ki/2m*, the length unit

|, SO that the entire transmission process is coherent and c&h = 1/ke, the time unitt” =#/E*, andV, in units of E*,

be described by a time-dependent Sdimger equation. Sec- the dimensionless Schiimger equation becomes

ond, the two reservoirs at both ends of the narrow channel

can be taken to be free from the time-modulation effects so . g .

that the distribution of the incident electrons is well deter- [~ V2 wly? +V(X,D)]P(X,1) =i Yy @

mined. Thus the quantum transport in the presence of a

finite-range time-modulated potential or electric field can be ) ) ) )

cast into a Landauer-Biiker-type formalism. The conditions Hereke is a typical Fermi wave vector of the reservoir and

imposed by the above two features are within recent experi®” is the effective mass. The transverse energy levels are

mental capabilities because the phase-breaking ldpgtan quantized, withe,=(2n+1)w, and ¢,(y) the wave func-

be made sufficiently long by lowering the temperature. tion. The f|n|te—rapge _t|me—modulated pot.entlal is uniform in
The conditions are different, however, for the case wherfhe transverse direction and does not induce intersubband

the time-dependent potential or the electric field is of infinitefransitions, leaving the subband indexinchanged. Thus for

range and covers the entire syst&&? The major difference @ Nth subband electron incident alongand with energy

between the finite-range and the infinite-range situations i#. the scattering wave function can be written in the form

that the reservoirs are affected by the time-dependent field¥ ! (X,t) = ¢q(y) ¥(x,t), wheré*

V(x,t)=V,6(x) 8(a—x)cog wt), (h)
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.
eikn(#)xe*i#t_kz rn(m)efikn(l’«+mw)xe7i(l“‘+mw)t if x<0
m
px={ 2 [Ip(Volw)e '] f de[An(e)en( 9+ B (e)e (e if 0<x<a 3
p
2 t,(m)ekn(s+mo)xg=i(u+mo)t if x>a
m

andn,m are the final subband and sideband indices, respec-

tively. The effective wave vector for an electron with energy  2Kn(14) 8mo= 2 [An(m")K (m,m”)

e and in the nth subband is given by m’

ky(g)=Ve—(2n+1)w,. The sideband indem corresponds +By(m")K, (mm")]In-m (Volw), (7)

to the net energy change ofh o for the outgoing electrons. . , , ,
It is very important to note that had the length of the NCWhere Ky (m,m’) =kq(u+mo) £kq(u+m’w). Equations

been infinite and the range of the potentiéfix,t) extended (5)—(7) can be shown explicitly to reduce to the correspond-

to cover the entire NC, the longitudinal wave veckyy N9 equations for thej-profile time-modulated potential in

. . 35
would be a good quantum number so thatreal transiton ~ thea—0 limit.

could have occurred. However, as long\g,t) has a finite The zero-temperature conductance is given by
range,k, is no longer conserved angal transitions from N

k.(e) to kn(stmw) are _pe_rmitted _for electrons traversi_ng G=(2e2/h)2 G, (®)
the potential. Thus the finiteness in the range of the time- n=0

modulated potential alone makes possible the absorption of . . .
energy by the electrons for arbitragy. This picture holds WwhereN+1 is the number of propagating subbands in NC

R ; rm
regardless of the range, long or short, and the profile, abru;;?r t.he (?hemlcal potentiak. HereGn=EmGn and the sum-
or smooth, of the potential. The mathematical statement olpathn is over alim such thatk”(.'“J.r mw).|s real. The con-
the above physical picture turns out naturally and is given b nbutlo_n to G from electro_ns incident in msubba-mi gnd
Eq. (4) in the following. transmitted into sidebanih is denoted byG,' and is given

The expressions for the reflection and the transmissioRY
coefficients can be obtained from matching the wave func- m_ 2
tions and their derivatives at the two ends gf the finite-range G =[kn( s+ me)/kn(p)][ta(m)]*. ©
time-modulated potential. For the above matching to hold ifSolving Egs. (5—(7), we obtain t,(m), A,(m), and
all time, the integration variable in Eq. (3) has to take on  B,(m), from which the current reflection coefficient(m)
discrete valuesu*mw. Hence we can writeéA,(e) and  can be calculated,
B,(€) in the form

(M) =2 [An(m’) +Bn(M") JIn—m (Vo/ @) = 5o

ﬁn(e)=§ F (M) 8(e— u—Mmw), 4) (10)

We solve the coefficients,(m) andt,(m) exactly, in the

whereF (¢) refers to eithe,(e) or B,(¢). After perform- ~ numerical sense, by imposing a large enough cutoff to the
ing the matching and eliminating the current reflection coef-Sideband index. The correctness of our procedure is checked

ficients r,(m), we obtain the equations relating,(m),  adainst the conservation of current condition, given by
B,(m), and the current transmission coefficietyym), kot mo) , .
> [ta(m)P+]ra(mP1=1. (1D

o ) m Kn( )
to(m)=2, [Ay(m’)e Kn(mm)a
m IIl. NUMERICAL RESULTS

N a—iK (mm) f ;
+Bp(m')e” (MM, (Volw),  (5) We calculate, in the following, the conductanGeof a

NC acted upon by a finite-range time-modulated potential.
The finite-range time-modulated potential does not induce

Kn(p+ mw)tn(m)=2 Kn(tm @)[Ay(m')e”Kn (MM iniarsubband transitions and so each occupied subband con-
m tributes independently to the total conductance. Thus it suf-
_ Bn(mr)efiK:(m,m’)a] fices for our purposes here to present the conductance of only
one subband, which we take to be the lowest one.
XIm—m'(Volw), (6) In this section, the behavior & with respect to the

chemical potentiak is studied. Sinc& depends also on the
and potential rangea and the oscillating amplitudd/,, we
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state features because the electron with energfycain make
04— _ a transition to the subband edge by giving up an energy
We note also that, in general, for largéy, the structure at
02— — X=1+2AX are more evident. This is the situation when the
c electron can emit an energy ofs2and makes a transition to
00 | | | [ | — the subband edge. The wavelength of the electron decreases
08 1.0 12 14 16 18 20 as X increases. The relation is given by
X N=27/\2w,(X—1). At the location of the first dip, when
X=1.2, we have\=53. Thus, near the first dip, the potential
FIG. 2. Conductanc& as a function ofX for potential range  range is reasonably long, with=2.8\.
a=150 and frequency»=0.014. The potential oscillating ampli- Besides the quasi-bound-state features, there are harmonic
tudes are a,Vo=0.016; b, V;=0.012; andc,V,=0.008. The  stryctures. These structures are smaller for the lowger
curves are vertically offset for clarity. The dip structures atThat these harmonics are associated with the multiple scat-
X_:_ 1.2 are due to the quasrbound-_s_tate when the electrons, aft?éring between the abrupt edges of the potential can be iden-
giving away an energy, make transitions to a subband edge. We o from a resonance relation=2a/n, with n a positive
;‘(O_tel:;Zt’X for.thl"zrie_rg%’ the quas"pguntd'sme features  atj ieqer. Correspondingly, the harmonic peaks are at
- Wi =".<, are more evident. Xp=1+AX,, with AX,=(nm/a)% (2w,). According to the
above estimate, the first five harmonic peaks are at
present the behavior d& in four situations. First, thiss X,=1.006, 1.025, 1.056, 1.1, and 1.16, which correspond
behavior is shown foa fixed while varyingV,. Second, the quite reasonably to those in Fig. 2. However, ¥or 1.2, the
G behavior forV, fixed while a varying is presented. The harmonic peaks correspond more closelyXte 1.2+ AX,,.
third situation is to compare th€ behavior for different This can be explained as follows. The harmonics for
w. Finally, we present the time-averaged spatial distributiorX>1.2 are contributed mostly from those electrons that give
for the scattering state whose incident energy is very close taway an energy of» so that the harmonics at are at
the quasi-bound-state structure. 1.2+AX,,. We also see that the harmonic amplitudes are
In our numerical examples, the NC is taken to be that in &ssentially smaller than the dip structureXat 1.2, thus sat-
high-mobility GaAs-ALGa; ,As with a typical electron isfying our small-harmonic-amplitude criterion. From this re-
densityn~2.5x 10'* cm™~? andm* =0.067m,. Correspond-  sult, we expect the quasi-bound-state features to be evident
ingly, we choose an energy urlit* =%2k2/(2m*)=9 meV, in a smooth-profile time-modulated potential.
a length unita*=1k=79.6 A, and a frequency unit In Fig. 3, G is plotted againsK whena=62. The wave-
w*=E*/h=13.6 THz. We also takev,=0.035, such that length of the electron at the occurrence of the first dip is
the effective NC width is of the order of 3QA. In the fol- A =53 so thala=1.2\ and the case corresponds to that of a
lowing, in presenting the dependence@®fon w, it is more  small potential range. The harmonics are essentially sup-
convenient to plotG as a function ofX instead, where pressed folVy=0.003, with a very narrow dip aX=1.2.
X=[(#/wy)+1]/2. The integral value oK is the number of But atV,=0.012, when the harmonics are barely emerging,
propagating channels. a new dip structure is developed>at 1.4 while the first dip
In Fig. 2 G is plotted againsK for a=150, whileVy is  structure is widened. Both dip structures are quite evident. At
varying. The frequency is taken to be 0.014, whose energy V,=0.024, the harmonic amplitudes become very large.
interval w corresponds to an intervalX= w/(2w,)=0.2 on  Similar arguments used for Fig. 2 can be applied here to
the ordinate. The threshold, or the subband edge, is atlentify the harmonic peak locations, but we do not repeat
X=1. We note that a major dip structure occursXat1.2, the details here.
which corresponds tX—AX=1. This is the quasi-bound- In Fig. 4, we fixV, at 0.012 while varyinga. We note
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FIG. 4. Conductanc& as a function ofX for V,=0.012 and FIG. 5. Conductancé& as a function ofX for long potential

rangea= 200 andV,=0.012. The frequencies are ay=0.014; b,
®©=0.028; and ¢, ®=0.042. The curves are vertically offset for
8Iarity. We can see that the quasi-bound-state features are still very
clear fora=6.5\, at X=1.6, as shown in curve ¢, when thmall-
harmonic-magnituderiterion is satisfied.

0=0.014. The interaction ranges are a=150; b, a=100; and

¢, a=50. The curves are vertically offset for clarity. For larger
the dip structures become more pronounced, while the widths of th
dips are narrower.

that thea=50 result, which corresponds to the case\,

exhibits the emerging effects of the harmonics and the dips assumed to be incident from the left-hand side of the time-
structures are very shallow. Interestingly, for largethe dip  modulated potential so that the charge density has a spatial
structures become more pronounced while the widths of thescillation in the incoming(sourcg region but not in the
dips are narrower. The oscillation amplitudes of the harmontransmitteddrain) region. Furthermore, the higher probabil-
ics remain essentially of the same order. From the results dfy density near the two edges of the finite-range time-
Figs. 2—4, we conclude also that the harmonic amplitude ifmodulated potential shows that the quasi-bound-state pro-
G is very sensitive to/, but much less so to the potential cesses take place more frequently within a distance of order
rangea. \ from the edges of the profile or at which the spatial varia-

In Fig. 5, we present the case far=200,V,=0.012, and tion in the potential occurs. Using this result, the spatial pro-
different  values. In curvea, the dip structures are sub- file of the time-modulated potential in Fig. 2, curgecan be
jected to the effect of the harmonics, since at the dip locatioriaken to be adiabatic. This is because We-0.008 is much
the harmonic amplitude is not that small. However, forless than the transverse energy level spaciag,2which is
curvesb andc, the harmonic amplitudes are very small nearequal to 0.07. The dip structure is quite evident even in this
the location of the dip. We point out also that the electronsituation. This demonstrates that dip structures are expected
wavelengths\ near the dip structure in the curvbsandc, to be evident even in a time-modulated potential with an
are 37.6 and 30.7, respectively. Thus, for example, in curv@diabatic spatial profile.
¢, a=6.5\ and we are in the very long potential range re-
gime. The quasi-bound-state features are still very clear.

In Fig. 6, we plot the time average of the scattering state
spatial probability density for a=200, V,=0.012, We have solved nonperturbatively the quantum transport
»w=0.028, andX=1.399. The dip location is &=1.4. Our in a NC and in the presence of an abrupt-profile time-
choice of the parameters is near the occurrence condition @fodulated potential. The scattering process is both inelastic
the quasi-bound-state. The probability density shows the evand coherent. We find quasi-bound-state features in all po-
nescent nature of the trapped electron. This is demonstratdential ranges, including both the long- and the short-range
by the exponential tails, at both edges of the potential, whichiegimes. The dip structures associated with the quasi-bound-
decay into the regions away from the potential. The electrorstate occur wheru is at miw above the threshold of a

IV. CONCLUSION
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supplement our arguments in light of the similarity and the
difference between the two potential profiles. The abrupt-
profile time-modulated potential and the smooth-profile
time-modulated potential are similar in that they both break
the longitudinal translational invariance. This allows the
electrons to absorb or emit energy in unitskab, for arbi-

trary w. Consequently, the electrons can make transitions,
via inelastic processes, to the quasi-bound-state just beneath
a subband edge, giving rise @ to dip structures. A conclu-
sion drawn from this similarity between the two profiles is
that inelastic processes leading to quasi-bound-state features
are permitted in both of the profiles.

These two potential profiles are different, however, in that
the abrupt-profile potential introduces additional multiple
scatterings between the two abrupt edges of the potential and
gives rise to harmonics is. Due to these additional mul-

Dl Ll Ll L tiple scatterings, the electrons effectively stay longer within
000 200 00 o 10 200 300 400 500 the abrupt-profile time-modulated potential region than
X within the smooth-profile time-modulated potential region.

As a result, the quasi-bound-state features in the former po-

FIG. 6. Time-averaged probabili]y(x,t)|2) as a function of tential profile might be perturbed, being either enhanced or
the longitudinal ~ positon x. The parameters are suppressed. By proposing a small-harmonic-magnitude crite-
a=200, V(=0.012, »=0.028, andX=1.399. The probability rion, we attempt to look at cases where the perturbation from
density peaks near the two edges of the time-modulated potential, siie harmonics to the quasi-bound-state features is small. In
x=0 and 200, which shows that the quasi-bound-state processgRese cases, when the features of the two profiles are ex-

take place more frequently within a distance of ordefrom the  pected to be similar qualitatively, the quasi-bound-state fea-
edges of the profile or at which the potential has spatial variationsyres are found.

subband edge. We find also that the inelastic processes occur In_%oncllésion, t?e coherent finelr;s_tic scatteringdand thg
more likely in the region when the potential profile varies quasi-bound-state features are found in a NG, acted upon by

spatially. In addition, from the results we have not shown2" abrupt-profile time-modulated potential. The fea;ure:; are
here, we find that a one-sideband approximation, in generafifduéd to appear in the case of a smooth-profile time-
violates the conservation of current requirement. Our result OdP'ated potential, in part!cular, ke are expected to affect
show that the violation of the current conservation is serioudn® time-dependent properties of NC, in general.
not only near the first dip structureXé 1+ AX) but also in
all the lower incident energy region &X<1+AX).

We have presented arguments for the implications of our This work was partially supported by the National Sci-
abrupt-profile time-modulated potential results to that of aence Council of the Republic of China through Contract No.
smooth-profile time-modulated potential. We summarize andNSC85-2112-M-009-015.
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