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Quantum transport in a narrow constriction and in the presence of a finite-range time-modulated potential is
studied. The potential takes the formV(x,t)5V0u(x)u(a2x)cos(vt), with a the range of the potential andx
the transmission direction. Intrasubband transitions for the electrons and for arbitraryv are made possible by
the finiteness in the potential range. Our results show that, as the chemical potentialm increases, the dc
conductanceG exhibits dip structures whenm is at n\v above the threshold energy of a subband. These
structures inG are found in both the smalla (a;l) and the largea (a@l) regime. These dips are associated
with the formation of quasi-bound-states. Our results can be reduced to the limiting case of ad-profile
oscillating potential when botha!l and V0a!1 are satisfied. The assumed form of the time-modulated
potential is expected to be realized in a gate-induced potential configuration.

I. INTRODUCTION

Inelastic scattering processes in quantum transport have
drawn continuous attention in the recent past. One of the
common models used is to invoke a time-modulated poten-
tial, with a certain spatial profile, to the system.1–9 The
model has also been extended to incorporate the inelastic
effects due to phonons by introducing a time-modulated po-
tential involving the phonon operators.10–13 These studies
have demonstrated, among others, the interesting feedback
effect of the inelastic scattering on the elastic channel. Even
though the above model is appropriate only for inelastic pro-
cesses that preserve the phase coherence of the transmitting
particles, the model has practical importance because the co-
herent inelastic scattering can be realized, at least, in the case
when the time-modulated potential is well specified.

A possible realization of the coherent inelastic scattering
processes in nanostructures is expected to be found in gate-
controlled quantum point contacts~QPC’s!, as shown in Fig.
1. A similar gate-induced potential configuration has been
suggested by Goreliket al.,9 who considered microwave-
induced effects on the Josephson current through a narrow
constriction ~NC!. Their focus is on the resonance of the
microwave frequency with the energy levels of the Andreev
bound states formed in the NC, which has both ends con-
nected to superconducting electrodes. For our purposes here,
a simple exhibition of the coherent inelastic scattering is ex-
pected to be found readily in a normal state gate-controlled
QPC. Recent development in the split-gate technology has
made possible the fabrication of such gate-controlled
QPC’s.14,15 The split gates, when negatively biased, define
electrostatically a NC on a two-dimensional electron gas
~2DEG!. The dc quantum transport properties of these QPC
systems has been studied intensively.16,17 More recently,
there is growing interest in the time-dependent properties,
such as the effects of photons, in these QPC systems.18–23 It
is thus legitimate to consider the quantum transport in a NC
that is acted upon by an additional, ac biased gate, as shown
in Fig. 1. This ac biased gate, which is different from the
split gates that define the NC, induces on the NC a time-
modulated potential. The scattering of the conduction elec-

trons by this time-modulated potential is both coherent and
inelastic.

There is another reason why quantum transport in a NC in
the presence of a time-modulated, gate-induced potential is
interesting. This is closely related to the density of state
~DOS! structures in the NC. The energy levels in the NC are
quantized into one-dimensional subbands so that the DOS is
singular at the subband bottoms. In the presence of attractive
impurities, such singularities in the DOS lead to dip struc-
tures in the dc conductanceG, as the chemical potentialm
increases.24–32The dip structures occur whenm is just below
a subband edge. According to Bagwell,25 these dip structures
are associated with the formation of impurity-induced
quasi-bound-states.25 The wave function at this energym and
in this subband is evanescent along the longitudinal direc-
tion. Hence, for the case of an attractive impurity, a quasi-
bound-state splits off from each subband.25An electron origi-
nally in a propagating state in other subband can thus be
scattered elastically into and be trapped by this quasi-bound-
state. This gives rise to dip structures inG.

The quasi-bound-state features inG are found also when
a point barrier oscillates in a NC.5 In this case, for a not-too-
large oscillation amplitude, the dc conductanceG exhibits
dip or peak structures whenm is at n\v above a subband
edge. These structures correspond to the situation when the
electrons can make transitions, via inelastic processes, to the
quasi-bound-state just below the subband edge. That there is

FIG. 1. Sketch of the gated QPC in which a narrow channel is
connected adiabatically at each end to a 2DEG electrode. The gate
induces a finite-range time-modulated potential in the narrow con-
striction.
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quasi-bound-state, induced by the point oscillating barrier,
below each subband edge is demonstrated by Bagwell and
Lake5 from the energy poles in the current transmission co-
efficients. The existence of these quasi-bound-states is again
due to the singular DOS near a subband edge. It is important
to ask whether such quasi-bound-state features inG persist
in the case of a finite-range time-modulated potential. This
question has not been addressed before and if the quasi-
bound-state features did persist in a finite-range time-
modulated potential it will have important implications to
time-dependent properties of QPC systems. Furthermore,
since the potential is expected to be gate induced, the prob-
lem is within reach of the recent experimental capability.

In this paper, we simplify the problem by assuming the
gate-induced potential in the NC to be represented by the
form V0u(x)u(a2x)cos(vt), where a is the range of the
potential andx is the transmission direction. Our simplifica-
tion is in replacing the smooth longitudinal potential profile,
of which the potential builts up within a longitudinal distance
of orderl, by an abrupt profile. The abruptness of the profile
is expected to do nothing but introduce additional multiple
scatterings between the two abrupt edges of the potential.
This results in additional harmonics inG. Thus, for the case
when the magnitude of these harmonics is small, our results
are expected to resemble qualitatively the features in a
smooth profile potential. An explicit smooth-profile consid-
eration, however, is left to the further study. Using thissmall-
harmonic-magnitudecriterion, we find the quasi-bound-state
features inG in both the smalla (a;l) and the largea
(a@l) regime.

Our results show that intrasubband transitions for the
electrons and for arbitraryv are made possible by the finite-
ness in the range of the time-modulated potential, which
breaks the longitudinal translation invariance in the narrow
channel. With this understanding, we expect the quasi-
bound-state features found in this paper to appear also in the
case of a time-dependent electric field, longitudinally or
transversely polarized, as long as the field has a finite range.
The transversely polarized electric field gives rise to inter-
subband transitions, whereas the longitudinally polarized
electric field gives rise to intrasubband transitions. There are
two important features associated with this finite-range con-
sideration. First, the rangea of the potential or the electric
field is assumed to be less than the phase-breaking length
lf so that the entire transmission process is coherent and can
be described by a time-dependent Schro¨dinger equation. Sec-
ond, the two reservoirs at both ends of the narrow channel
can be taken to be free from the time-modulation effects so
that the distribution of the incident electrons is well deter-
mined. Thus the quantum transport in the presence of a
finite-range time-modulated potential or electric field can be
cast into a Landauer-Bu¨ttiker-type formalism. The conditions
imposed by the above two features are within recent experi-
mental capabilities because the phase-breaking lengthlf can
be made sufficiently long by lowering the temperature.

The conditions are different, however, for the case when
the time-dependent potential or the electric field is of infinite
range and covers the entire system.19,22The major difference
between the finite-range and the infinite-range situations is
that the reservoirs are affected by the time-dependent fields

in the latter situation. The adiabatic turning on of the time-
dependent electric field is utilized to make a connection with
the distribution of the electrons in the remote past. The
infinite-range situation is different from the finite-range situ-
ation, both in the theoretical treatment and in the experimen-
tal setting, but together they provide a complementary under-
standing to the time-dependent properties in QPC systems.

In this work, the inelastic scattering is solved nonpertur-
batively and we find that even within the small-harmonic-
magnitude criterion the inelastic scattering has to be treated
beyond one sideband approximation. The sideband indexn
labels those electrons whose net energy change isn\v. Fur-
thermore, our results can be reduced to the limiting case of a
d-profile oscillating potential when botha!l andV0a!1
are satisfied.

In Sec. II we present the formulation for the inelastic
scattering and the connection of the current transmission co-
efficients with the conductanceG. In Sec. III we present
numerical examples illustrating the quasi-bound-state fea-
tures in a finite-range time-modulated potential. Finally, Sec.
IV presents a conclusion.

II. THEORY

In this section, the inelastic scattering problem is formu-
lated and the equations for the current transmission and re-
flection coefficients are obtained. The conductanceG is then
expressed in terms of these coefficients.

The QPC is modeled by a NC connected adiabatically at
each end to a 2DEG. Hence the transmission of the electrons
into or out of the NC region is adiabatic.33 The gate-induced
potential is assumed to affect only the NC region of the QPC.
Therefore we need only to formulate the inelastic scattering
in the NC region. The NC is taken to have a quadratic trans-
verse confinement potentialvy

2y2. The gate-induced poten-
tial takes the finite-range time-modulated form

V~x,t !5V0u~x!u~a2x!cos~vt !, ~1!

whose connection with a smooth-profile potential has been
discussed in the preceding section.

Choosing the energy unitE*5\2kF
2/2m* , the length unit

a*51/kF , the time unitt*5\/E* , andV0 in units ofE* ,
the dimensionless Schro¨dinger equation becomes

@2¹21vy
2y21V~x,t !#C~xW ,t !5 i

]

]t
C~xW ,t !. ~2!

HerekF is a typical Fermi wave vector of the reservoir and
m* is the effective mass. The transverse energy levels are
quantized, with«n5(2n11)vy andfn(y) the wave func-
tion. The finite-range time-modulated potential is uniform in
the transverse direction and does not induce intersubband
transitions, leaving the subband indexn unchanged. Thus for
a nth subband electron incident alongx̂ and with energy
m, the scattering wave function can be written in the form
Cn

1(xW ,t)5fn(y)c(x,t), where
34
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c~x,t !55
eikn~m!xe2 imt1(

m
r n~m!e2 ikn~m1mv!xe2 i ~m1mv!t if x,0

(
p

@Jp~V0 /v!e2 ipvt#E de@Ãn~e!eikn~e!x1B̃n~e!e2 ikn~e!x#e2 i et if 0,x,a

(
m

tn~m!eikn~m1mv!xe2 i ~m1mv!t if x.a

~3!

andn,m are the final subband and sideband indices, respec-
tively. The effective wave vector for an electron with energy
« and in the nth subband is given by
kn(«)5A«2(2n11)vy. The sideband indexm corresponds
to the net energy change ofm\v for the outgoing electrons.

It is very important to note that had the length of the NC
been infinite and the range of the potentialV(x,t) extended
to cover the entire NC, the longitudinal wave vectorkn
would be a good quantum number so that noreal transition
could have occurred. However, as long asV(x,t) has a finite
range,kn is no longer conserved andreal transitions from
kn(«) to kn(«6mv) are permitted for electrons traversing
the potential. Thus the finiteness in the range of the time-
modulated potential alone makes possible the absorption of
energy by the electrons for arbitraryv. This picture holds
regardless of the range, long or short, and the profile, abrupt
or smooth, of the potential. The mathematical statement of
the above physical picture turns out naturally and is given by
Eq. ~4! in the following.

The expressions for the reflection and the transmission
coefficients can be obtained from matching the wave func-
tions and their derivatives at the two ends of the finite-range
time-modulated potential. For the above matching to hold in
all time, the integration variablee in Eq. ~3! has to take on
discrete valuesm6mv. Hence we can writeÃn(e) and
B̃n(e) in the form

F̃n~e!5(
m

Fn~m!d~e2m2mv!, ~4!

whereF̃n(e) refers to eitherÃn(e) or B̃n(e). After perform-
ing the matching and eliminating the current reflection coef-
ficients r n(m), we obtain the equations relatingAn(m),
Bn(m), and the current transmission coefficientstn(m),

tn~m!5(
m8

@An~m8!e2 iKn
2

~m,m8!a

1Bn~m8!e2 iKn
1

~m,m8!a#Jm2m8~V0 /v!, ~5!

kn~m1mv!tn~m!5(
m8

kn~m1m8v!@An~m8!e2 iKn
2

~m,m8!a

2Bn~m8!e2 iKn
1

~m,m8!a#

3Jm2m8~V0 /v!, ~6!

and

2kn~m!dm05(
m8

@An~m8!Kn
1~m,m8!

1Bn~m8!Kn
2~m,m8!#Jm2m8~V0 /v!, ~7!

where Kn
6(m,m8)5kn(m1mv)6kn(m1m8v). Equations

~5!–~7! can be shown explicitly to reduce to the correspond-
ing equations for thed-profile time-modulated potential in
thea→0 limit.35

The zero-temperature conductance is given by

G5~2e2/h! (
n50

N

Gn , ~8!

whereN11 is the number of propagating subbands in NC
for the chemical potentialm. HereGn5(m8Gn

m and the sum-
mation is over allm such thatkn(m1mv) is real. The con-
tribution to G from electrons incident in subbandn and
transmitted into sidebandm is denoted byGn

m and is given
by

Gn
m5@kn~m1mv!/kn~m!#utn~m!u2. ~9!

Solving Eqs. ~5!–~7!, we obtain tn(m), An(m), and
Bn(m), from which the current reflection coefficientr n(m)
can be calculated,

r n~m!5(
m8

@An~m8!1Bn~m8!#Jm2m8~V0 /v!2dm0 .
~10!

We solve the coefficientsr n(m) and tn(m) exactly, in the
numerical sense, by imposing a large enough cutoff to the
sideband index. The correctness of our procedure is checked
against the conservation of current condition, given by

(
m

8
kn~m1mv!

kn~m!
@ utn~m!u21ur n~m!u2#51. ~11!

III. NUMERICAL RESULTS

We calculate, in the following, the conductanceG of a
NC acted upon by a finite-range time-modulated potential.
The finite-range time-modulated potential does not induce
intersubband transitions and so each occupied subband con-
tributes independently to the total conductance. Thus it suf-
fices for our purposes here to present the conductance of only
one subband, which we take to be the lowest one.

In this section, the behavior ofG with respect to the
chemical potentialm is studied. SinceG depends also on the
potential rangea and the oscillating amplitudeV0 , we
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present the behavior ofG in four situations. First, thisG
behavior is shown fora fixed while varyingV0 . Second, the
G behavior forV0 fixed while a varying is presented. The
third situation is to compare theG behavior for different
v. Finally, we present the time-averaged spatial distribution
for the scattering state whose incident energy is very close to
the quasi-bound-state structure.

In our numerical examples, the NC is taken to be that in a
high-mobility GaAs-AlxGa12xAs with a typical electron
densityn;2.531011 cm22 andm*50.067me . Correspond-
ingly, we choose an energy unitE*5\2kF

2/(2m* )59 meV,
a length unit a*51/kF579.6 Å, and a frequency unit
v*5E* /\513.6 THz. We also takevy50.035, such that
the effective NC width is of the order of 103 Å. In the fol-
lowing, in presenting the dependence ofG on m, it is more
convenient to plotG as a function ofX instead, where
X5@(m/vy)11#/2. The integral value ofX is the number of
propagating channels.

In Fig. 2G is plotted againstX for a5150, whileV0 is
varying. The frequencyv is taken to be 0.014, whose energy
intervalv corresponds to an intervalDX5v/(2vy)50.2 on
the ordinate. The threshold, or the subband edge, is at
X51. We note that a major dip structure occurs atX51.2,
which corresponds toX2DX51. This is the quasi-bound-

state features because the electron with energy atX can make
a transition to the subband edge by giving up an energyv.
We note also that, in general, for largerV0 , the structure at
X5112DX are more evident. This is the situation when the
electron can emit an energy of 2v and makes a transition to
the subband edge. The wavelength of the electron decreases
as X increases. The relation is given by
l52p/A2vy(X21). At the location of the first dip, when
X51.2, we havel553. Thus, near the first dip, the potential
range is reasonably long, witha.2.8l.

Besides the quasi-bound-state features, there are harmonic
structures. These structures are smaller for the lowerV0 .
That these harmonics are associated with the multiple scat-
tering between the abrupt edges of the potential can be iden-
tified from a resonance relationl52a/n, with n a positive
integer. Correspondingly, the harmonic peaks are at
Xn511DXn , with DXn5(np/a)2/(2vy). According to the
above estimate, the first five harmonic peaks are at
Xn.1.006, 1.025, 1.056, 1.1, and 1.16, which correspond
quite reasonably to those in Fig. 2. However, forX.1.2, the
harmonic peaks correspond more closely toX51.21DXn .
This can be explained as follows. The harmonics for
X.1.2 are contributed mostly from those electrons that give
away an energy ofv so that the harmonics atX are at
1.21DXn . We also see that the harmonic amplitudes are
essentially smaller than the dip structure atX51.2, thus sat-
isfying our small-harmonic-amplitude criterion. From this re-
sult, we expect the quasi-bound-state features to be evident
in a smooth-profile time-modulated potential.

In Fig. 3,G is plotted againstX whena562. The wave-
length of the electron at the occurrence of the first dip is
l553 so thata.1.2l and the case corresponds to that of a
small potential range. The harmonics are essentially sup-
pressed forV050.003, with a very narrow dip atX51.2.
But atV050.012, when the harmonics are barely emerging,
a new dip structure is developed atX51.4 while the first dip
structure is widened. Both dip structures are quite evident. At
V050.024, the harmonic amplitudes become very large.
Similar arguments used for Fig. 2 can be applied here to
identify the harmonic peak locations, but we do not repeat
the details here.

In Fig. 4, we fixV0 at 0.012 while varyinga. We note

FIG. 2. ConductanceG as a function ofX for potential range
a5150 and frequencyv50.014. The potential oscillating ampli-
tudes are a,V050.016; b, V050.012; and c, V050.008. The
curves are vertically offset for clarity. The dip structures at
X51.2 are due to the quasi-bound-state when the electrons, after
giving away an energyv, make transitions to a subband edge. We
note that, for largerV0 , the quasi-bound-state features at
X5112DX, with DX50.2, are more evident.

FIG. 3. ConductanceG as a function ofX for the case of a small
potential rangea562, while the potential oscillating amplitudes are
V050.003, 0.012, and 0.024, respectively. The frequencyv is the
same as in Fig. 2. The harmonic features become significant for
V050.024.
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that thea550 result, which corresponds to the casea.l,
exhibits the emerging effects of the harmonics and the dip
structures are very shallow. Interestingly, for largera, the dip
structures become more pronounced while the widths of the
dips are narrower. The oscillation amplitudes of the harmon-
ics remain essentially of the same order. From the results of
Figs. 2–4, we conclude also that the harmonic amplitude in
G is very sensitive toV0 but much less so to the potential
rangea.

In Fig. 5, we present the case fora5200,V050.012, and
different v values. In curvea, the dip structures are sub-
jected to the effect of the harmonics, since at the dip location
the harmonic amplitude is not that small. However, for
curvesb andc, the harmonic amplitudes are very small near
the location of the dip. We point out also that the electron
wavelengthsl near the dip structure in the curvesb andc,
are 37.6 and 30.7, respectively. Thus, for example, in curve
c, a.6.5l and we are in the very long potential range re-
gime. The quasi-bound-state features are still very clear.

In Fig. 6, we plot the time average of the scattering state
spatial probability density for a5200, V050.012,
v50.028, andX51.399. The dip location is atX51.4. Our
choice of the parameters is near the occurrence condition of
the quasi-bound-state. The probability density shows the eva-
nescent nature of the trapped electron. This is demonstrated
by the exponential tails, at both edges of the potential, which
decay into the regions away from the potential. The electron

is assumed to be incident from the left-hand side of the time-
modulated potential so that the charge density has a spatial
oscillation in the incoming~source! region but not in the
transmitted~drain! region. Furthermore, the higher probabil-
ity density near the two edges of the finite-range time-
modulated potential shows that the quasi-bound-state pro-
cesses take place more frequently within a distance of order
l from the edges of the profile or at which the spatial varia-
tion in the potential occurs. Using this result, the spatial pro-
file of the time-modulated potential in Fig. 2, curvec, can be
taken to be adiabatic. This is because theV050.008 is much
less than the transverse energy level spacing 2vy , which is
equal to 0.07. The dip structure is quite evident even in this
situation. This demonstrates that dip structures are expected
to be evident even in a time-modulated potential with an
adiabatic spatial profile.

IV. CONCLUSION

We have solved nonperturbatively the quantum transport
in a NC and in the presence of an abrupt-profile time-
modulated potential. The scattering process is both inelastic
and coherent. We find quasi-bound-state features in all po-
tential ranges, including both the long- and the short-range
regimes. The dip structures associated with the quasi-bound-
state occur whenm is at m\v above the threshold of a

FIG. 4. ConductanceG as a function ofX for V050.012 and
v50.014. The interaction ranges are a,a5150; b, a5100; and
c, a550. The curves are vertically offset for clarity. For largera,
the dip structures become more pronounced, while the widths of the
dips are narrower.

FIG. 5. ConductanceG as a function ofX for long potential
rangea5200 andV050.012. The frequencies are a,v50.014; b,
v50.028; and c, v50.042. The curves are vertically offset for
clarity. We can see that the quasi-bound-state features are still very
clear fora.6.5l, atX51.6, as shown in curve c, when thesmall-
harmonic-magnitudecriterion is satisfied.
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subband edge. We find also that the inelastic processes occur
more likely in the region when the potential profile varies
spatially. In addition, from the results we have not shown
here, we find that a one-sideband approximation, in general,
violates the conservation of current requirement. Our results
show that the violation of the current conservation is serious
not only near the first dip structure (X511DX) but also in
all the lower incident energy region (1<X<11DX).

We have presented arguments for the implications of our
abrupt-profile time-modulated potential results to that of a
smooth-profile time-modulated potential. We summarize and

supplement our arguments in light of the similarity and the
difference between the two potential profiles. The abrupt-
profile time-modulated potential and the smooth-profile
time-modulated potential are similar in that they both break
the longitudinal translational invariance. This allows the
electrons to absorb or emit energy in units of\v, for arbi-
trary v. Consequently, the electrons can make transitions,
via inelastic processes, to the quasi-bound-state just beneath
a subband edge, giving rise inG to dip structures. A conclu-
sion drawn from this similarity between the two profiles is
that inelastic processes leading to quasi-bound-state features
are permitted in both of the profiles.

These two potential profiles are different, however, in that
the abrupt-profile potential introduces additional multiple
scatterings between the two abrupt edges of the potential and
gives rise to harmonics inG. Due to these additional mul-
tiple scatterings, the electrons effectively stay longer within
the abrupt-profile time-modulated potential region than
within the smooth-profile time-modulated potential region.
As a result, the quasi-bound-state features in the former po-
tential profile might be perturbed, being either enhanced or
suppressed. By proposing a small-harmonic-magnitude crite-
rion, we attempt to look at cases where the perturbation from
the harmonics to the quasi-bound-state features is small. In
these cases, when the features of the two profiles are ex-
pected to be similar qualitatively, the quasi-bound-state fea-
tures are found.

In conclusion, the coherent inelastic scattering and the
quasi-bound-state features are found in a NC, acted upon by
an abrupt-profile time-modulated potential. The features are
argued to appear in the case of a smooth-profile time-
modulated potential, in particular, and are expected to affect
the time-dependent properties of NC, in general.
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