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The properties of the Weyl invariant black hole and its implications are studied. The calculation 
shows that there is no hair, up to a gauge choice, for a Weyl gauge field outside the event horizon 
of a black hole in the Weyl invariant limit. We also show that a scalar field will remain constant 
once the scale symmetry is broken spontaneously by the well-known Higgs potential. As a result, 
classical hair for the Weyl vector meson and scalar measuring field vanishes strictly in the presence 
of a spontaneously symmetry-breaking potential. Hence the no-hair theorem holds both in the Weyl 
invariant limit and the symmetry-breaking phase, 

PACS number(s): 04.70.Bw, 04.20.Jb, 04.50.-th 
I. INTRODUCTION 

The no hair theorem [l-4] has long been known as a 
conjecture in black hole physics. Evidence indicates that 
classical hair, except the electric charge Q, the gravi- 
tational mass M and the angular momentum J, cannot 
possibly survive beyond the event horizon of a black hole. 
For a more complete review, see Ref. [5]. Indeed, it was 
shown, for example, that the no-hair theorem holds for a 
neutral meson U, and neutrino fields interacting with a 
classical source on a Schwarzschild background [6,7] as 
well as a class of higher spin systems in a nonspherical 
gravitational collapse [8,9]. 

Another approach has been made, for example, in 
showing [3, lo-121 that the geometry of the stationary 
rotating black hole is axisymmetric with an event hori- 
zon topologically homeomorphic to S2 x R’. It was then 
shown [13, 141 that the Kerr solution is the only type 
of solution to a black hole with a nondegenerate event 
horizon. 

There does not, however, exist a model-independent 
final proof for the no-hair theorem. Therefore, we are 
going to discuss, specifically, the possibility of generating 
a classical hair in the Weyl (local scale) invariant model 
in this paper. 

Evidence also indicates that scale symmetry has to do 
with the physics in many areas of interest. Therefore, the 
Weyl invariant model deserves more investigation. Hence 
we propose to study the implication of the Weyl symme- 
try in the formation of a massive black hole. Note that 
the Weyl invariant model is designed to replace all dimen- 
sionful coupling constants with dynamical field variables. 

In short, we will show that classical hairs for the scalar 
field 4 and the Weyl vector meson S, will not survive, 
up to a gauge choice, beyond the event horizon unless 
the Weyl vector meson is massless, an unphysical model 
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as we will discuss briefly later in this paper. We will 
also argue that classical scalar hair may have a chance to 
survive if the symmetry is broken topologically. Hence 
we will also discuss possible effects with the presence of 
a symmetry-breaking potential. It turns out that the 
scalar field has to remain constant if V # A@/8 due to 
a nontrivial constraint. Hence the no-hair theorem does 
hold in both cases. Possible implications will be discussed 
too. 

This paper will be organized as follows: (1) in Sec. II, 
we will briefly review some properties of the Weyl invari- 
ant model; (2) in Sec. III, we will show how to obtain 
field equations in the unitary gauge; various constraints 
due to the presence of an event horizon will also be ana- 
lyzed; (3) in Sec. IV, we will show the no-hair theorem 
in the unitary gauge; (4) the effects of a spontaneous 
symmetry-breaking (SSB) potential and all other inter- 
esting implications will be discussed in Sec. V; (5) for 
completeness, we will also discuss the black hole solu- 
tion in the massless limit; (6) finally, in Sec. VII, we 
will present .some concluding remarks. The convention 
and the redundancy due to the Bianchi identity will be 
summarized in the Appendix. 

II. WEYL INVARIANT MODEL 

Weyl proposed the Weyl invariant action (15-191 

s = 

J [ 

&x&7 -+$=l? - ;g~“v,lpv”(fl 

-$P - +F~~F~” 

I 
(1) 

Here fi is the Weyl invariant scalar curvature obtained 
by replacing apgoD with Vpgap = (a, + 2S,)gap in the 
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definition of the Christoffel symbol; namely, it is obtained 
by replacing r;, with l& = gg@(V,g,, + V,g,p - 
Vpg,,y) in the definition of R. Hence 

i? = R + 6(D, + S,,)S’, (2) 

accordingly. Furthermore, V,4 = (8, - S,)4, Ffiu = 
a,,$ - &S,,, with S, denoting the Weyl gauge connec- 
tion. It is known that the action (1) is invariant under 
the Weyl transformation 

9;” = ‘p29A‘“> (3) 

4’ = v’4, (4) 
s;=s,-a,ln~. (5) 

Here ‘p = p(s) is the gauge parameter. Note that one can 
gauge away the coordinate dependence of the scalar field 
6 completely by choosing cp = 4/40, with 4. denoting a 
nonzero constant. It is also noted that if 4 vanishes in 
some gauge, then it will vanish in all gauges. Therefore a 
trivial 4 is very different from all nontrivial field values. 

Note that we will adopt the signature specified by 

7 ,,” = diag(-l,l,l,l) as the Minkowski metric. The 
definition of the curvature tensor can be read off from 

[D,, &l-h = R6xv,Aa (6) 

directly. Furthermore, the Ricci tensor R,, E R’,,A and 
the scalar curvature R E g’“R,,. 

It is known that all coupling constants in this theory 
have to be dimensionless. Therefore 2/e@ and X44/8 
represent the well-known gravitational constant and cos- 
mological constant, respectively. Hence e, X, and all other 
coupling constants are all dimensionless by construction. 

Note that the scale transformation is meant to scale 
all dynamical fields according to its mass dimension. It 
is easy to show that r is invariant under this transfor- 
mation-since it is of the form g,.Vg,.. Hence 421? + 
‘pw44’R, similar to @gpy. Hence it is scale invariant as 
fi + @&j under the same transformation. It is also 
straightforward to show that each term in the action (1) 
is scale invariant on its own. Hence the E parameter is 
nothing more than a free parameter that has been useful 
in numerical studies. 

III. FIELD EQUATIONS 

One can obtain the equation of motion for the action 
(1) from the variational principle with respect to g,,v and 
other fields. The grw equation will be slightly complicate 
due to the presence of the 4’R and D,Sp couplings. We 
will show briefly how to derive it in a covariant form. 
Note that it is straightforward to show that 

Here rll = l$,gxy and note that, in writing terms such as 

an:,, we have imagined that br;,, Jr, and 6gPw are 
tensors of type T(l, 2), T(0, l), and T(O,2) respectively. 
Of course, they are not tensors. But writing Eqs. (7) 
and (8) as if they are proper tensors will undoubtedly 
simplify the algebraic structure of the above equations. 

Therefore, one can easily show that 

,,$4’g’“6R,, = ,,‘j [g“yD,Da42 - D’D”42] Jg,,, 

(10) 
after ignoring all total derivative terms. Hence the grv 
equation can be shown to be 
~ 
-V”4VY4 - F’=F”, - g’“l = E 4’Rfi” - 34(S“D”4= + S”D”&) + 6S’S”4= + D’,,“& 

-g’“(D242 + 3D,Se42 + 3SeD,42)]. (11) 
Furthermore, the S, and 4 equations of motion can be 
derived by varying the action (1) with respect to S, and 
4, respectively. After some algebra, one has 

D,Fp” = (1 + 6e)4Vp4, (12) 

D,D’4 = c4R + (1 + 6~)4(D, + S,)S’ + ;4? (13) 

Since the system is Weyl invariant, one can freely 
choose a unitary gauge such that 4 = 40, with 40 de- 
noting an arbitrary constant. One would expect that the 
action is thus reduced to the form 

so=-JRf+R+~+~s;:+*], (14) 

upon setting (c/2)&~ = 1, A = (X/8)4& and writing 
rn2 = (6~+ 1)4& Note that rn is used to denote the mass 
of the Weyl vector meson. 

It is not clear at this moment if the action (14) can be 
considered as a complete and effective action by itself. 
One has to show first that Eqs. (ll)-(13) are identical 
to the variational equations obtained from the effective 
action (14). 

Note also that we have, however, dropped a term 
proportional to J d%fiD,S’ in bringing the action to 
the form specified by So given above since ,+GjD,P = 
iY,,(,/&P); namely, we have dropped a surface term. This 
surface term will bring us a constraint on S,,. It turns 
out, however, that this term will not affect the equation 
of motion of the system. Indeed, one can easily show that 
equations of motion derived from varying the action (14) 
with respect to g-0 and S, are identical to Eqs. (11) and 
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(12) in the unitary gauge 4 = 40. Indeed, one finds that 
Eqs. (ll)-(13) become 

G,, = ~F~,F,= + $s,s” + igrvLCo, (15) 

D,F’” = m’S”, (16) 

R= +(D, + SJS“ - 24 (17) 

in the unitary gauge. Here G,, z igrvR - R,, is the 

Einstein tensor, and LO = -$F” - ASP -A denotes 
the Lagrangian density of S, and A in the unitary gauge. 
By taking the trace of Eq. (15) one obtains, however, 

R = -+S, - 2A. (18) 

Therefore one has, from comparing with Eq. (17)> 
D,S“ = 0 as promised. Note this constraint also follows 
from the covariantly differentiating equation (16). Hence 
one concludes that the action (14) can be considered as 
an effective action on its own. 

Moreover, the extra mass term is of course a very 
unique feature of the Weyl vector meson. One might 
suspect that if one tries to tune the parameter E such 
that rn = 0, namely, by setting E = -l/6, the effective 
action (14) may be equivalent to the action of the elec- 
tromagnetic field. We will show shortly that this is not 
true by noting that rn2 = 0 will require that E = -l/6 
which will turn a graviton into a ghost field. 

Note that the action (14) is effectively, in the unitary 
gauge, the massive Proca gauge field minimilly coupled 
to gravity with a cosmological constant term. A similar 
model has been studied with a method relying on the 
Green’s function’ [7,8, 141. We will try to show clearly 
what the effect of the mass term is in the proof of the 
no-hair theorem in the unitary gauge. We will also show 
clearly why a monopole configuration cannot exist due to 
the constraint D,P = 0, a reflection of the dropped-out 
surface term. Our argument, different from the previous 
proof, will rely on this nontrivial constraint. 

Note also that our theory is not exactly the Proca the- 
ory ‘minimally coupled to gravity. They are equivalent 
only in the unitary gauge. Moreover, due to the special 
coupling, the mass of the massive Weyl vector m&on is 
expected to be of the order of the Planck scale [19]. And 
the scalar hair may survive, as we shall argue shortly, 
if the scale symmetry is broken topologically with non- 
trivial boundary conditions. Furthermore, S,, is the Weyl 
vector meson for the connection responding to the scale 
transformation. It is not the same gage connection re- 
sponding to the conventional phase transformation. 

We will study the effect of the Weyl gauge connection 
S,, near a spherically symmetric black hole. Therefore, 
one will assume the spherically symmetric ansatz 

‘We were informed of the work of Ref. [7] after this paper 
was completed. 
ds’ E g,&zadxb = -eza(‘)dt2 + ezB(“)dr2 + ?dCl, (19) 

3, = SIA(T) = (P(~),f(~)>O?O)> (20) 

in spherical coordinates. Here d0. is the solid angle. 
Moreover, rp(r) and f(v) are both real functions of T. 
One can show that the constraint equation D,SJ‘ = 0 
becomes 

&(e”-“T”s~(T)) = 0, 

in spherically symmetric space. Hence one has 

(21) 

ST(r) = const x r2. (22) 

We will argue that the regularity requirement on S, will 
demand the vanishing of S,. This can be done by ob- 
serving the behavior of an infalling test particle near the 
event horizon of a black hole. 

Indeed, given a test particle running on the geodesic 
parametrized by its proper length, i.e., I* = z”(s), the 
geodesic equation reads [20] 

dV” 
ds + r:avuv- = 0. 

Here V’ = dz’/ds is the four-velocity of the test particle. 
In the case of a radially infalling test particle, i.e., V” = 
(Vt, VT, O,O), one finds 

V’ = v,,-=a, (24) 

from the s equation. Here V, E Vt(r = co) is an 
integration constant. Hence, one has 

V’ = flV,]e-A-B(l + V-2e2A)‘/2, rn (25) 

due to the fact that V,Vp = 1. Therefore one has, from 

dt = &dy, 

At = (26) 

Here At is the coordinate time the test particle needs to 
fall from T to TH. Note that we have assumed that a 
horizon exists at T = TX. Once one gets close enough to 
T = ~8, the integral can be expanded as a power series in 
(7 -TB), namely, eBmA K (v - TH)O, while 1 + ezaV$ = 
1 + l/(VtVm) remains finite as one approaches TH. In 
fact, Vt is expected to slow down exponentially near TH. 
Here we keep only the leading power which is enough for 
our purpose. Note that eBmA has to go to infinity at 
T = ~8 in order that a horizon can exist. Thus one easily 
finds that a = -(l + 60) with e. > 0. In other words, 

&-B cx (T - TH)l+-. (27) 

Note that the boundary condition PA = 03 is not 
acceptable as any regular physical field value. Hence the 
regularity of S, derimnds, from Eq. (22), that S, = 0. 
Therefore the only nonvanishing Weyl gauge connection 
is St = (P(T). Hence the only nonvanishing field strength 
Fpv is Ft, accordingly. 

In fact, the only nonvanishing F,,y component is F,., = 
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‘p’ in spherically symmetric space specified by Eq. (20). 
The S, component cannot show up in F,, as the sys- 
tem is assumed to be static. Equation (22) shows that a 
black hole exists in a fully consistent manner that the S, 
component should decouple completely. Note also that 
a monopole of the form F = 2Q,(r) sinBd8 A dq cannot 
satisfy Eq. (16) in the massive limit. Indeed, D,F@“’ 
can be shown to vanish identically in the presence of 
the monopole field tensor given above. Therefore, the 
monopole term cannot survive in the massive limit. 

IV. NO-HAIR THEOREM IN THE 
UNITARY GAUGE 

Note that, by using the equation 

[Q, D,]A, = RpwpAo (28) 

and the identity D,S” = 0, one can reduce Eq. (12) to 
the form 

(D,W)S, + R”,S~ = TnZS”. (29) 

Therefore, one has 

a2sp =ds,, (30) 

asymptotically, since gPv + Q” as T + ca. Hence Eq. 
(30) indicates that 

Zip+, (31) 

at spatial infinity. This indicates that the no-hair theo- 
rem for the Weyl vector meson may have to do with the 
presence of the mass term. This is a common feature of 
massive gauge fields. We will discuss the role played by 
the mass term shortly. 

Defining S, = J dr&C, as the effective action for p, 
one finds 

(32) 

Here we have denoted &A as A’ while ,& q T%*+~ 
denotes the radially relevant part of 9. Also cc, G 
-F2/4 - (m2/2)S~. Note that in defining the effective 
action S,, we have ignored the irrelevant angular part as 
well as the t integral. The field Eq. of cp can be obtained 
either by varying S, or by solving Eq. (16) directly. It is 
easy to show that both ways give the same result. That 
is the reason we say S, represents the effective action of 
A, B, and cp. After some algebra, one finds 

[ 
,z9’e-A-B]’ = ,Z,Z,B-a(+ 

(33) 

Equation (33) can be rearranged as 

[,2,-a-“99’]’ = p-a-B$p + ,z,z,B-a9z, 
(34) 

Upon integrating Eq. (34) by JFz dr, the left-hand side 

(LHS) of Eq. (34) becbmes a surface term while the RHS 
of Eq. (34)‘is a positive integral. One can hence reach 
the conclusion (o = ‘p’ = 0 provided that the LHS of Eq. 
(34) vanishes. Indeed, its LHS 
A-yop’l; (35) 

can be shown to vanish by noting that ?‘p’p’ + r-2--26, 
This is because the regularity of S, demands ‘p + r-tma, 

and hence (D’ -+ r-9-’ accordingly at spatial infinity. 
Note that in the absence of the mass term, the regularity 
only requires that (o’ + r-i+& and hence ‘p -+ r-$+6 ac- 
cordingly. Therefore, ?‘p~p’ + yez6 in the massless limit. 
Here 6 is a small positive constant. In both cases rn = 0 
01‘ rn # 0, the contributions from the infinity vanish ac- 
cordingly. Note that the expression f(r) + T-~*~ means 
that the function f(r) goes to 0 slower (+) or faster (-) 
than T-“’ at spatial infinity. Here 2n is an integer. 

Moreover, the regularity of S, at TH gives 

&-A-BlvH <co, (36) 

&?AITH <ca. (37) 

Careful analysis shows that ‘p21vH -+ (? - VH)‘+” with 
~1 > E,, from Eq. (37). Hence I&, + (r - rH)-:+%. 

Therefore, PI++,, --t (v -TH)-. Furthermore, Eq. (36) 
indicates that e--A--BIv,, + (T--TH)~+<z with e1 +E~ 2’0. 
Hence ~$e-~-~[,., + (r - r~)l+~l+~z. Therefore, one 
finds that 

’ we --A-B~v,, = 0. (33) 

Hence the LHS of the Eq. (34) vanishes as promised. 
Note, however, that this means that 

4= ti(~MO, (39) 
s, = a, lIlti (40) 

are black hole solutions of the system too. Therefore one 
concludes that there is no hair, up to a gauge choice, for 
massive Weyl gauge fields. 

Hence the only solution of the Weyl invariant model is 

s,=o, (41) 

+=40, (42) 

in the unitary gauge. Therefore, the rest of the equations 
of motion become 

x 2 
G,u = - &ogru. (43) 

The solution to above equation is the well-known 
Schwarzschild solution with a cosmological constant. 
Hence one concludes that there is no classical hair, up 
to a gauge choice, for the scalar measuring field and the 
Weyl vector meson. Note that choosing a different gauge 
will in general turn on a gauge hair. This is, however, 
not a physical hair in the scale invariant limit. 

V. NO-HAIR THEOREM 
WITH A SPONTANEOUSLY 

SYMMETRY-BREAKING POTENTIAL 

A nontrivial physical hair may survive if the scale sym- 
metry is broken, dynamically or topologically. As a re- 
sult, the field values of 4 at the event horizon may be 
different from its value at the spatial infinity if they are 
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frozen at different values topologically. Indeed, if one as- 
sumes that 4(m) # +(TH), similar to a spring with fixed 
ends assuming different energy states at each end, then 
a nontrivial hair has to exist in order to compromise the 
gauge choice. One has to admit that it is not clear how to 
realize the symmetry-breaking effect appropriately. One 
popular way to break the symmetry is to introduce the 
Higgs potential. A similar model has also been studied 
in its application to cosmology [21]. One hopes that the 
scalar field may have to take a nontrivial value in order 
to compromise the symmetry-breaking effect. This does 
not, however, turn out to be the case if one adopts a 
Higgs mechanism to achieve SSB. 

Note that the sPv equation and S, equation of the 
system in the presence of a symmetry-breaking potential 
V can be shown to be the same as Eqs. (11) and (12) 
except that one should replace the $r$” term with V in 
Eq. (11). Moreover, the 4 equation becomes 

D&Y‘4 = e$R + (1 + 6+(D, + S,)S’ + +V. (44) 

It is then straightforward to compute the trace of Eq. 
(11) which gives 

V”4VP4+4V = -c(~~R+~c,@S~+~D~&~S.D~~). 

(45) 

Comparing it with the 4 equation (44), one finds that 

;(l+ ~E)D“(V,&) = 4% - 4V. (46) 

Note that Eq. (46) becomes 

8V 
(1+6+&,S = 4V - 4% do [ 1 (47) 

if 4 = 40. If V = X44/8, one then reproduces the result 

DJ” = 0, (46) 

in the unitary gauge. Note that one also has a current 
conservation law from Eq. (12): namely, 

D,D,F“” = 0 = ;(I+ GE)D’V,@. (49) 

Equations (46) and (49) hence show that 

XJ 

4w =4ic 
(50) 

If one wishes to study the effect of a small symmetry- 
breaking potential term such as 

v = $(42 - .y, (51) 

Eq. (50) will simply demand that 

xvy$b2 - 2) = 0. (52) 

Hence one has Xv2 = 0 or 4’ = u’. Note that X = 0 
represents the V = 0 case, while vu2 = 0 represents the 
scale invariant limit V = Xd4/8. These two cases do not 
represent the deviated effect we wish to study. 
Therefore, one has 4’ = w2 in the presence of the SSB 

potential. This indicates that the only solution to the 
SSB Weyl model is the same as the solution of the Weyl 
invariant model in the unitary gauge with 40 = 3x1. 
Hence one has A = V(4 = 40) = 0. Note that the 
equation of motion for the metric sPv now reads 

Grv = 0, (53) 

in the broken phase. We will present the solution to 
above equation for completeness. Note that the Gtt and 
G,, equations become 

l-2rB’-P=o, (54) 
1 + 2rA’ - ezB = 0. (55) 

Hence (54) and (55) give 

(A+B)‘=O. (56) 

Hence A + B =const. Let A + B = k with k denoting 
the constant. Equation (55) then becomes 

2rB’ = I- eZB, (57) 

which can be solved to give 

e--ZB = 1 - e. 
T (56) 

Here e is an integration constant too. Hence 

.p = ,k I- e (59) 
( > T 

Note that the Weyl invariant system can only admit the 
above solution in the unitary gauge. In general, one can 
impose a constraint by requiring & --t 1 at spatial in- 
finity. Hence one has 

p = I- t?!? 
T ’ @Y 

p= 1-E , 
( > 

-1 

T (61) 

with M denoting the gravitational Amowitt-Deser- 
Mimer (ADM) mass. Note that, in contrast to the Weyl 
invariant model, there is no gauge degree of freedom in 
the symmetry-breaking model here. Hence there is no 
classical hair for the Weyl vector meson and the scalar 
measuring field even if a symmetry-breaking term is in- 
troduced. In short, our result presents further evidence 
of the no-hair theorem. 

VI. THE MASSLESS LIMIT 

Note that one can directly solve the equation of (0 and 
obtain 

@-eB 
q’=constxF, (62) 

in the massless limit where E = -l/6. Hence the regular- 
itv of F,.., onlv reauires eA+= I -. ” - being reaular. In other IrH -- 
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words, eA+Bl,,fl < rn. Therefore the value of 1p at the 

horizon does not need to vanish. Indeed, when E = -l/6, 
the action (1) becomes 

plus a surface term. Note that, in the massless limit, 
the Weyl gauge connection decoupled completely. This 
is because the action (63) is known to be Weyl invariant 
since the combination @R/l2 - D,c$D”$J/~, is scale in- 
variant by itself. Also note that, to be a physical theory 
of gravitons, one should write the action (63) as 

S~Sd4r~(-~0’R+~DpmDP~+~a’+%), 

(64) 

in order that the gravitational constant remain positive. 
This turns, however, 4 and S, into ghost fields with nega- 
tive kinetic energy. Although this is not a physical model 
any longer, similar systems have been studied by Beken- 
stein [22]. Therefore, we will proceed to obtain its solu- 
tion for completeness. 

By choosing the unitary gauge 4 = &, one finds that 
the action (64) becomes 

S= d%& -&?R+ +++J:+ 7 J 1 1 (65) 

Hence the equation of motion becomes 

G,v = -& 
[ 
F,“Fva - &F2 1 + &h (66) 

DpP” = 0. (‘37) 

Here A q X&/8 as usual. 
It is then straightforward to find that D,F“” = 0 gives 

ax- 
ZA-2B$q + e-2A-ZB A’ ( +B’+Q=o, (68) 

which can be integrated directly. The result is 

F,, = %?,A+, 
T2 . (69) 

Here Q is the Weyl charge associated with the Weyl vector 
meson. Note that the grv equation (66) now reads 

G,v = -@pv -Ag,,), (70) 
0 

with ‘2’,, = A.@ and Z’,., = -4:,‘,. 
Hence one has the Gtt and GTv equations 

1 - 2rB’ - e2B = & (2$ +*P) 28, (71) 

1 + 2rA’ - .e? = & (;~+A++? (72) 

Note that one can follow a similar procedure, as in the 
massive case, to find 

Note also that one can of course make an arbitrary gauge 
transformation to obtain all gauge equivalent solutions. 
Moreover, the above solution is similar to the Reissner- 
Nordstrom solution except that the Weyl vector meson 
is not quite like the Maxwell photon. 

VII. CONCLUSION 

We have studied the general properties of a Weyl in- 
variant model in the presence of the black hole event 
horizon. We have also shown that there is no hair, up 
to a gauge choice, for the scalar measuring field 4 and 
the massive Weyl vector meson S, in the scale invariant 
limit. It was also argued that nontrivial hair may ex- 
ist if the scale symmetry is broken topologically. Once 
a symmetry breaking term is introduced, it was shown, 
however, that ,$ has to be equal to one of the roots of 
the algebraic equation (50). For example, 4 = fv if the 
SSB potential V = $(@ - v’)” is introduced. Hence 
4 hair cannot exist once the symmetry is broken in this 
way. Possible and interesting implications have also been 
discussed. 

In summary, we have shown that the classical hair of 
r$ and S, cannot survive, up to a gauge choice in the 
scale invariant limit, whether the local scale symmetry is 
broken or not. The only chance is to break the symme- 
try topologically, although it is not clear how to realize 
different constraints imposed at the horizon or at spatial 
infinity. We also present the black hole solution in the 
massless limit, an unphysical model as it turns out. 
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APPENDIX: NOTATION AND REDUNDANCY 

Note that the curvature tensor Rf,,(g,,) used in this 
paper is defined by the equation 

[D,, D,]A, = Rp,,,Ap, (Al) 

i.e., Rf,, = -&J?~v - I$& - (v tt a). Here l?:, is 
the Christoffel symbol or spin connection of the covariant 
derivative, namely, D,A, E L?,A, - r;,A,. To be more 

specific, r;, = ;s*p(a,gp, + avg,, - Bpg,,). Here we 
use p, v, a = 0, 1,2,3 and i, j, Ic = 1,2,3 to denote time- 
space and spatial indices, respectively. The Ricci tensor 
is defined as R,, z R& and the scalar curvature is 
defined as R z R,,gp”. Note that our definition of R,,” 
is the same as the one in Ref. [20]. 

Note that the only nonvanishing spin connections, in 
the spherically symmetric space specified by Eq. (19), 
are 
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r:, = A’, 

qt = A'&-), 

r:, =B', 

r;, = -@%, 

r b = r& sin’e, 

r$=r$= A 
7' 

I?$+ = - sin tl cos 0, 

r$4=cot6. 

W) 

(A3) 

(A4) 

(A5) 

G46) 

L47) 

C-48) 

(Ag) 

Therefore the only nonvanishing rp = r;, and rM = 

r:pg+ are 

r,=(A+B)'+f, W) 

re=cote, (All) 

r'=e-2"(B'-A'-f), (A14 

.P=-$cote. W3) 

Note that the Ricci curvature tensor is given by the equa- 
tion 

R,, = -a,r;,+a,r, -r;,r, +r;&,. (~14) 

Hence one has 

Rtt =&--B) 
( 

-A” + A’B’ - A’2 - ;A/ 
> 

, 6415) 

&, = A” - A’B’ f Al2 - 25 6416) 

Roe = e-2B(1 + TA’ - TB’) - 1, (A17) 

R++ = Ros sin’ 6, (‘418) 

as all the nonvanishing F&ci curvature components. 
Moreover, the scalar curvature is defined as R t R,,g@v. 
Therefore, one has 

RE‘J-~~ A//-A~B/+A'"+~(A'-n')+f 
[ 1 -;, 

C-
The Einstein tensor is defined as G,, = igrvR - R,,. 
Hence one can list all nonvanishing Einstein tensor corn- 
ponents: 
419) 

Gtt = $2A[1 + e-2B(2d3’ - l)], L4W 

G,, = $1 + 2rA’ - eZB), C-421) 

Go0 = ~‘e-‘~ 
[ 
A” - A’B’ + A” + ;(A’ - B’) 1 , kW 

Go+ = Gee sin’ 6. (A23) 

Note that the field equation obtained by varying the met- 
ric can always be written as the form 

G,v = T,.w. 

This equation can be rewritten as 

(A24) 

&y z G,, - TV” = 0. (A25) 

One knows that some of the ten equations in ctiv = 0 

are redundant in many cases due to the fact DUG,, = 0. 
Here D”G,, = 0 is the Bianchi identity and D”T,,y = 
0 is the on shell energy-momentum tensor conservation 
law. Therefore, one should find out what parts of the 
equations are redundant before one sets out to solve the 
equations of motion. This can be done by noting that 
DPG,,, = 0 becomes 

aQ+:,, = rW:,,+r;,@,. PW 

Because &WV # 0 only when /L = Y, one then finds 

av2:,,=r~G:,, +IY:,@~ +r:,&,, (~27) 

e-a,&, = eCzB (-A’ - ;) &, - e-2AA’&, (A28) 

G++ = sin’ 0&s, b-9) 

in the space with a metric given by Eq. (19). Note that 
Eq. (A28) indicates that G:,, = 0 will imply & = 0. On 
the contrary, Eq. (A28) only implies 

a,(e%JG:,,) = 0 (A30) 

if fZ?t, = 0. Hence Gtt = 0 merely implies 

A 
ti:,, = const x 5. 6431) 

Moreover, Eq. (A29) indicates that e,++ and &, are 
related to each other linearly. Hence one should manage 
to solve either the combinations of equations (a) G,, = 0 

and GOB = 0 or (b) G:,, = 0 and (?+m = 0 since Gtt is in 

fact redundant, but &, = 0 is not redundant. 
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