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Induced Einstein-Kalb-Ramond theory and the black hole 
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A four-dimensional induced Einstein-Kalb-Ramond theory with a conformally coupled Kalb- 
Ramond term is discussed. It is argued that the Kalb-Ramond field is difficult to interpret as 
an axion field from a dynamical point of view, and hence tends to be unstable. One can, however, 
apply Routh’s method to extract an effective action for the axion field. It is found that the Kalb- 
Ramond hair will turn the event horizon into a naked singularity. Such an exact solution is found 
and analyzed carefully. 

PACS number(s): 04.‘70.Bw, 04SO.+h 
The ten-dimensional Einstein-Kalb-Ramond action [l] 
has attracted a lot of activity lately. The Kalb-Ramond 
action is -iF’ where the Kalb-Ramond field strength 
F ok is the curvature tensor for the Kalb-Ramond field 
A,b. Defining a three-form [Z] F E Fobcdza A dx” A drc 
and a two-form A = A.sds” A dxb, the formal relation 
between Feac and Aab can be read off directly from the 
definition F = dA. 

The Kalb-Ramond action has been applied to study its 
implications to the inflationary process [l, 31 and black 
hole formation [4]. It has been discussed in its original 
ten-dimensional model as well as a four-dimensional trun- 
cation. The well-known no-hair theorem claims that the 
only possible hairs outside the event horizon of a black 
hole are mass, gauge charge, and angular momentum. It 
is found, however, that an axion hair [5] can exist outside 
the event horizon of a black hole. A nonminimal coupling 
of the Kalb-Ramond action inspired by superstring the- 
ory also appears to admit an axion hair. 

In this paper, we are going to discuss the dynamics 
induced by the Kalb-Ramond term in four dimensions. 
Note that, in four dimensions, the Kalb-Ramond field can 
be written as F,I,, = e,bdTd with the help of the totally 
skew symmetric type T(O,4) Levi-Civita tensor eabed and 
some type T(l, 0) contravariant vectbr Td due to the fact 
that Fe& is a totally skew symmetric type T(O,3) ten- 
sor. Note that F and T(= Tad?) are in fact dual forms, 
namely, *F = -6T such that all degrees of freedom have 
been taken into account. By solving the equations of 
motion, one can show that T = dx if the first homology 
group [6] of the spacetime manifold M is trivial, namely, 
HI(M) = 0. The x field has long been considered as 
an axion field. One will argue that it is in fact difficult 
to interpret the Kalb-Ramond field solution as an effec- 
tive pseudoscalar axion field from the dynamical point of 
view. It can, however, be interpreted as an axion field 
through Routh’s method [7] in a nontrivial way. At any 
rate, the axion field tends to be unstable and seems to 
vanish in some models. This point has been discussed 
previously in some inflationary models. It is speculated 
that the generic nature of instability tends to tune the 
Kalb-Ramond contributions in the post-inflationary era 
into a negligible fate. 

On the other hand, scale invariance is one of the key 
symmetries in obtaining the low energy effective action 
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for the massless string [s] mode. It is also important in 
many effective field theories such as the nonlinear c which 
has been rather successful in describing low energy nu- 
cleonic interactions. Some even proposed that the global 
scale, invariance should be gauged 191. Note that QCD 
is also known to be scale invariant since the action of 
the matter fields and gauge fields is scale invariant as all 
coupling constants are dimensionless by construction. 

Therefore, in this paper, we are going to study a fow- 
dimensional induced gravity model with a Kalb-Ramond 
field conformally coupled to the metric and scalar field. 
Hopefully, there is a chance that the induced Kalb- 
Ramond term will be able to generate nontrivial hair for 
the Kalb-Ramond field and the scalar measuring field in 
the presence of the black hole event horizon. The action 
is 

S-=-/d%,& e?R + j$%+%,&p 

+v(~) + +~F,~.F~~c], (1) 

with conformally coupled Kalb-Ramond field strength. 
Note that we have written @ as e’ for convenience. Here 
4 denotes a real scalar measuring field in a sense that 
the proper scale invariant metric should be defined as 
dZZ z evg,bdxadxb. One notes that the 4 + -4 symme- 
try has been removed in this simplified expression which 
will reduce unnecessary complications in our discussions. 
Moreover, E is a dimensionless coupling constant. 

Note that the equation of motion for the Kalb-Ramond 
field can be shown to be 

8 a (~e-vF”bc) = 0, (2) 

which can be rewritten as *d(e-VT) = 0 in the language 
of differential form. Hence, one can show that the solu- 
tion to the Kalb-Ramond field is 

Fate = 
1 

-&,h&d%, 
24 

(3) 

if HI(M) = 0. Note that Eq. (3) is the solution to the 
complete Euler-Lagrange equation (2) of Aa*. It appears 
that we are left with one degree of freedom f3 undeter- 
mined since other equations do not appear to contribute 
any constraint on 0. One can, however, show that there 
is a nontrivial Bianchi identity D,G”” = 0 which will 
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add a constraint on 0 and resolve the underdetermined 
puzzle. 

It is straightforward to find that the Bianchi identity 
can also be shown to give 

D,(eaae) = 0, 

after some algebra. 

(4) 

Equivalently, the remaining degree of freedom b’ can 
also be thought of as being constrained by the hidden 
Bianchi identity dF = 0 due to the fact that F is an 
exact three-form, namely, F = dA. Hence, one can show 
that the Bianchi identity on the three-form F can be 
reduced to the Laplace equation 

d * (eVde) = 0. (5) 

It reads D,(&‘%3) = 0 in component form and agrees 
with earlier results. Hence the Bianchi identity in a differ- 
ential form dF = 0 is a reflection of the on-shell Bianchi 
identity D,(G”* - Tab) = 0. 

One observes, i?om Eq. (3), that the kinetic energy 
term for A,I, comes from the Fo&~ component, while the 
kinetic energy term for B comes from the Fijk compo- 
nent. In short, relation (3) shows that the dual transfor- 
mation interchanges the spatial part and the kinetic part 
of Anb and 0. Therefore their physical behaviors are not 
quite the same although 0 appears to be an effective field 
embedded in the Kalb-Ramond field. Although 0 can 
be considered as an effective axion field through Routh’s 
method in a nontrivial manner as we will show shortly, 
one should, however, look more closely at the property 
of the reduced action for the Kalb-Ramond field before 
one shows how to apply Routh’s method. 

To be more specific, it is easy to show that, for exam- 
ple, their gravitational responses are dramatically differ- 
ent due to their completely different gravitational cou- 
plings; namely, one has cVAc?Aggg coupling while the 
other one has 6’f%%‘g coupling. This will turn their associ- 
ated energy-momentum tensor into completely different 
forms. The reason is that the following two operations 
do not commute: (i) varying the Lagrangian with respect 
to gab and (ii) substituting the Kalb-Ramond field A,* as 
a function of b’, i.e., writing A,* E A&g). More specifi- 
cally, we have 

Here [ ]* denotes the mapping (ii) mentioned above, i.e., 
replacing A,P, by 6’ according to relation (3). Moreover, 
LA is the induced Kalb-Ramond Lagrangian. If 0 is to be 
interpreted as an effective axion field, equations of mo- 
tion associated with the effective Lagrangian LA* for the 
effective field variables should be consistent [lo] with the 
original equations of motion associated with the original 
action. Unfortunately, the B field fails to meet the consis- 
tency unless 0’ = 0. Hence! some mechanism is needed to 
make sense of interpreting Kalb-Ramond field as an ax- 
ion field. Note that above consistency check [ll] has been 

employed to show that there are nontrivial constraints 
in the compactification program in Kaluza-Klein theory. 
It is also shown that corrected Friedmann-Robertson- 
Walker metric will be able to reproduce complete field 
equations. 

Note that the physical meaning of the commuting map- 
ping is that one should have a refined minimum action. 
Moreover, one does not expect that the substitution of 
Aob as a functional of 9, namely, A,a = A=*(B), is capable 
of reproducing the 0 equation (5). Indeed, one can show 
that 

sc&(e) &CA * &A,,,(O) 

- = 6A,s 6.9 6e I-l- ’ 
if one defines the effective Lagrangian of the Kalb- 
Ramond term C& = LA* = LA(A,b(g) ). Note that 

the factor v will, in general, project out a certain 

part of the equations of the Aab equation 6ic” [6A.J’ = 

wl~~~(,) = 0 which becomes the effective equation 

for 8, namely, w = 0. Hence one does expect that 
the effective action defined above will, in general, fail to 
reproduce the co&raint hidden in the Bianchi identity 
unless the projection factor is invertible. Indeed, the pro- 
jection operator above will throw away some correct in- 
formation carried by the original equation in this model. 
Worse, the A,a equation does not offer a complete story 
of Aob since 6’ is still an underdetermined leftover field in 
Eq. (2). The cure is, however, fairly simple as it turns 
out. The point is that A.6 is not a simple functional of 0. 
It is given indirectly through Eq. (3), obtained earlier. 
Indeed, one finds 

c&a(e) = pa,ea*e. (8) 

The variational equation of 0 gives exactly Eq. (4). Note, 
however, that it fails to reproduce correct metric equa- 
tion and, worse, it carries a negative kinetic energy term. 
Note that it is easy to show that once the sign is changed, 
its variational equations for g.6, 4, and B will be correct 
again all together. 

To induce the correction, one needs to apply the well- 
known Routh’s method for eliminating cyclic variables. 
Routh suggests that one can apply Legendre transfor- 
mations on cyclic variables and leave all other variables 
unchanged in the associated Hamiltonian-Lagrangian (or 
Routhian) system. To be more specific, one can define 
the Routhian function HL by 

as the reduced Hamiltonian-Lagrangian for the Legen- 
dre transformation pn the cyclic variables c#J~+~, , &. 

Here L($Q,. , &; $1,. ,&) is the Lagrangian of the 
system with cyclic variables &, i = k + 1,. ,n. More- 
over, CT;, i = k + 1,. ,n, are the conjugate momen- 
tum of the cyclic variables, and hence constants in 
time. It is known that the variational equation of 

Wih, . . . , &; ~$1,. . , &) with respect to the cyclic vari- 
ables is the same as the variational equation of L upon 
constraints induced when the cyclic variables are im- 
posed. To get a correct effective Lagrangian, one should 



= -a(&, ,4e; d,, ,&;7%+,, ,%A (10) 

after solving tiI1 cyclic variables. Field theory can be 
consider&3 as the continuous limit of lattice particles in 
a finite box. Hence one can still define an effective La- 
grangian CCes(&, a,&) similar to the discrete particle La- 
grangian. Indeed, one can show that the effective La- 
grangian for noncyclic fields & . .4k is 

Led41,. ,4&z; &741,, , &‘4k) 
= -?h(41,. ,4k?; &,4,, , &4k;?r&,, . ,4. 

(11) 
Similarly, one can show that a similar program works 

for the Kalb-Ramond field by considering it as a cyclic 
field. Note that the Kalb-Ramond field is not truly a 
cyclic field since the Kalb-Ramond equation (2) does not 
eliminate all ,four degrees of freedom. But one can show 
that the method of Routh still works. Indeed, the effec- 
tive Lagrangian can be defined as 

c,dg,,,4,e) = cc(gas,4,Aob(e) ) 

Indeed, one can show that 

cC.e(g.a, 4, e) = cgFQ(gab, 4, e) - pa,eaae with cgs+ de- 
noting the Lagrangian of the metric and scalar field. 

Although we have shown that Routh’s method can 
correctly reproduce all relevant field equations after one 
solves the incomplete equation that leads to the leftover 
0 field, the reason is still not obvious since Aab is not 
a truly cyclic field. The key may have to do with the 
delicate symmetry in the general covariant gravitational 
fields that is capable of generating an appropriate con- 
straint implicitly hidden in the Bianchi identity. In short, 
the leftover 0 field will manage itself such that the energy- 
momentum tensor associated becomes divergentless in 
order to be consistent with the Bianchi identity. Hence 
Routh’s method still works out. Note that a similar pro- 
gram still works in the original Einstein-Kalb-Ramond 
theory without conformal couplings. 

We will try to study the behavior of an axion field 
in the presence of a black hole event horizon. For the 
moment, we will assume the static and spherically sym- 
metric metric defined by 

ds= E -e=“dt= + e==dr= + r’da. (13) 

Here d0 is the solid angle. 
Therefore, one can obtain the equations of motion 
p” + p” + (A - B)‘p’ + ;y’ 

4 
= -P-ya,v - 2~). 

1 i-6E (16) 

Accordingly, with the metric given by (13); Eq. (5) can 
be shown to give 

,gt = bk?,@-A-v, 
7.2 (17) 

Here kz is an integration constant, one used to conclude, 
from the regularity of 8, that 6” = 0 (i.e.; kz = 0) since 
$z-AITH = 00. Alth ough the generic physical quantity 

o( gvp o( e-2A 1s in general divergent at TX since 
e-‘* diverges at TH in most examples, it is not clear 
whether the factor e-* really diverges at TX in accor- 
dance with eBmA. One will have to solve the equation of 
motion in order to find out if the zeros of eA are identical 
to the zeros of ewB. Therefore we will try to solve the 
equations of the system directly. In fact, we will show 
that there is indeed an asymmetric solution to A and B. 
We will show, however, that the presence of the axion 
field will turn the event horizon of the axion free sys- 
tem into a naked singularity. Hence the black hole is not 
stable against 0 hair. 

Note that the p field can be shown to be constant 
outside the event horizon of a black hole. Indeed, multi- 
plying Eq. (16) by ST; dr@e~-2B(~ - IPO), one obtains 

=- ddeACB(p - ~po)(2V - a,V), (18) 

upon removing all surface terms. Here TH is the radius 
of the event horizon. One can show that 

(cp - po)(2V - a,v) = -Y(p - ‘po)(eV -u”), 

(19) 

if V = $(ep - t~~)~. Note that 1p + ‘po as T + cc if 
u # 0 as required by the finite action. Therefore it is 
easy to find that (p - (~o)(e’ - u*) 2 0. Hence the right 
hand side of Eq. (18) has to vanish since the left hand 
side of that equation is always positive. Note also that 
2V - t&V = 0 if 2) = 0. Hence p’ = 0 in both the scale 
invariant phase and symmetric broken phase. For later 
convenience, we will change the metric parametrization 
as 

(20) 

After some algebra, one can show that the equations of 
motion become 

C” + C’s = -k/(*+C), 
(21) 

C’2 + 2A’C’ _ ,-z(A+c) = k3e-‘(A+C), 
(22) 

Here we have used the solution of the scalar field (D’ = 

0 and k3 = $$z-~+‘~. By adding Eqs. (21) and (22) 
together, one finds that 
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(p+z=c’) = 1. 

Moreover, Eq. (21) can be rewritten as 

(23) 

which can be integrated to give 

,c=, l-M+- 

( > 

$!gziy 

T 

eZA- T-(M+dm) JM’;;;r; 
- 1 T+(--M) ’ 

(26) 

with the help of the integrable equation (23). Here M 
and kB denote the ADM mass and the integration con- 
stant denoting the strength of the torsion field as indi- 
cated in (21). Indeed, ezA -+ 1 - y as T + cm. Note 
that the T variable in (25) and (26) should be’rephrased 
as ? = T - M - dm such that the + variable maps 
exactly to the usual positive radial variable adopted ear- 
lier in this paper. Indeed, one can rewrite C and A as 

Therefore, the horizon becomes a naked singularity at 
i: = 0 (i.e., T = M + dm) since ec = 0 at ? = 0. 
Note that in the limit kS = 0 one can reproduce the 
Schwarzschild solution. 

In summary, we have shown how to interpret the Kalb- 
Ramond solution as an effective axion field. The associ- 
ated axion field tends to be unstable in some models. 
For example, we have shown explicitly that a nontriv- 
ial Kalb-Ramond field solution exists outside the event 
horizon associated with a spherically symmetric black 
hole in an induced Einstein-Kalb-Ramond action. It was 
shown, however, that the axion field tends to be unsta- 
ble by turning the event horizon into a naked singular- 
ity. Therefore, the no-hair theorem still holds in this 
model. The instability is also indicated in the inflation- 
ary models. Indeed, in the Friedmann-Robertson-Walker 
spaces, Eq. (5) becomes Ott + 3& + 6’t(ot = 0, where 
a(t) 3 eu(*) denotes the scale factor of the Friedmann- 
Robertson-Walker spaces. This equation can thus be 
integrated to give & = const x e-3a-q. Therefore, the 
Kalb-Ramond field might have been active during the 
inflation era even though they are negligible in the post- 
inflationary era. Indeed, the Kalb-Ramond field tends to 
vanish in accordance with the huge inflation of the scale 
factor a(t). Therefore, a more detailed study of the roles 
played by the Kalb-Ramond field both in the early uni- 
verse and collapsing stars appears to be very interesting 
and worth working for. Note that in the normal Einstein- 
Kalb-Ramond theory without conformal couplings, sim- 
ilar results can also obtained. Inclusion of a Yang-Mills 
monopole [12] will not affect our results except replacing 
the Schwarzschild metric with the Reissner-Nordstrom 
metric in (25) and (26). 
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