
Random Early Detection Web Servers for Dynamic Load Balancing

Chih-Chiang Yang, Chien Chen, and Jing-Ying Chen
Department of Computer Science

National Chiao Tung University, Hsiu-Chu, 30010, Taiwan
ycc.cs95g@nctu.edu.tw, chienchen@cs.nctu.edu.tw

Abstract- Modern Web-server systems use
multiple servers to handle an increased user
demand. Such systems need effective methods to
spread the load among web servers evenly in
order to keep web server utilization high while
providing sufficient quality of service for end
users. In conventional DNS-based load
balancing architecture, a Doman Name Server
(DNS) dispatches requests to web servers based
on their load status. Because web servers need
to inform the DNS server about their load status
from time to time, a so-called load buffer range
is often employed to reduce the update frequency.
Without care, however, using a load buffer
range may result in load oscillation among web
servers. To address this problem, we propose a
Random Early Detection (RED) method with the
intuition that the probability for a web server to
become overloaded in near future is directly
proportional to its current load. Simulation
confirms that our method helps reducing the
oscillation of the web server load significantly.

Keywords: DNS-based, load buffer range, RED.

1. Introduction
In recent years, the number of people using
Internet services has grown dramatically due to
the rapid development of the Internet. To cope
with the increasing user demand, it becomes a
common practice nowadays to use multiple web
servers to process user requests in parallel.
However, if the user requests cannot be spread
among web servers evenly such that some
servers become overloaded while the others
remain idle, the overall web servers’ utilization
will be dropped, resulting in poor and unstable
quality of service for the whole system.

This uneven server load problem has been
addressed by many researchers over the years.
[1] classifies existing load balancing architecture
into four classes, namely client-based,
dispatcher-based [5], DNS-based [7], and
server-based [3][4][8] load balancing
architecture. In this paper we focus on the
DSN-based load balancing architecture. In such
architecture, web servers are usually placed in
geographically decentralized areas, and a Doman
Name Server (DNS) acts as a request dispatcher
that dispatches requests to web servers. The
advantage of this approach is that by considering

the geographical relation between a client and
each web server, the DNS can assign a web
server with lower propagation delay to that client
to provide better quality of service. In order to
achieve load balancing, the DNS typically uses
Round Robin scheduling to map different clients
to different web servers in a logical cluster. [18]
showed that the classic algorithms, such as
Round Robin, are not adequate for the DNS
scheduler. To improve the load imbalance issue,
[7] proposed an adaptive time-to-live (TTL)
policy in DNS-based architecture which assigns
a different TTL value to each address based on
client request rates. To resolve the issue of
uneven domain load distribution, requests
coming from popular domains will receive a
lower TTL. In a dynamic environment, the
algorithms using the detailed load information
from the servers can achieve better load
balancing, but at the cost of extra computation
and communication. Unlike a traditional
parallel/distributed system, web servers are
geographically distributed, and the DNS cannot
obtain their states too often to avoid network
congestion and bandwidth waste. Therefore, a
method that uses asynchronous feedback alarms
and requires only limited state information from
the overloaded servers had been proved more
effective than those that use periodic feedback
information from every server to make
scheduling decision [18].

A conventional asynchronous feedback
method for DNS-based load balancing
architecture often sets a so-called load buffer
range with low and high thresholds to decrease
the state change frequency of a web server. If the
load of a web server exceeds the high threshold,
an overload alarm signal will be sent back to the
DNS. DNS will then exclude this web server
from further assignment of new requests. This
web server will remain in an overloaded state
until its utilization drops under the low threshold,
then another asynchronous message will be sent
to the DNS. The DNS will resume assigning the
requests to this web server. Without care,
however, setting the load buffer range
improperly may result in load oscillation among
web servers. To address this problem, we
propose a random early detection (RED) method
with the intuition that the probability for a web
server to become overloaded in the near future is
directly proportional to its current load. In our

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9/09 $26.00 © 2009 IEEE

DOI 10.1109/I-SPAN.2009.44

364

simulation, we show that the oscillation of the
web server’s load can be reduced by using the
concept of RED in the geographically distributed
load balancing architecture.

The rest of this paper is organized as follows.
Section 2 reviews some related work. Section 3
provides an overview of DNS-based load
balancing methods. Section 4 illustrates a
conventional load buffer range methods. And
section 5 presets our random early detection
method. Section 6 shows our simulation results.
Conclusions and future work are given in
Section 7.

2. Related Work
[2] discusses different load balancing techniques
for Web-server systems and evaluates the
performance of four specific load balancing
schemes, that is, round-robin, connections,
round-trip, and xmitbyte.

In this paper we are concerned with
DNS-based load balancing architecture. The
basic concept and operation of DNS are given in
[12][13][14][15], and the common TTL value
setting for DNS is discussed in [14][16][17]
When load balancing is concerned, [7] proposes
to assign a different TTL value to each address
request by taking into account the capacity of the
selected server and/or the request rate of the
source domain of the request; [10] suggests that
careful consideration is necessary when
choosing DNS TTL values to balance
responsiveness against extra client latency. In
case the web servers are geographically
distributed, [6] divides web servers into zones
and considers the load of servers in each zone as
well as the cost of transferring a job across zones
to determine if there is benefit of executing a job
across zones. Similarly, [3] considers the cost
of transferring a job from one server to another
to determine whether to execute a job in a local
or remote server.

[11] presents Random Early Detection (RED)
gateways for congestion avoidance in
packet-switched networks, avoiding the global
synchronization that results from many
connections decreasing their windows at the
same time.

3. DNS-based load balancing
Architecture
The DNS-based load balancing architecture is
illustrated in Fig. 1, in which clients are
partitioned into several groups according to the
local DNS (LDNS) servers they use, respectively.
When a client wants to obtain a service from a
web server with a particular domain name,
he/she first sends the domain name resolution
query to the LDNS server. After receiving a
domain name resolution query, the LDNS server

first checks to see whether there is a valid and
unexpired IP address of that domain name. If so,
the LDNS server sends the IP address to the
client directly. Otherwise, the LDNS server
would ask the root DNS server for the IP address
of a DNS server (the Extended DNS server in
Fig. 1 also called EDNS server) that is
responsible for resolving that domain name; the
LDNS server then forwards the domain name
resolution query to the EDNS server to obtain a
new mapping IP address and its associated TTL
time. Finally, the LDNS server sends the new IP
address to the client, and records the TTL time
of this IP address. Before the TTL time expires,
each domain name resolution query for the same
domain name can be directly sent by the LDNS
server without asking the EDNS server again.

The characteristics of DNS-based load
balancing architecture are as follows:

 All service servers can be placed in a
geographically distributed area.

 There is no direct geographical
relationship between DNS server and
service web servers.

In such architecture, one can exploit the

geographical relationship between web servers
and clients to minimize the query propagation
delay for clients. Moreover, because of the
existing mature master/slave architecture of
DNS, slave DNS servers may periodically
backup the data of the master server, and assist
in apportioning the domain name resolution
queries of the master DNS server. If the master
DNS server fails, one of the slave DNS servers
can take over the subsequent work for the master
DNS server, therefore achieving high reliability.

On the other hand, in typical DNS
architecture there is usually little or no
information exchanged between the DNS server
and web servers. Accordingly, conventional
DNS-based load balancing methods usually use
a random or round robin approach to perform
simple load balancing; they are more likely to

Fig. 1. DNS-based load balancing architecture

365

cause unbalanced load distribution among web
servers. Therefore, we are motivated to consider
how to use infrequent server state information to
achieve a higher degree of load balancing among
web servers.

4. Load Buffer Range Method
In DNS-based load balancing method, the DNS
server distributes the load among servers in a
round-robin manner, and the service server
periodically sends its load status to the DNS
server. Based on the load data collected from the
web servers, the DNS server can skip the
overloaded ones when dispatching requests. As
previously mentioned, there is usually no direct
geographical relationship between the DNS
server and web servers, the web server should
not send its state information to the DNS server
too often in order to avoid congesting the
network or wasting network bandwidth. For this
reason, a conventional method usually defines a
load buffer range (LBR) with low and high
thresholds for each web server. The state
transition diagram of the LBR example is shown
in Fig. 2. As the example shows, before the load
of a web server exceeds 90% (high threshold),
the server is not overloaded. That is, the DNS
server can assign new client requests to that web
server. Once the load of that web server is
greater than 90%, it enters into the overloaded
state. A web server in overloaded state notifies
the DNS server not to assign new client requests
to that web server until its utilization return
under 70% (low threshold). Fig. 3 shows the
probability of the overloaded state against to the
server load.

In this method, when there are not many
service servers and the amount of requests is
high, once one of the service servers is
overloaded, it must keep its overloaded state

until its load is under 70% and then notify DNS
server to assign new client requests to that web
server. During this period, the other web servers
may need to share the additional 20% (90%-70%)
load from that overloaded server. This may in
turn cause other web servers to become
overloaded, and so on, resulting in unstable
service quality.

5. Random Early Detection Method
In order to solve the load oscillation
phenomenon of web servers mentioned
previously, we consider that the state of overload
or under-load of a web server in the load buffer
range should be a probability rather than definite,
in order to avoid burdening the other web
servers with too much load. Hence, we use the
concept of random early detection (RED)
method to determine the overload status of web
servers probabilistically.

The RED idea is first presented in [11] for
congestion avoidance in packet-switched
networks. When the average queue size exceeds
a preset threshold, the gateway drops or marks
each arriving packet with a certain probability,
where the probability is a function of the average
queue length. It puts emphasis on avoiding the
TCP global synchronization that results from
each connection reduces the window to one and
goes through Slow-Start in response to a
dropped packet at the same time.

In [11], the RED gateway calculates the
average queue size, which is compared to a
minimum and a maximum threshold. When the
average queue size is less than the minimum
threshold, no packets are dropped. When the
average queue size is greater than the maximum
threshold, every arriving packet is dropped.
When the average queue size is between the
minimum and maximum thresholds, each
arriving packet is dropped with probability pa,
where pa is a function of the average queue
length.

Applying the RED idea here in the context of
DNS-based load balancing, the probability of a
web server becoming overloaded is directly
proportional to its current load. A line chart
example of the probability of a web server
becoming overloaded is shown in Fig 4. In this

State=reject
State=accept
State=reject
State=accept

Fig. 3. State change of conventional load
buffer range method

State =
accept

State =
reject

Load >= 90%

Load < 70%

Load >= 70%Load < 90% State =
accept

State =
reject

Load >= 90%

Load < 70%

Load >= 70%Load < 90%

Fig. 2. State transition diagram of
conventional load buffer range method

Fig. 4. State change of RED method

366

example, the minimum threshold is 70% and the
maximum threshold is 90%. When the load of a
service server is less than 70%, its state should
be under-load. When the load of a service server
is greater than 90%, its state would be
overloaded. Finally, when the load of a service
server is between 70% and 90%, the probability
of its state becoming overloaded is proportional
to its current load.

6. Simulation
In our simulation, five web servers are placed in
a geographically distributed area, and we control
the overall amount of workload to about 85% of
total server capacity.

The load oscillation phenomenon of the
conventional load buffer range method is shown
in Fig. 5. As we can see, the loads of those five
servers increase to greater than 90% and then
decrease to less than 70% by turns. As shown in
Fig. 6, compared with conventional load buffer
range method, using our RED method to
probabilistically determine the state of the web
servers can effectively raise the load balancing
degree among web servers and smooth the load
variation of each web server in the same request
traffic, providing more stable Internet services.

We then decrease the load buffer range of
conventional methods in order to observe the
relationship between the range of load buffer and

the standard deviation of server load. Fig. 7 and
Fig. 8 are load buffer ranges from 80% to 90%
and from 84% to 86% respectively. As we can
see, reducing the load buffer range of the
conventional method can diminish the degree of
server load oscillation.

Finally, we should make a summary
comparison of the server state change frequency
and the average standard deviation of server load
for RED method and the conventional methods
with different load buffer range setting. Notice
that the state change frequency indicates the
asynchronous state messages sent by the web
servers to the DNS. As shown in Fig. 9, even if
we constantly reduce the load buffer range of the
conventional method until it is zero, its load
balancing degree will become closer to but still
be slightly higher than the RED method’s, and
its server state change frequency has became 1.5

Fig. 5. Server load oscillation phenomenon of

conventional load buffer range method

Fig. 6. Server load variation of RED method

Fig. 7. Server load variation of load buffer
range between 80% and 90%

Fig. 8. Server load variation of load buffer

range between 84% and 86%

Fig. 9. Summary comparison RED and LBR

methods

367

times of the RED method’s at this time.
Moreover, if we use the default setting
(70%~90%) of the conventional method,
although its sever state change frequency is half
of the RED method’s, but its average standard
deviation of server load is greater than five times
of the RED method’s at this time.

7. Conclusion and future work
Because web servers can be placed in
geographically decentralized area in DNS-based
load balancing architecture, the states of web
servers are not allowed to be obtained
immediately to avoid congesting or wasting
network bandwidth.

Compared with conventional two thresholds
scheme, our RED method can use an acceptable
server state change frequency to efficiently
reduce the average standard deviation of web
servers load to 1/5 of the conventional method’s,
smooth the load variation of web servers, and
provide more stable quality of services.
Moreover, in our simulation, no matter what we
set the load buffer range of the conventional
method to, its load balancing degree is still
worse than our RED method’s.

In the future, we will analyze the effect of
different RED settings in order to invent an
adaptive RED method which can depend on the
request traffic to adjust the RED setting to
achieve better load balancing.

References

[1] V. Cardellini, M. Colajanni, P.S. Yu,

"Dynamic load balancing on Web-server
systems," IEEE Internet Computing, Vol.3,
No. 3, pp. 28-39, May-June 1999.

[2] H. Bryhni, E. Klovning, O. Kure, "A
Comparison of Load Balancing Techniques
for Scalable Web Servers," IEEE Network,
Vol. 14 Issue 4, pp. 58-64, July-Aug 2000.

[3] M. Arora, S. K. Das, R. Biswas, "A
De-centralized Scheduling and Load
Balancing Algorithm for Heterogeneous
Grid Environments," In Proceedings of
Workshop on Scheduling and Resource
Management for Cluster Computing, pp.
499-505, Vancouver, Canada, Aug 2002.

[4] W. Leinberger, G. Karypis, V. Kumar, R.
Biswas. "Load balancing across
near-homogeneous multi-resource servers,"
In Proceedings of the Ninth Heterogeneous
Computing Workshop, pp. 61-70, Cancun,
Mexico, May 2000.

[5] William Leinberger, George Karypis, Vipin
Kumar, "Job Scheduling in the presence of
Multiple Resource Requirements," In
Proceedings of ACM/IEEE Conference on
Supercomputing (SC '99), pp. 47-47,

Portland, USA, Nov. 1999.
[6] Z. Zhang, W. Fan, "Web Server Load

Balancing: A queuing analysis, " European
Journal of Operational Research, 186(2), pp.
681-693, Feb 2008.

[7] M. Colajanni, P. S. Yu, V. Cardellini,
"Dynamic Load Balancing in
Geographically Distributed Heterogeneous
Web Servers," In Proceedings of Int'l Conf.
Distributed Computing Systems, pp.
295-302, May 1998.

[8] M. Aramudhan, and V. R. Uthariaraj,
"LDMA: Load Balancing Using
Decentralized Decision Making Mobile
Agents", Lecturer Notes on Computer
Science, Part IV, Vol. 3994, pp. 388-395,
Springer-Verlag, 2006.

[9] M. Harchol-Balter. "Task Assignment with
Unknown Duration." Journal of the ACM,
49(2) pp. 260–288, 2002.

[10] A. Shaikh, R. Tewari, and M. Agrawal, "On
the Effectiveness of DNS-based Server
Selection," In Proceedings of IEEE
INFOCOM 2001, pp. 1801-1910,
Anchorage, USA, April 2001.

[11] S. Floyd, and V. Jacobson, "Random Early
Detection Gateways for Congestion
Avoidance," IEEE/ACM Trans. On
Networking, Vol. 1, No. 4, pp. 397-413,
August 1993.

[12] P. Mockapetris, "Domain Names – Concepts
and Facilities," Internet Request for
Comments 1034, Nov 1987.

[13] P. Albitz, and C. Liu, “DNS and BIND,”
O’Reilly and Associates, 1998.

[14] D. Barr, "Common DNS operational and
configuration errors, " Internet Request for
Comments 1912, Feb 1996.

[15] P. Cockapetris, "Domain names –
implementation and specification," Internet
Request for Comments 1035, Nov 1987.

[16] A. Kumar, J. Postel, C. Neuman, P. Danzig,
S. Miller, "Common DNS implementation
errors and suggested fixed," Internet
Request for Comments 1536, Oct 1993.

[17] E. Cohen, H. Kaplan, “Proactive caching of
DNS records: Addressing a performance
bottleneck,” In Proceedings of 2001
Symposium on Applications and the Internet,
pp. 85-94, San Diego, USA, Jan. 2001.

[18] M. Colajanni, P.S. Yu, D.M. Dias,
"Scheduling algorithms for distributed Web
servers," In Proceedings of 17th IEEE
International Conference on Distributed
Computing Systems (ICDCS '97), pp.
169-176, Baltimore, USA, May1997.

368

