
The Mutually Independent Bipanconnected Property
for Hypercube

Yuan-Kang Shih
Department of Computer Science,

National Chiao Tung University,

Hsinchu, Taiwan 30010, R.O.C.

Email: ykshih@cs.nctu.edu.tw

Jimmy J. M. Tan
Department of Computer Science,

National Chiao Tung University,

Hsinchu, Taiwan 30010, R.O.C.

Email: jmtan@cs.nctu.edu.tw

Lih-Hsing Hsu
Department of Computer Science

and Information Engineering

Providence University,

Taichung, Taiwan 43301, R.O.C.

Email: lhhsu@cs.pu.edu.tw

Abstract—A graph is denoted by G with the vertex set V (G)
and the edge set E(G). A path P = 〈v0, v1, · · · , vm〉 is a
sequence of adjacent vertices. Two paths with equal length
P1 = 〈u1, u2, . . . , um〉 and P2 = 〈v1, v2, . . . , vm〉 from a to b
are independent if u1 = v1 = a, um = vm = b, and ui �= vi for
2 ≤ i ≤ m − 1. Paths with equal length {Pi}n

i=1 from a to b
are mutually independent if they are pairwisely independent. Let
u and v be two distinct vertices of a bipartite graph G, and
let l be a positive integer length, dG(u, v) ≤ l ≤ |V (G) − 1|
with (l − dG(u, v)) being even. We say that the pair of vertices
u, v is (m, l)-mutually independent bipanconnected if there exist
m mutually independent paths {P l

i }m
i=1 with length l from u

to v. In this paper, we explore yet another strong property of
the hypercubes. We prove that every pair of vertices u and
v in the n-dimensional hypercube, with dQn(u, v) ≥ n − 1,
is (n − 1, l)-mutually independent bipanconnected for every l,
dQn(u, v) ≤ l ≤ |V (Qn)− 1| with (l− dQn(u, v)) being even. As
for dQn(u, v) ≤ n − 2, it is also (n − 1, l)-mutually independent
bipanconnected if l ≥ dQn(u, v) + 2, and is only (l, l)-mutually
independent bipanconnected if l = dQn(u, v).

I. INTRODUCTION

For the graph definitions and notations we refer the reader

to [6]. A graph is denoted by G with the vertex set V (G)
and the edge set E(G). The simulation of one architecture

by another is an important issue in interconnection networks.

The problem of simulating one network by another is also

called embedding problem. One particular problem of path

embedding deals with finding all the possible length of paths

in an interconnection network.

A path P = 〈v0, v1, . . . , vm〉 is a sequence of adjacent

vertices. We also write P = 〈v0, . . . , vi, Q, vj , . . . , vm〉 where

Q is a path 〈vi, . . . , vj〉. A cycle C = 〈v0, v1, . . . , vm, v0〉 is a

sequence of adjacent vertices where the first vertex is the same

as the last one. The length of a path P (a cycle C respectively)

is the number of edges in P (in C respectively).

A cycle of G is a hamiltonian cycle if it traverses all the

vertices exactly once. A graph G is called a hamiltonian graph
if G contains a hamiltonian cycle. A path of G is a hamitonian
path if it contains all the vertices exactly once. A graph G
is hamiltonian connected if there exists a hamiltonian path

between any two different vertices of G. A graph G = (B ∪
W,E) is bipartite if V (G) is the union of two disjoint sets

B and W such that every edge joins B with W . It is easy

to see that any bipartite graph with at least three vertices is

not hamiltonian connected. A bipartite graph G is hamiltonian
laceable if there exists a hamiltonian path joining any two

vertices from different partite sets. A graph G is pancyclic [2]

if G includes cycles of all lengths. If these cycles are restricted

to even length, G is called a bipancyclic graph. The distance
from x to y, written dG(x, y), is the least length among all

paths from x to y in G. A graph is panconnected if, for any

two different vertices x and y, there exists a path of length l
joining x and y, for every l, dG(x, y) ≤ l ≤ |V (G)| − 1.

The concept of panconnected graphs is proposed by Alavi

and Williamson [1]. It is not hard to see that any bipartite

graph with at least 3 vertices is not panconnected. Therefore,

the concept of bipanconnected graphs is proposed. A bipartite

graph is bipanconnected if, for any two different vertices x
and y, there exists a path of length l joining from x to y, for

every l, dG(x, y) ≤ l ≤ |V (G)| − 1 and (l − dG(x, y)) being

even. There are many studies on bipanconnected graphs and

bipancyclic graphs [3], [7], [9], [13].

We introduce some terms defined recently. Two paths P1 =
〈u1, u2, . . . , um〉 and P2 = 〈v1, v2, . . . , vm〉 from a to b are

independent [10] if u1 = v1 = a, um = vm = b, and ui �= vi

for 2 ≤ i ≤ m − 1. Paths with equal length {Pi}n
i=1 from

a to b are mutually independent [10] if they are pairwisely

independent. Two cycles C1 = 〈u1, u2, . . . , um, u1〉 and

C2 = 〈v1, v2, . . . , vm, v1〉 beginning at x are independent if

u1 = v1 = x and ui �= vi for 2 ≤ i ≤ m. Cycles with

equal length {Ci}n
i=1 beginning at x are mutually independent

if every two cycles are independent. Two hamiltonian paths

P1 = 〈u1, u2, . . . , u|V (G)|〉 and P2 = 〈v1, v2, . . . , v|V (G)|〉
are independent beginning at x [5] if u1 = v1 = x and

ui �= vi for 2 ≤ i ≤ |V (G)|, denoted P1 : x → u|V (G)| and

P2 : x → v|V (G)|. Hamiltonian paths {Pi}n
i=1 are mutually

independent hamiltonian paths beginning at x [5] if any two

of them are independent beginning at x.

An n-dimensional hypercube, denoted by Qn, is a graph

with 2n vertices, and each vertex u can be distinctly labeled

by an n-bit binary string, u = un−1un−2...u1u0. There is an

edge between two vertices if and only if their binary labels

differ in exactly one bit position. Let (u, v) be an edge in Qn.

If the binary labels of u and v differ in ith position, then the

edge between them is said to be in ith dimension and the edge

(u, v) is called an ith dimension edge. We use Q0
n−1 to denote
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the subgraph of Qn induce by {u ∈ V (Qn) | ui = 0} and

Q1
n−1 to denote the subgraph of Qn induced by {u ∈ V (Qn) |

ui = 1}. Q0
n−1 and Q1

n−1 are all isomorphic to Qn−1. Qn

can be decomposed into Q0
n−1 and Q1

n−1 by dimension i,
and Q0

n−1 and Q1
n−1 are (n−1)-dimensional subcubes of Qn

induced by the vertices with the ith bit position being 0 and

1 respectively. For each vertex u in Qi
n−1, i = {0, 1}, there

is exactly one vertex in Qi−1
n−1, denoted by ū, such that (u, ū)

is an edge in Qn. There are many studies on the hypercubes

[5], [9], [11], [12], [14], [15].
We now introduce a new concept. Let u and v be two

distinct vertices of a bipartite graph G and let l be a positive

integer length, dG(u, v) ≤ l ≤ |V (G)−1| with (l−dG(u, v))
being even. We say that the pair of vertices u, v is (m, l)-
mutually independent bipanconnected if there exist m mutu-

ally independent paths {P l
i }m

i=1 with length l from u to v.

In this paper,we explore yet another strong property of the

hypercubes. We prove that every pair of vertices u and v
in the n-dimensional hypercube, with dQn(u, v) ≥ n − 1,

is (n − 1, l)-mutually independent bipanconnected for every

l, dQn
(u, v) ≤ l ≤ |V (Qn) − 1| with (l − dQn

(u, v)) being

even. As for dQn(u, v) ≤ n− 2, it is also (n− 1, l)-mutually

independent bipanconnected if l ≥ dQn
(u, v) + 2, and is only

(l, l)-mutually independent bipanconnected if l = dQn
(u, v).

Our result strengthens a previous results of Sun et al. [14],

and Li et al. [9]. Li et al. [9] proved that the hypercube Qn is

bipanconnected for n ≥ 2. Sun et al. [14] proved that there are

n− 1 mutually independent hamiltonian paths in Qn between

every two vertices from different partite sets for n ≥ 4. The

number “n−1” in our result is tight as we have the following

observation. Because each vertex of the hypercube Qn has

exactly n edges incident with it, we can expect at most n− 1
mutually independent paths when the given two vertices are

adjacent.

II. PRELIMINARIES

In order to prove our claim, we need some previous results.

The following results state that there exist n − 1 mutually

independent hamiltonian paths between two vertices. We shall

strengthen the result by showing that there exist n−1 mutually

independent paths of length l between two vertices, for every

reasonable length l.

Theorem 1. [14] Let x and y be two vertices from different
partite sets of Qn, for n ≥ 4. Then there exist n− 1 mutually
independent hamiltonian paths joining x to y.

Theorem 2. [14] For n ≥ 4, there are n mutually independent
hamiltonian cycles beginning at any vertex x in Qn.

A hamiltonian laceable graph G is hyper hamiltonian lace-
able if for any vertex u, there is a hamiltonian path of G−{u}
between every pair of vertices in the opposite partite set of u.

Theorem 3. [8] For n ≥ 2, the hypercube Qn is hyper
hamiltonian laceable.

Lemma 1. [4] Let Fv be a set of faulty vertices in Qn. For
n ≥ 3, if |Fv| ≤ n − 2, there exists a path of Qn − Fv with

any odd length l, 3 ≤ l ≤ 2n − 2|Fv| − 1, between any two
adjacent vertices.

Lemma 2. [14] Qn−{x, y} is hamiltonian laceable, if x and
y are any two vertices from different partite sets of Qn with
n ≥ 4.

Lemma 3. [5] In Qn, n ≥ 2, let u be any vertex, and v1,
v2,. . . , vn−1 be any n−1 vertices in the opposite partite set of
u. There exist n − 1 mutually independent hamiltonian paths
beginning at u of Qn such that {Pi : u → vi}n−1

i=1 .

III. MUTUALLY INDEPENDENT BIPANCONNECTED

PROPERTY OF HYPERCUBE

Lemma 4. Let x and y be two vertices from different partite
sets of Qn with n ≥ 4. There exists a path of every odd length
from 1 to 2n − 3 joining any two adjacent fault-free vertices
in Qn − {x, y}.

Proof: Let u, v be two adjacent fault-free vertices in Qn−
{x, y}. Because u and v are adjacent fault-free vertices, there

exists a path of length 1 joining from u to v in Qn − {x, y}.

According to Lemma 1, there exists a path of every odd length

from 3 to 2n−2|2|−1(= 2n−5) joining u to v in Qn−{x, y}.

Then by Lemma 2, there exists a path of length 2n−3 joining

u to v in Qn − {x, y}. Therefore, the lemma holds.

Sun et al. [14] proved that any two hamiltonian path con-

necting 000 and 100 in Q3 are not independent, in other words,

there do not exist 2 mutually independent hamiltonian paths

in Q3 between 000 and 100. So, we will prove our theorem

beginning from n ≥ 4 for Qn. We found that there are only

d mutually independent paths with length d if dQn
(u, v) = d.

In order to see this, we have the following lemma.

Lemma 5. Let u and v be two vertices of Qn with
dQn

(u, v) = d, there are d and at most d mutually independent
paths with length d joining from u to v.

Proof: By the symmetric property of the hypercubes, we

may assume that u is the vertex with n bits containing n 0’s,

and v is the vertex with n bits containing d 1’s. In order to

see the basic idea, we first give an example n = 6. In Q6.

Let u = 000000 and v = 001111 then dQ6(u, v) = 4. We can

construct 4 mutually independent paths with length 4 between

u and v.

P0 = 〈u, 000001, 000011, 000111, v〉,
P1 = 〈u, 000010, 000110, 001110, v〉,
P2 = 〈u, 000100, 001100, 001101, v〉, and

P3 = 〈u, 001000, 001001, 001011, v〉.

For general n, let u = 0 · · · 0 = 0n and v = 0 · · · 01 · · · 1 =
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0n−d1d, then dQn(u, v) = d.

P0 = 〈0n, 0n−11, 0n−212, · · · , 0n−d+11d−1, 0n−d1d〉,
P1 = 〈0n, 0n−210, 0n−3120, · · · , 0n−d1d−201, 0n−d1d〉,
P2 = 〈0n, 0n−3102, 0n−41202, · · · , 0n−d1d−3012, 0n−d1d〉,
P3 = 〈0n, 0n−4103, 0n−51203, · · · , 0n−d1d−4013, 0n−d1d〉,

...

Pd−2 = 〈0n, 0n−d−110d−2, 0n−d120d−2, 0n−d120d−31,

0n−d120d−412 · · · , 0n−d1201d−3, 0n−d1d〉,
Pd−1 = 〈0n, 0n−d10d−1, 0n−d10d−21, 0n−d10d−312,

0n−d10d−413, · · · , 0n−d101d−2, 0n−d1d〉.

{P0, P1, . . . , Pd−1} form d mutually independent paths with

length d joining u to v. If there exists a (d+1)th path P ′ with

length d between u and v such that P ′ is mutually independent

to the first d paths. So the first vertex after the beginning vertex

u of P ′ has to be different from all those of Pi i = 0 to

d − 1. Without loss of generality, assume that the first vertex

after the beginning vertex u of P ′ is (x)i = 0i10n−i−1 for

0 ≤ i ≤ n− d− 1. It is easy to see that dQn((x)i, v) = d+1,

since there are d+1 distinct bits between (x)i and v. Therefore,

it is impossible to find out a (d + 1)th path with length d
between u and v which is independent to P0, P1, . . . , Pd−1.

We now show our main result Theorem 5 below. Our proof

is by induction on n, for Qn. The base case is n = 4.

Theorem 4. Let u and v be a pair of vertices of Q4. If
dQ4(u, v) ≥ 3, Q4 is (3, l)-mutually independent bipancon-
nected for every l, dQ4(u, v) ≤ l ≤ 24−1 with (l−dQ4(u, v))
being even. As for dQ4(u, v) ≤ 2, it is also (3, l)-mutually
independent bipanconnected if l ≥ dQ4(u, v) + 2, and is only
(l, l)-mutually independent bipanconnected if l = dQ4(u, v).

We will use the notation P k
i or Rk

i to denote a path i with

length k.

Lemma 6. Let u and v be two adjacent vertices of Qn for
n ≥ 4. There exist n−1 mutually independent paths {P l

i }n−1
i=1

of Qn with any odd length l, 3 ≤ l ≤ 2n − 1, joining from u
to v.

Proof: We choose a dimension to divide the hypercube

Qn into two subcubes Q0
n−1 and Q1

n−1 such that u is a

black vertex in Q0
n−1 and v a white vertex in Q1

n−1. Notice

that ū = v. According to Theorem 2, there exist n − 1
mutually independent hamiltonian cycles {Ci}n−1

i=1 in Q0
n−1

beginning at u. For each k, 1 ≤ k ≤ 2n−1 − 1, let

Ci = 〈u,Rk
i , xi,k, xi,k+1, . . . , xi,2n−1−1, u〉 for 1 ≤ i ≤ n−1,

where Rk
i = 〈u, xi,1, xi,2, . . . , xi,k〉 and |Rk

i | = k. Let

Sk
i = 〈x̄i,k, . . . , x̄i,2, x̄i,1, ū〉 for 1 ≤ i ≤ n − 1. Combine

Rk
i and Sk

i , we let P 2k+1
i = 〈u,Rk

i , xi,k, x̄i,k, Sk
i , ū = v〉,

1 ≤ k ≤ 2n−1 − 1, for 1 ≤ i ≤ n − 1. Then P 2k+1
i is a path

joining u to v with length 2k + 1. Since 1 ≤ k ≤ 2n−1 − 1
so 3 ≤ 2k + 1 ≤ 2n − 1. Therefore, there exist n − 1

mutually independent paths {P l
i }n−1

i=1 with any odd length l,
3 ≤ l ≤ 2n − 1, joining from u to v.

Lemma 7. Let u and v be two vertices from the same partite
set of Qn for n ≥ 4. There exist n − 1 mutually independent
paths {P l

i }n−1
i=1 of Qn with any even length l, dQn

(u, v)+2 ≤
l ≤ 2n − 2, joining from u to v.

Proof: We prove the statement by induction on n. By

Theorem 4, the statement holds for n = 4. Suppose that the

result holds for Qn−1, n ≥ 5. Without loss of generality,

let u and v be two black vertices of Qn. We may choose

a dimension to divide the hypercube Qn into two subcubes

Q0
n−1 and Q1

n−1 such that u ∈ Q0
n−1 and v ∈ Q1

n−1.

Therefore, ū and v̄ are two white vertices in Q1
n−1 and Q0

n−1,

respectively. Assume that dQn
(u, v) = d and d is even, then

it is easy to see that dQn(u, v̄) = dQn(u, v) − 1 = d − 1.

According to the length l of the paths, we divide the proof

into the following three cases. In each case, the length l is

assumed to be an even number. We shall find n− 1 mutually

independent paths with length l joining from u to v.

Case 1. For even length l and d + 2 ≤ l ≤ 2n−1.

By induction hypothesis, there exist n − 2 mutually inde-

pendent paths {Rk
i }n−2

i=1 of Q0
n−1 with odd length k, d +

1 ≤ k ≤ 2n−1 − 1, between u and v̄. For 1 ≤ i ≤
n − 2, we let Rk

i = 〈u, xi,1, xi,2, . . . , xi,k−1, v̄〉. Now, for

each l between d + 2 and 2n−1, we show how to con-

struct the n − 1 mutually independent paths with length

l. Let P k+1
1 = 〈u, x1,1, x1,2, . . . , x1,k−1, v̄, v〉, P k+1

i =
〈u, xi,1, xi,2, . . . , xi,k−1, x̄i,k−1, v〉 for 2 ≤ i ≤ n − 2, and

P k+1
n−1 = 〈u, ū, x̄1,1, x̄1,2, . . . , x̄1,k−1, v〉, d+2 ≤ k+1 ≤ 2n−1.

Set l = k + 1. So, {P l
i }n−1

i=1 form n− 1 mutually independent

paths with each even length l, d+2 ≤ l ≤ 2n−1, joining from

u to v.

Case 2. For even length l and 2n−1 + 2 ≤ l ≤ d + 2n−1 − 2.

According to induction hypothesis, there exist n− 2 mutually

independent paths {Ri}n−2
i=1 of Q0

n−1 with odd length d − 1
between u and v̄. Without loss of generality, we write Ri =
〈u, xi,1, xi,2, . . . , xi,d−2, v̄〉 for 1 ≤ i ≤ n − 2. For each m,

2 ≤ m ≤ d − 2 and m is even, by Lemma 3, there exist n −
2 mutually independent hamiltonian paths {Si}n−2

i=1 of Q1
n−1

beginning at v such that {Si : v → x̄i,m}n−2
i=1 . For 1 ≤ i ≤

n− 2, let Pm+2n−1

i = 〈u, xi,1, xi,2 . . . , xi,m, x̄i,m, (Si)−1, v〉,
2n−1 + 2 ≤ m + 2n−1 ≤ d + 2n−1 − 2. Set l = m + 2n−1.

We have the first n− 2 mutually independent paths with each

even length l, 2n−1 + 2 ≤ l ≤ d + 2n−1 − 2 joining u to v.

Finally, we construct the (n − 1)th path joining u to v. Let

z be any white vertex in Q1
n−1. By Lemma 4, there exists a

path T k of Q1
n−1 − {v, z} with any odd length k, 1 ≤ k ≤

d − 3, joining ū to x̄n−1,1, and by Theorem 3, there exists a

hamiltonian path U of Q0
n−1 −{u} between xn−1,1 to v̄. Let

P k+2n−1+1
n−1 = 〈u, ū, T k, x̄n−1,1, xn−1,1, U, v̄, v〉, 2n−1 + 2 ≤

k + 2n−1 + 1 ≤ d + 2n−1 − 2. Set l = k + 2n−1 + 1. So,

{P l
i }n−1

i=1 form n − 1 mutually independent paths with each

even length l, 2n−1 + 2 ≤ l ≤ d + 2n−1 − 2, joining from u
to v.
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Case 3. For even length l and d + 2n−1 − 2 ≤ l ≤ 2n − 2.

Again, by induction hypothesis, there exist n − 2 mu-

tually independent paths {Rm
i }n−2

i=1 between u and v̄ in

Q0
n−1 with odd length m, d − 1 ≤ m ≤ 2n−1 − 1.

Let Rm
i = 〈u, xi,1, xi,2, . . . , xi,m−1, v̄〉 for 1 ≤ i ≤

n − 2. By Lemma 3, there exist n − 2 mutually inde-

pendent hamiltonian paths {Si}n−2
i=1 of Q1

n−1 beginning at

v such that {Si : v → x̄i,m−1}n−2
i=1 . Let Pm+2n−1−1

i =
〈u, xi,1, xi,2, . . . , xi,m−1, x̄i,m−1, (Si)−1, v〉 for 1 ≤ i ≤ n −
2, d+2n−1−2 ≤ m+2n−1−1 ≤ 2n−2. Set l = m+2n−1−1.

We have the first n− 2 mutually independent paths with each

even length l, d+2n−1−2 ≤ l ≤ 2n−2 joining u to v. Finally,

we construct the (n−1)th path joining u to v. Assume that z is

any white vertex in Q1
n−1. According to Lemma 4, there exists

a path T k of Q1
n−1 − {v, z} with any odd length k, d − 3 ≤

k ≤ 2n−1 − 3, joining ū to x̄n−1,1, and by Theorem 3, there

exists a hamiltonian path U of Q0
n−1 − {u} between xn−1,1

to v̄. Let P k+2n−1+1
n−1 = 〈u, ū, T k, x̄n−1,1, xn−1,1, U, v̄, v〉,

d+2n−1 − 2 ≤ k +2n−1 +1 ≤ 2n − 2. Set l = k +2n−1 +1.

So, {P l
i }n−1

i=1 form n−1 mutually independent paths with each

even length l, d + 2n−1 − 2 ≤ l ≤ 2n − 2, joining from u to

v.

Lemma 8. Let u and v be two nonadjacent vertices from
different partite sets of Qn for n ≥ 4. There exist n − 1
mutually independent paths {P l

i }n−1
i=1 of Qn with any odd

length l, dQn
(u, v) + 2 ≤ l ≤ 2n − 1, joining from u to

v.

By Theorem 4, Lemma 5, Lemma 6, Lemma 7, and

Lemma 8, we have the following theorem.

Theorem 5. Let u and v be any pair of vertices of Qn. For
dQn

(u, v) ≥ n − 1, Qn is (n − 1, l)-mutually independent
bipanconnected for every l, dQn

(u, v) ≤ l ≤ 2n − 1 with (l−
dQn(u, v)) being even. As for dQn(u, v) ≤ n−2, it is also (n−
1, l)-mutually independent bipanconnected if l ≥ dQn

(u, v) +
2, and is only (l, l)-mutually independent bipanconnected if
l = dQn(u, v).

IV. CONCLUSION

In this paper, we explore yet another strong property of

the hypercubes. We prove that every pair of vertices u and

v in the n-dimensional hypercube, with dQn
(u, v) ≥ n − 1,

is (n − 1, l)-mutually independent bipanconnected for every

l, dQn(u, v) ≤ l ≤ |V (Qn) − 1| with (l − dQn(u, v)) being

even. As for dQn
(u, v) ≤ n− 2, it is also (n− 1, l)-mutually

independent bipanconnected if l ≥ dQn
(u, v) + 2, and is only

(l, l)-mutually independent bipanconnected if l = dQn(u, v).
Our result strengthens a previous results of Sun et al. [14],

and Li et al. [9]. Li et al. [9] proved that the hypercube Qn is

bipanconnected for n ≥ 2. Sun et al. [14] proved that there are

n− 1 mutually independent hamiltonian paths in Qn between

every two vertices from different partite sets for n ≥ 4. The

number “n−1” in our result is tight as we have the following

observation. Because each vertex of the hypercube Qn has

exactly n edges incident with it, we can expect at most n− 1

mutually independent paths when the given two vertices are

adjacent.
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