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Abstract

This paper addresses the problem of refining depth

information from the received reference and depth im-

ages within the MPEG FTV framework. An analytical

model is first developed to approximate the per-pixel

synthesis distortion (caused by depth-image compres-

sion) as a function of depth-error variances, intensity

variations, ground-truth depth and virtual camera lo-

cations. We then follow the model to detect unreliable

depth pixels by inspecting intensity gradients and to re-

fine their values with a candidate-based block dispar-

ity search. Additional side information is transmitted

to make both operations robust against compression ef-

fects. Experimental results show that our scheme offers

an average PSNR improvement of 1.2 dB over MPEG

FTV and consistently outperforms the state-of-the-art

methods. Moreover, it can remove synthesis artifacts

to a great extent, producing a result that is very close

in appearance to the ground-truth view image.

1 Introduction

Technology evolution in the capture and display of

3D videos will soon extend visual sensation from 2D

to 3D while allowing unrestricted spatiotemporal scene

navigation. In general, offering a 3D depth impression

of a real-world scene requires two separate images cap-

tured from properly arranged viewing positions. To en-

able scene navigation, a multi-view video may have to

be acquired through a dense camera set-up. However,

due to the complexity involved in acquisition, storage

and transmission, it is unlikely to have a large number

of camera inputs. An efficient 3D data format is thus

needed to allow the generation of intermediate views

from a sparse sampling of the observed scene.

For this, the MPEG committee has recently defined

a "multi-view video plus depth" data format [1], which

specifies a way of multiplexing the coded representa-

tions of a multi-view video and its associated per-pixel

depth information. With explicit scene geometry, an

arbitrary virtual view can be generated at the receiver

side by means of the so-called depth-image-based ren-

dering (DIBR) [2][3][4][5], requiring only a small num-

ber of view images for scene navigation. Since depth

images must be conveyed together with the correspond-

ing view images, both types of scene representations

are compressed, based mostly on H.264/AVC, for an

efficient use of network bandwidth.

Although block-based hybrid coding is equally ap-

plicable to depth-image compression, it causes undesir-

able synthesis artifacts. This is because depth images

represent scene geometry information, the characteris-

tics of which are very different from those of intensity

data. It was shown in [6] that visually imperceptible

depth errors can still have a profound effect on synthe-

sis quality.

A few approaches have been proposed to alleviate

synthesis artifacts caused by depth-image compression.

In [7] Tanimoto et al. found that the magnitude of

synthesis errors is linearly proportional to the distance

between the virtual and reference cameras. They pro-

posed to compensate the synthesis errors in a virtual

view by estimating their magnitudes from the errors

observed in a nearby reference view. Sung et al. [8], on

the other hand, made use of the Lambertian condition

to refine depth images. The process involves using the

similarity between the depth (and intensity) values of

corresponding pixels to detect unreliable depth pixels

and then refining their values through a group-based

disparity search. Because both schemes rely entirely

on the decoded information for intensity correction or

depth refinement, their performance is greatly influ-

enced by compression effects.

In this paper, we propose a synthesis-quality-

oriented depth refinement scheme. Rather than trying
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Figure 1. View synthesis based on multi-view
video plus depth.

to minimize depth errors, our scheme, as implied by

its name, intends to detect and refine only those depth

pixels that are highly sensitive to errors. An analytical

model was derived to measure how sensitive a depth

pixel is to its error in terms of synthesis distortions.

The model was also used as a guide for detection and

refinement. In order for the two operations to be able

to adapt to statistical changes due to compression ef-

fects, the settings of their control parameters are first

determined at the sender side by evaluating the per-

formance as perceived by the receiver over the range

of all possible choices, and then sent to the receiver as

the side information. Although extra bits are required

for signaling, the overhead is negligible and justified by

the significant improvement in synthesis quality. Ex-

perimental results show that the proposed scheme has

an average PSNR gain of 1.2dB over MPEG FTV and

consistently outperforms the state-of-the-art methods.

This paper is organized as follows: Section 2 con-

tains a brief review of DIBR. Section 3 introduces

an analytical model for characterizing synthesis dis-

tortions caused by depth-image compression. Section

4 describes our proposed synthesis-quality-oriented

depth refinement scheme. Section 5 compares the pro-

posed scheme with the state-of-the-art approaches in

terms of synthesis quality. The paper is concluded with

a summary of our observations.

2 Depth-Image-based Rendering

Depth-image-based rendering (DIBR) is a view gen-

eration method that renders virtual views of a scene

from a known reference image and its associated per-

pixel depth information. Often referred to as 3D im-

age warping, the process involves first reprojecting the

reference image into the 3D space utilizing its depth

information, followed by the projection of the recon-

structed scene onto the image plane of a virtual view

camera. The warping defines a vector-valued function

Ψ that takes pixel coordinates p = [ ] in the refer-

ence view as input and returns the corresponding co-

ordinates p0= [0 0] in the virtual view as output:

Ψ :

∙
p

1

¸
7→
∙
p0

1

¸
= A0RA−1

∙
p

1

¸
+
1


A0T (1)

where the rotation and translation matrices, R and T,

specify the relative position of the virtual camera; A0

and A indicate respectively the intrinsic parameters of

the virtual and reference cameras; and  is the depth

value associated with p. In the above, we have tacitly

assumed parallel camera configuration. The reader is

referred to [2] for details. For brevity we use Ψ(p;)

to denote the warping of the pixel p.

Eq. (1) establishes a depth dependent relation be-

tween the pixel coordinates of corresponding points in

an image pair. According to the equation, an arbitrary

virtual view can in principle be generated, provided

that the depth value  is known for every pixel p in

the reference image and that camera parameters are

available. In practice, however, the viewpoint naviga-

tion is constrained by disocclusion problems: "holes"

appear in synthesized images if areas occluded in the

reference view become visible in a virtual view. Such

artifacts become most obvious when the virtual view is

very far away from its reference.

To reduce the effects of disocclusion, the MPEG

committee has recently proposed a "multi-view video

plus depth" data format that enables the generation

of a virtual view to make use of more than one ref-

erence view. Figure 1 shows a classic illustration of

the view synthesis based on such data format. In the

example, each pixel in the virtual view is formed by a

weighted sum of its corresponding points in the two ref-

erence views, and depending on the disocclusion level,

the weight vector can vary from one pixel to another.

To find the corresponding points, depth images must

be transmitted along with their video signals. Due

to the enormous amount of data involved, both view

and depth images must be compressed prior to trans-

mission. The influence of depth-image compression on

synthesis quality is the subject of the next section.

3 Per-Pixel Synthesis DistortionModel

In this section, we introduce an analytical model for

characterizing synthesis distortions caused by depth-

image compression. The model is explained with ref-

erence to Figure 2, which illustrates an example of

disparity-compensated interpolation based on an im-

paired depth representation. In the figure,  denotes
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Figure 2. Disparity-compensated interpola-
tion using an impaired depth representation.

a virtual view image generated from the reference im-

age  utilizing its ground-truth, per-pixel depth in-

formation. As mentioned previously, the warping Ψ

establishes a relation between the intensity values of

the reference and virtual images: p0 = Ψ(p;) and
 (p

0) = (p). To simplify our discussion, we assume

that the reference image  is without coding errors.

The more general case can be analyzed along the same

lines of derivations that follow.

To examine the influence of depth-image compres-

sion on synthesis quality, we approximate the coding

effects of depth images by an additive noise model, i.e.,b =  + . Through the warping function Ψ, the

depth error  causes the projection of the pixel p to

move from p0 = Ψ(p;) to q0 = Ψ(p; b); the effect
is known as geometry distortion. It then follows that

 (p) is substituted for  (q
0) as the intensity value

of the pixel q0; the squared difference indicates the syn-
thesis distortion contributed by :

 , ( (p)−  (q
0))2 = ( (p)−  (q))

2

≈ ( (p)−  (p)−O (p) · (q− p))2

= (−O (p) · (q− p))2  (2)

where q0 is inversely projected to  by the inverse

mapping function Ψ−1(q0;) and a Taylor’s series ex-
pansion is used to approximate  (q). Recognizing

that q0 = Ψ(q;) =Ψ(p; + ), we solve for the

vector difference (q− p) as

q− p = −
 ( + )

c

where c =
£
I2 02×1

¤
AR−1T is a vector depending

solely on camera parameters. Substituting this result

into Eq. (2) then yields

 ≈
µ



 ( + )
O (p) · c

¶2
 (3)

Now let us consider parallel camera configuration,

with which the vector c has the form of [ 0] where

|| is proportional to the distance between the reference
and virtual cameras. Then it is obvious that

 ≈
µ



 ( + )

¶2
× 2 (p)× 2 (4)

where  (p) denotes the  component of the gradient

O (p) = [ (p)   (p)] computed at p. To obtain
the expected per-pixel synthesis distortion conditioned

on ground-truth depth values, we take conditional ex-

pectations of both sides and expand ( ( + ))
2

into its Taylor series in :

{| }

≈ 

(µ


 ( + )

¶2
|

)
×(2)

 (p)× 2

=
1

2
×
Ã

©
2
ª

2
− 2

©
3
ª

3
+ 3


©
4
ª

4
− 

!
×(2)

 (p)× 2

=
1

2
×
µ
2(p)

2
+ 9

4(p)

4
+ 75

6(p)

6
+ 

¶
×(2)

 (p)× 2

≈
1

2
× 2(p)

2
×(2)

 (p)× 2 (5)

where
(2)
 (p) = {2 (p)} can be viewed as a measure

of how rapidly the intensity changes along the horizon-

tal direction at p, and 2(p) indicates the correspond-

ing depth-error variance. In the above,  is assumed

to be independent of  (p) and to obey the normal

distribution, i.e.,  ∼ (0 2(p)). The last approx-

imation in Eq. (5) is justified because  is usually

much greater than (p).

Eq. (5) provides a non-stationary model for the ex-

pected per-pixel synthesis distortion, which suggests

that the depth error for different pixels should have

different contributions to the overall synthesis distor-

tions. From the equation, the distortion caused by

 is determined by several factors measured at p:

the depth-error variance, the intensity variation, the

(ground-truth) depth value, as well as the position of

the virtual camera. Further insight into the combined

effects of these factors is gained by looking at Figure

3, which displays the ratio of  to (p) as a func-

tion of {| }, under various settings of , ,
and 

(2)
 (p) simulating smoothly- or rapidly-changing

depth/intensity fields. In the experiment, (p) was

varied to identify the highest level of error variance at

which the specified distortion is achieved. The result

is then used to compute (p). Intuitively, the ra-

tio, which we call depth-error sensitivity, characterizes
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Figure 3. Measuring the depth-error sensi-
tivity under various settings of ,  and


(2)
 (p).

how sensitive a pixel is to its depth error in terms of

the extent of synthesis distortions. A higher ratio (sen-

sitivity) implies that a small error in depth can lead to

a considerable distortion.

From the figure, several important observations can

be made:

1. Compare the curves produced with different set-

tings of 
(2)
 (p) The larger the value of 

(2)
 (p),

the more sensitive the pixel p is to its depth er-

ror; namely, when depth errors happen in areas

with vertical edges or fine texture details, their ef-

fects on synthesis quality are more apparent. This

observation is also corroborated by [7].

2. Compare parts (a)(c)(e) with parts (b)(d)(f).

When a pixel corresponds to a farther clipping

plane, it exhibits a lower depth-error sensitivity.

In this case, the pixel has a larger depth value 
and according to Eq. (1), the resulting geometry

distortion is less significant.

3. Compare part (e) with parts (a)(c) (or (f) with

(b)(d)). When a pixel p is ill-warped to q0, the

Figure 4. A geometrical interpretation of the
effect of  on depth-error sensitivity.

resulting synthesis error is less observable if  is

much greater than  (and hence b). The re-
sult can be explained using the example shown in

Figure 4, where q1 and q2 denote respectively the

inverse projections of q0 for the two extreme cases:
1 À b and 2 ¿ b Since 1 À b ≈  À
2, the artifact is more noticeable when a depth

error causes warping to substitute a background

pixel for a foreground pixel, which explains the

less significant change in intensity when  À .

4. Observe the reciprocal relation between 2(p)
2


and 2 in Eq. (5). It suggests that when a pixel p

is warped to a virtual view that is farther away

from the reference view, it is more sensitive to

depth errors.

These observations remain valid for other camera con-

figurations, except that the effects of the intensity vari-

ation and camera arrangement must jointly be consid-

ered by evaluating {(O (p) · c)2}

4 Algorithm Details

The framework of MPEG FTV [9] views the trans-

mitted depth images as deterministically specifying the

depth information for the reference images. The com-

pression effects of depth images were neglected dur-

ing the rendering of virtual views. As seen from the

analysis in §3, depth errors can cause disturbing syn-

thesis artifacts, especially at areas with sharp edges or

fine texture details. To tackle the problem, we propose

to regard both the received view and depth images as

sources of information about the ground-truth depth

of the scene, and provide ways to detect and refine un-

reliable depth values.

4.1 System Architecture

To allow for an easier understanding of our algo-

rithm, Figure 5 depicts the system block diagram with
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Figure 5. System Block Diagram.

a highlight on the data communicated between func-

tional blocks. As shown, for an economic use of net-

work bandwidth, both reference images {1 2} and
their respective per-pixel depth information {12}
are compressed prior to transmission. These data are

decoded and reconstructed at the receiver side before

they are used for the creation of virtual views. The

"prime" symbols in the figure differentiate the coded

view and depth images from their original sources.

Recognizing that depth-image compression may give

rise to depth errors, we introduce a depth refinement

mechanism at the receiver side. The objective is to

improve synthesis quality by refining the depth val-

ues for those pixels (which we call unreliable pixels)

being highly sensitive to depth errors. The process

consists of two sequentially operated steps: (1) the de-

tection of unreliable pixels and (2) the refinement of

their depth values, both need to access the coded view

and depth images. To make their performance robust

against compression effects, additional control parame-

ters are transmitted to the receiver as the side infor-

mation, with their settings being determined at the

sender side by evaluating the detection and refinement

quality as perceived by the receiver over the range of

all possible choices. The details are elaborated in the

subsequent sections.

4.2 Reliability Detection

The detection process at the receiver side aims to

discover unreliable pixels—i.e., those that are highly

sensitive to depth errors and hence require higher fi-

delity for their depth values in order to minimize ren-

dering errors. From the theoretical analysis in §3, a

pixel is likely to be unreliable if it locates in a re-

gion with large intensity variation, or if it represents

a pixel in a near clipping plane. Although both facts

can jointly be utilized to form detection criteria, we

consider only the use of intensity variation because

view images are generally better compressed than their

depth representations, making the intensity informa-

tion more reliable for decision-making.

To quantify intensity variation, we adopt the

Gaussian derivative operator to compute gradient for

all the pixels in view images. A pixel p is considered

to be unreliable and its depth value deserves refining

if the magnitude kO 0 (p)k of its gradient exceeds a
given level 

1. According to Observation #1 in §3,

such a pixel is highly sensitive to depth errors, hence

requiring higher precision for its depth value. Appar-

ently, the value of  plays a pivotal role in determin-

ing the detection accuracy. With non-stationary signal

statistics, we propose to adapt  on a frame-by-frame

basis. This is realized by transmitting its value as the

frame-level side information.

In determining the value of  for a particular

frame, we wish to strike a good balance between the hit

and false-alarm rates. The best setting of , denoted

by  ∗, should have the subset of pixels S( ∗) = {p :
kO 0 (p)k   ∗} contain as many unreliable pixels as
possible while keeping the number of reliable ones to

be minimal. To find  ∗, we first associate each plau-
sible choice of  and the corresponding set of pixels

S() with a matching score that weights the hit rate
against the false-alarm rate:

() =
X

p∈S()

¡
1S(p) − (1− 1S(p))

¢


where 1S : p ∈S → {0 1} is an indicator function de-
fined as

1S(p) =
½
1 if  ≥ 

0 if   


Then we choose, among all possible choices, the one

that yields the highest matching score, i.e.,  ∗ =

argmax (). The approach can be interpreted as

to evaluate, at the sender side, the detection quality as

perceived by the receiver.

In the course of computing the matching score, it

is necessary to decide whether a hit or false alarm oc-

curs. This is accomplished by evaluating the per-pixel

synthesis distortion  at the sender side with 1 and

2 (or in the reverse order) being used in place of 
and  , respectively (cf. Eq. (2)). Specifically, if 
is greater than or equal to a threshold , indicating

that the depth associated with the pixel p may be un-

reliable, a hit is identified; otherwise, a false alarm is

signaled. Ideally, the  should be set to zero accord-

ing to the Lambertian condition; however, in practice a

non-zero value was used to compensate camera noises

and illumination difference between view images. The

1With parallel camera configuration, only the  component of

the gradient is computed and compared with  (cf. Eq. (4)).

Also, 0 represents a coded reference image.
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settings of  and  that yield the best synthesis quality

(in terms of PSNR) are searched exhaustively at the

sender side. Note that they need not be transmitted

to the receiver.

4.3 Depth Refinement

After we discover all the unreliable pixels, our next

step is to refine their depth values. Because depth re-

finement is performed by the receiver, its operation

must be made computationally simple and efficient.

For this reason, we adopt a candidate-based disparity

estimation scheme to derive depth from the received

view images. As in most block-based algorithms, a con-

stant disparity is searched for each block of pixels (of

size 7× 7), centered on an unreliable pixel p, by min-
imizing the error between the two view images after

disparity compensation. However, unlike their tech-

niques, which usually require examining a large num-

ber of disparities, ours restricts the search to only those

disparities that correspond to an integer depth value in

the interval of [ b −  b + ]. On one hand, this

constraint is an expediency out of complexity consid-

erations, and on the other hand, it prevents the simple

block-based search from getting an improper disparity.

Although reducing the number of search candidates

helps to simplify the disparity search, the issues are

how to determine a proper value of  for each unreli-

able pixel and how to signal the information efficiently.

As described previously, the value of  determines

the maximum modification of b that can be caused
by depth refinement—i.e., it controls the strength of re-

finement. It was found in our analysis that the depth

error sensitivity of a pixel is related to its ground-

truth depth value, implying that the adaptation of 

should refer to the value of b (which is an approx-
imation of ). For a trade-off between quality and

overhead, we divide the set S( ∗) into  disjoint sub-

sets (
∗
) 1 ≤  ≤  , each of which is assigned a

refinement search range . A uniform quantizer that

operates on the received depth b is used to catego-
rize the unreliable pixels in S( ∗) into one of the 
subsets. After that, the best settings of {}=1 are
searched exhaustively at the sender side and transmit-

ted to the receiver as the side information.

Figure 6 shows a sample result of our refinement

process. Observe that depth compression introduces

blocking artifacts on the decoded depth image (see Fig-

ure 6 (b)(e)). With depth refinement, we can remove

the artifacts largely (see parts (c) and (f) of Figure 6);

note the clarity of object boundaries that simply are

not visible in the decoded depth image. Interestingly,

the refinement can even recover some details that are

(a) (b) (c)

(d) (e) (f)

Figure 6. A sample result of the proposed
depth refinement algorithm: (a)(d) the orig-
inal depth image, (b)(e) the decoded depth
image, and (c)(f) the refined depth image.

removed by the enforcement of depth smoothing (com-

pare parts (a)(d) and (c)(f) of Figure 6).

5 Experiments

Simulation was carried out to demonstrate the per-

formance of the proposed scheme, and the results were

compared with that of [7] and [8]. All the refinement

schemes were implemented with the MPEG committee

software VSRS 2.1. All experiments used DERS 2.0

to generate depth images and JMVC 3.0.1 to encode

multi-view videos and their depth. The average PSNR

of synthesized images was computed based on the first

100 frames of each test sequence. Particularly, in im-

plementing the method described in [7], we employed

the magnitude of synthesis errors rather than manually

generated edge maps to distinguish pixels of different

categories. For a fair comparison, all the threshold val-

ues used in [7] and [8] were determined by optimizing

the quality of synthesized images.

Figure 7 compares the PSNR of various schemes

when the depth QP is varied from 22 to 44. The

curves associated with MPEG FTV were produced

without depth refinement. To see the effects of ref-

erence quality, parts (a) and (b) show the results

generated utilizing high-quality references (QP=22),

whereas parts (c) and (d) are their low-quality counter-

parts (QP=31). It can be seen that all three schemes

outperform MPEG FTV in all test sequences, and as

expected, the improvement is the greatest when depth

images are coarsely quantized. Moreover, ours has the

highest gain of all the schemes—an average PSNR im-

provement of 1.2dB over MPEG-FTV. The results are
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Figure 7. PSNR of synthesized images as a
function of the depth and reference QP. The
reference view images are coded with QP=22
(a)(b) and QP=31 (c)(d).

consistent with different test conditions.

Figure 8 further compares the subjective quality of

synthesized images. Part (a) illustrates what can hap-

pen if incorrect depth information is used for view syn-

thesis. Parts (b) through (d) show the results obtained

by correcting depth with one of the three schemes just

described (i.e., [7], [8], and ours). As can be seen,

"ghost effects" appear around object boundaries if the

depth is not refined; in comparison, the visual results

with depth refinement are considerably improved. Our

scheme even produces a result that is very close in ap-

pearance to the ground-truth view image. The rea-

son behind the superior performance can be explained

with Figure 9, which makes visible the unreliable pix-

els detected by the three schemes. As expected, our

scheme tends to correct more depth pixels locating in

areas with fine texture details or vertical edges—namely,

those that will crucially affect synthesis quality.

6 Conclusion

To alleviate the coding effects of depth images,

we proposed in this paper a synthesis-quality-oriented

depth refinement scheme. The approach is character-

ized by the unique consideration of attempting to refine

only those depth pixels that are likely to cause notice-

able synthesis artifacts. In the course, we developed

an analytical model to establish criteria for reliability

detection and to form guidelines for depth refinement.

Since both operate on the decoded information, addi-

tional side information is transmitted to make them ro-

bust against compression effects. Experimental results

show that our scheme has the highest PSNR gain of

all the state-of-the-art methods. It also produces a re-

sult that is visually similar to the ground-truth image.

Better performance is expected with the incorporation

of more sophisticated disparity search. Besides, the

analytical model can find its application in developing

depth compression algorithms.
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(a) (b) (c) (d)

Figure 8. Subjective quality comparison of synthesized images: (a) MPEG FTV (without depth re-
finement), (b) Tanimoto [7], (c) Sung [8] and (d) the proposed scheme. The depth QP is set to
44.

(a) (b) (c)

Figure 9. Pixels whose depth values are judged unreliable: (a) Tanimoto [7] (category 2), (b) Sung [8]
and (c) the proposed scheme.
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