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Abstract - -  In many emergency incidents, human operators need to derive 
countermeasures based on contingency rules under time pressure. Since people 
tend to be overconfident regarding their performance levels, it is necessary that 
the operators be well trained to calibrate proper decision confidence in the safety- 
related domain. This paper examines the effectiveness of  using expert systems to 
train for the desired calibration. Emergency management of  chemical spills was 
selected to exemplify the rule-based decision task. An expert system in the 
domain was developed to serve as the training tool. A total of  40 student subjects 
participated in an experiment in which they were asked to resolve spill scenarios 
under the manipulation of  training and deadline conditions. The experiment 
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results indicate that people tend to overestimate their performance capabilities 
when reasoning with a rule-based knowledge set, especially with the presence of 
time constraints. The results also show that the manifestation of overconfidence 
can be reduced for individuals who undergo the expert-system calibration 
training. The implications of the findings are examined in this paper. © 1997 
Elsevier Science Ltd 

Keywords - -  expert systems, training, overconfidence 

When decision makers complete a decision, one of the most crucial pieces of 
information they should provide is their confidence in that decision. This 
point is important because confidence levels usually serve as an indicator of 
the accuracy of the decisions made and, thus, guide the course of actions 
(Heath & Tversky, 1991; Wickens, 1992). A critical concern of the 
accuracy-confidence relationship is related to the concept of calibration. 
People are said to be calibrated if, over the long term, they are able to assign 
confidence estimates that equal the real proportion of correct responses. 

Research on the appropriateness of confidence has reached a general 
conclusion that people are poorly calibrated and tend to be overconfident 
when assessing their performance capabilities (Kleinmuntz, 1990). The 
phenomenon of overconfidence is indeed a pervasive bias that permeates a 
wide variety of tasks. Typical examples include general knowledge questions 
(Arkes, Christensen, Lai, & Blumer, 1987; Koriat, Lichtenstein, & Fischhoff, 
1980; Lichtenstein & Fischhoff, 1977, 1980), forecasting (Brown & Murphy, 
1987; Fischhoff & MacGregor, 1982), clinical judgment in human behavior 
(Oskamp, 1965), automotive troubleshooting (Mehle, 1982), and ranking of 
company stocks (Sen & Boe, 1991). 

Despite the widespread manifestation of overconfidence, the calibration 
issue has been left largely unexplored in a domain where unwarranted 
judgment of confidence could result in safety-related consequences. This task 
domain, also the interest of the present study, mainly involves decision 
making for emergency management of risks. The decision activities in 
emergency situations are characterized by the need to reach accurate 
solutions under stringent time pressure (Moray, 1988). These solutions are 
normally derived from extensive reasoning over a set of knowledge expressed 
in rule-based form (Johnson & Jordan, 1983). Specifically, the rule-based 
decision tasks are carried out by recognizing system and/or environment 
symptoms and associating rules with those symptoms (Rasmussen, 1986). 

It has been found that, during their cognitive activities, people are prone to 
adopt various intuitive strategies to minimize mental workload (Kahneman, 
Slovic, & Tversky, 1982). These simplifying strategies often make people 
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assign excessive weight to confirming evidences and disregard contradictory 
ones, thereby leading to unjustifiably high confidence on the decisions that 
are, in fact, incorrect (Koriat et al., 1980; Lichtenstein, Fischhoff, & Phillips, 
1982). The tendency of relying on the heuristics-based processing of 
information has been found to become more prevalent when time pressure 
is present (Payne, Bettman, & Johnson, 1988; Svenson & Mauley, 1993). 
Therefore, we can extrapolate that, with limited time horizons under 
emergency circumstances, people will also tend to be overconfident when 
performing rule-based decision tasks. Hence, our first hypothesis is that 
people will be overconfident in the rule-based emergency domain. 

In order to reduce the common bias of overconfidence, several 
interventions, emphasizing training with feedback, have been attempted 
and some of them were at least partially successful. Generally, these 
debiasing efforts resort to examining feedback in error identification and 
correction (Kulhavy, 1977) with the aim of reducing overconfidence. For 
example, Lichtenstein and Fischhoff (1980) succeeded in reducing over- 
confidence by providing feedback on the proportion of correct answers. 
Arkes et al. (1987) also found a significant improvement of calibration by 
providing subjects with feedback regarding the answers to individual 
questions. 

Considering the successful efforts, appropriate calibration of decision 
confidence in emergency management seems possible if humans are trained 
with feedback concerning the symptomatic search of rule-based knowledge. 
Being excellent rule-based reasoners, expert systems (ES) are considered by 
the present study to serve as the calibration prescription. The viability of 
using ES-based training for confidence calibration is built on the following 
rationale: ES, by employing normative artificial intelligence (AI) techniques, 
are capable of deriving rule-based solutions that are always logically true 
(Luger & Stubblefield, 1989); furthermore, ES are distinct in being able to 
make the process of the rule-based reasoning transparent to human users 
through so-called explanatory justifiers (Hayes-Roth, Waterman, & Lenat, 
1983; Luger & Stubblefield, 1989). In other words, the value of the ES 
justifier is to .provide decision makers with explanations concerning the 
normative search mechanism - -  essential for accurate and consistent rule- 
based decision making. 

These prominent features enable exploitation of the ES-based decision 
process and results as feedback, in order to identify and correct possible 
intuitive decision biases that would cause overconfidence. Our second 
hypothesis is that ES-based training with normative feedback will provide a 
resource to which humans can revert when the tendency of heuristic 
processing of rule-based information is occurring. Such training experience is 
expected to enhance a person's ability to mediate an appropriate 



184 Su and Lin 

confidence-accuracy relationship when emergency incidents have to be 
resolved under extreme time pressure. In short, the present study is aimed at 
investigating the effectiveness of utilizing ES as a training system for 
calibration of decision confidence in emergency management. 

METHODOLOGY 

Independent Variables 

Given the purpose of the present study, training and time pressure were 
manipulated as independent variables. Training was designed as a between- 
subjects factor and defined by two treatment levels. The ES group received 
lines of reasoning generated by an ES. The control group, however, received 
no such information. Time pressure was examined using two treatment levels 
and was designed as a within-subjects factor due to people's adaptivity in 
reacting to deadline conditions (Payne et al., 1988). The subjects in the "no- 
time-pressure" condition were allowed to complete a task at whatever pace 
they wished, whereas the subjects in the "time-pressure" condition were 
required to finish a task within 90 s (this was found to constitute time 
pressure in a pilot study). 

Subjects 

Subjects were 40 undergraduate students in industrial engineering at a major 
university. Participation in the experiment earned credit toward fulfillment of 
a course requirement. None of the 40 subjects had taken ES/AI-related 
courses prior to participating in the experiment. These subjects were 
randomly assigned to the two training conditions, with each group having 
20 participants. All subjects completed the experiment successfully. 

Expert-System Development 
An ES in emergency management of chemical spills (Johnson & Jordan, 
1983) was developed to serve as the training tool. The knowledge base of the 
ES consisted of 52 domain-specific rules, in the form of "IF symptoms 
THEN action", that dealt with various aspects of spill management 
(Appendix A shows some sample rules). A "HOW" explanatory facility 
(Luger & Stubblefield, 1989) was programmed to demonstrate how the ES 
employs a normative search strategy to chain relevant rules to prove a query. 
This facility is particularly significant because it is the reasoning lines 
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generated by the justifier that will function as feedback for debiasing 
overconfidence. The ES also included an interface in which the interaction 
with the ES-based feedback could be conducted in a friendly, natural 
language environment. 

Stimulus Material]Query Systems 

The query systems represented a set of scenarios that consisted of queries and 
associated facts simulating spill incidents (Appendix B shows a sample 
scenario). There were two sets of query systems. One was for training and 
included 4 scenarios. The other was for experimental tests and included 10 
scenarios. Both sets of the query systems were manipulated to chain the same 
number of rules so that the 14 queries were identical in terms of processing 
difficulty. The answer to each of the 14 queries comprised five alternatives, 
only one of which was correct. 

Performance Measures 

In order to test the aforementioned hypotheses, three aspects of rule-based 
performance were measured. The first measure related to performance 
accuracy and was defined as the proportion of the queries that were solved 
correctly. The second measure concerned confidence judgment  and was 
evaluated as the probability that the answer to a test query was correct. This 
confidence rating ranged from 1.0 (absolutely confident) to 0.2 (a random 
guess). The third measure was to test overconfidence. According to 
Lichtenstein et al. (1982), a judgment is calibrated if, for all propositions 
assigned a given probability, the proport ion that is true equals the 
probability assigned. Therefore, the measure was derived by computing, 
for all scenarios assigned a given probability, the average deviation between 
the confidence rating and the proportion of scenarios solved correctly, 
weighted by the number of decisions made within the confidence category. 
This score ranged from 1.0 (completely overconfident) to - 1 . 0  (totally 
underconfident), with 0.0 indicating perfect calibration. The mathematical 
expression of the confidence score was as follows: overconfidence/under- 
confidence = (l/N) Y]t  = I~T nt(rt-- ct), where 

N = total number of decisions made, 
T = total number of confidence categories, 
ct = the proport ion correct in confidence category t, 
n t = the number of decisions made in confidence category t, 
rt = the probability assigned to confidence category t. 
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Procedures 

The experiment consisted of the following stages: 

1. Memorization session. All subjects were required to memorize the 52 
domain rules, with an emphasis on being able to recognize the association 
between the symptoms in the IF part and the action in the T H E N  part. 
The memorization task was performed as a take-home assignment. 

2. Pretraining session. In this session, all subjects were required to take a test 
to demonstrate their knowledge of the rules. The test included 22 blank- 
filling questions in which the subject was asked to provide associated IF 
symptoms, given a T H E N  part, or associated T H E N  actions, given an IF 
part. Only those who answered all the questions correctly qualified to 
enter the next training session. The adoption of such a strict measure was 
to exclude an extraneous situation where the failure in confidence 
judgment  resulted from forgetting the rules. The subjects who scored 
unsatisfactorily were instructed to review the rules and to retake the test. 

3. Training session. In both training groups, each subject was required to 
solve the four  t raining queries that  were presented th rough  a 
computerized scenario window. After completing each training query, 
the ES subjects were instructed to interact with the ES and the associated 
HOW explanatory justifier to observe the ES-based feedback. The 
control subjects, however, were not allowed to access the ES and received 
no feedback at all concerning the correctness of their decision outcomes 
and processes. 

4. Test session. In this session, all subjects were required to solve the test 
query system on a computerized data collector. The 10 test queries were 
presented through a scenario window in the data collector and were 
separated, by the time-pressure variable, into two categories. Half of the 
queries were designated for the 90-s deadline condition, and the other 
half for the no-time-pressure condition. The order in which these 10 
replicates (i.e., test queries) were presented was randomized indepen- 
dently for each of the 40 subjects. A clock displaying the 90-s countdown 
appeared in the data collector as soon as a time-constrained test query 
was presented. Immediately on finishing each of the test queries, all 
subjects were required to enter the answer and associated confidence 
rating into the data collector. 

RESULTS AND ANALYSIS 

The descriptive statistics for the three response measures are summarized in 
Table 1. Separate ANOVAs with one between-subjects factor (training) and 
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Table 1. Means (and Standard Deviations) of Performance Measures for Each 
Training Condition as a Function of Time Pressure 

Measure 

Control ES 

No time pressure Time pressure No time pressure Time pressure 

Accuracy 0.683 0.381 0.704 0.522 
(0.176) (0.224) (0.165) (0.198) 

Confidence rating 0.747 0.622 0.716 0.505 
(0.195) (0.147) (0.149) (0.148) 

Overconfidence/ 0.071 0.248 0.011 - 0.013 
underconfidence (0.134) (0.144) (0.063) (0.109) 

Abbreviation: ES = expert systems. 

one within-subjects factor (time pressure) were performed on the three 
measures. Analysis of the ANOVA results concerned firstly how subjects 
reacted to time pressure, followed by an examination of the effectiveness of 
the ES-based training. Interactions were studied where appropriate. In-depth 
analysis of the interaction was conducted by the method of simple main 
effects (Kirk, 1993). 

The main effects of both time pressure and training on the confidence score 
were significant, F(1, 38) = 10.96, p < .003, and F(1, 38) = 30.93, p < .0001, 
respectively. However, a significant interaction, F(1, 38)= 18.91, p < .0001, 
called for further investigation of the main effects. The simple main effects 
analysis revealed that the confidence score varied greatly in response to the 
manipulat ion of time pressure, and that the source of the significant variation 
came from the subjects at the control level of the training treatment. This was 
evidenced by the fact that the subjects who did not receive the ES training 
showed a natural tendency to be overconfident. This tendency became 
significantly stronger with the imposition of time pressure, M = 0.071 versus 
M =  0.248, F(1, 38)=29.33, p < .0001. However, for those who received the 
ES training, their response to the presence of time pressure in the confidence 
score was not sensitive, M=0.011 versus M =  -0.013,  F(1, 38)=0.54, n s .  

On the other hand, the ES training was found to exhibit an impact on the 
subjects' calibration performance. The simple main effects analysis showed 
that the source of the significant difference came primarily from the training 
effect with the presence of time pressure. The result was evidenced by the 
significant change in the confidence score from being overconfident at the 
control level to being underconfident at the ES level when the rule-based task 
was per formed under  time pressure, M = 0 . 2 4 8  versus M = -0 .013 ,  
F(1, 76)=49.83, p < .0001. Under  the normal (no-time-pressure) condition, 
the ES training caused a slight decrease in the confidence score, M =  0.071 
versus M=0.011,  F(1, 76)=2.63, p < .10. 

With respect to the measure of confidence rating, the ANOVA results 
showed no signif icant  in te rac t ion  of  t ime pressure and t ra ining,  



188 Su and Lin 

F(1, 38)=1.53, ns. The main effect of time pressure was significant, 
F(1,  38)=24.61, p < .0001. The confidence rating decreased from 0.7315 at 
the no-time-pressure level to 0.5650 at the time-pressure level. The main 
effect of  training was marginally significantl F(1, 38)= 3.56, p < .07. The 
confidence estimate was reduced from 0.6845 for the control condition to 
0.6120 for the ES condition. 

With regard to decision accuracy, the main effect of time pressure was 
significant, F(1, 38) = 71.06, p < .0001, but there was no significant effect of 
training F(1, 38)=2.21, ns. However, explanation of the two main effects 
must be qualified since there was a significant interaction, F(1, 38)=4.44, 
p < .05. The simple main effects analysis pointed out that the subjects in both 
training conditions suffered significant decrease of accuracy when confront- 
ing time pressure: M=0 .68  versus M=0.38 ,  F(1, 38)=55.52, p < .0001 for 
the control group; and M = 0.70 versus M = 0.52, F(1, 38)= 19.99, p < .0001 
for the ES group. However, under the presence of a time constraint, the 
feedback received from the ES training showed its competence in sustaining a 
reasonable level of rule-based performance, M = 0 . 5 2  versus M=0 .38 ,  
F(1, 76) = 5.29, p < .05. 

The calibration behavior under the manipulation of the four treatment 
conditions was also demonstrated by the calibration curve (Lichtenstein et 
al., 1982) displayed in Figure 1. The identity line in Figure 1 represents 
perfect calibration, with the curves below and above the identity line meaning 
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Figure 1. Calibration curves for the four training and time-pressure manipulations. 
ES =expert systems, 
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overconfidence and underconfidence, respectively. The calibration pattern 
found in the present study was quite similar to that in Arkes et al. (1987). 

According to Figure 1, the subjects who were not exposed to the ES 
training tended to assign unjustifiably high confidence assessment, relative to 
the corresponding accuracy level. This bias was particularly strong in the 
time-pressure condition, as demonstrated by the most distant curve below the 
identity line. However, the confidence judgment of ES subjects acted in the 
opposite direction. The ES-trained calibration behavior was displayed by the 
curve close to the identity line for the no-time-pressure condition, and by the 
underconfidence curve for the time-pressure condition. 

DISCUSSION 

Overall, the experiment results support our two primary hypotheses. The first 
hypothesis predicted the manifestation of overconfidence in the rule-based 
emergency domain and this prediction was confirmed. It appears that the 
increasing feelings of confidence in operators supervising emergencies are not 
a sure sign of increasing accuracy in their decisions. At this point, we will 
examine the mechanism that underlies the observed overconfidence. One 
plausible explanation is that, due to the limited capacity of working memory 
(Wickens, 1992), people tend to employ the heuristic of anchoring (Tversky 
& Kahneman, 1974) in the processing of rule-based information. We assume 
that this is done by putting unjustified weight on the rules whose symptom 
values are immediately available. 

This tendency is very likely to cause the confirmation bias (Einhorn & 
Hogarth, 1978) in which people show an inertia to confirm the anchoring 
rules and to disregard the rules that need to be further inferred. The biased 
sense of confirmation may lead subjects into overestimating the accuracy of a 
decision that could eventually be overridden by the neglected rules, hence 
resulting in overconfidence. As cited earlier, people adapt to time pressure by 
relying more heavily on intuitive processing of information. The contingent 
behavior is expected to result in more frequent use of the hypothesized 
heuristics, which explains the much stronger phenomenon of overconfidence 
under time pressure for the nontrained individuals. 

Given this speculation, any contingency rules or procedures that are 
readily available to the decision-maker's memory can be the origin of the 
possible overconfidence. These rules may include, for example, rules whose 
symptoms are directly provided in an incident, and the rules associated with 
high-frequency events. This implication may serve as a guideline for 
information display design. We suggest that rule-based knowledge for 
emergency management should be presented to human operators with equal 
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salience so that the anchoring rules bearing cognitive availability will not be 
processed with unwarranted precedence. 

The second hypothesis on the effectiveness of the ES calibration training 
was also confirmed. Obviously, through the feedback concerning the ES/AI 
search strategies (e.g., forward/depth-first chaining), the subjects have an 
opportunity to correct their intuitive decision errors and learn the normative, 
cognitive-demanding process of rule-based reasoning. It appears that it is the 
comprehension which makes the subject recognize the complexity required 
for deriving successful solutions and, therefore, assign more realistic (i.e., 
downward) estimates of hit rates. This interpretation may imply that 
inappropriate realism of confidence judgment can be prevented if decision 
problems are resolved based on normative algorithms. This finding is 
analogous to that of Jiang, Muhanna, and Pick (1996), which suggested the 
use of normative methods (e.g., Bayes' Rule) for justified confidence in model 
selection in a decision support system. In addition, the adjustment was found 
to be particularly apparent under time pressure. This may be due to the ES 
subjects' realization that the normative completion of the rule-based task is 
less likely with such a time stringency, resulting in a more cautious confidence 
evaluation of their performance. 

Note that the effects of the ES training were built on simultaneous 
improvements on both dimensions of the confidence-accuracy relationship. 
The performance capability in terms of accuracy level was also improved by 
the ES training. This result is in line with that of Sharit, Chen, and Lin 
(1993). The concurrent (but different in magnitude) enhancement of 
performance ability and confidence judgment is considered the cause of the 
observed underconfidence for the ES subjects in the time-pressure condition. 
Underconfidence is more desirable than overconfidence, since the con- 
sequences of underconfidence are usually less detrimental (Sen & Boe, 1991). 
Therefore, in emergency situations, it seems justified to encourage trained 
individuals to be conservative on the decisions made, even when their 
performance capabilities have actually been strengthened. However, the 
extent of the downward adjustment for confidence still needs to be controlled 
within an acceptable range. 

Another interesting finding is that, in the present study, a significant 
improvement of calibration was achieved through a small amount of 
training. The investigation by Lichtenstein and Fischhoff (1980), perhaps the 
most ambitious effort in the literature of calibration training, found 200 
items followed by feedback were sufficient to teach people to be well 
calibrated. The feedback in their study comprised summary statistics of 
calibration performance. Arkes et al. (1987) also achieved a significant 
improvement in calibration, but with only 5 feedback items where the 
feedback consisted of specific answers to individual questions. The present 
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study used even fewer training trials (4) in which more detailed feedback 
concerning the exhaustive, noncompensatory process of the rule-based search 
was provided. The improvement may primarily relate to the subjects' 
learning of logical reasoning, rather than their direct learning of calibration. 
That is, by observing specific feedback demonstrating how the rules were 
logically processed, ES-trained individuals become better reasoners and also 
more aware of their own fallibility in the manipulation of rule-based 
knowledge. The implication of this finding is that feedback with a higher 
degree in specificity may represent a more efficient debiasing technique for 
overconfidence. It is suggested that, in practice, more informative feedback 
should be given higher priority in situations where a substantial amount of 
training is not possible. 

CONCLUSIONS 

Although ES have been thought of as a powerful decision support system 
(Hayes-Roth et al., 1983), the present study demonstrates a new paradigm of 
ES as a training aid. The significance of utilizing ES to train stems from the 
need for proper calibration of decision confidence during emergency 
situations. The qualification of the ES-based calibration training is justified 
by the evidence that trained individuals do lower their undue confidence 
toward desirable realism of their performance levels. Despite the supportive 
findings, there are limitations to the present research that must be addressed. 

First, the knowledge base for the selected application domain in the 
experiment was kept monotonic and reliable. Although this simplicity was 
needed to control the scale of the tasks appropriate for the subjects, the 
problems arising in real-world emergency situations often bear data that are 
uncertain and incomplete. Future research calls for the need to incorporate 
uncertainty in domain knowledge in order to better understand the 
calibration issue with real-life implications. This can be done by training 
people using an ES built with models that handle uncertainty, such as fuzzy 
logic (Zadeh & Kacprzyk, 1992) and the certainty theory (Buchanan & 
Shortliffe, 1984). It would then be interesting to compare people's calibration 
behavior with the ES confidence models for unreliable rule-based informa- 
tion. 

Second, most emergency incidents differ in the degree of processing 
difficulty. Previous studies (Lichtenstein et al., 1982; Sen & Boe, 1991) 
indicated that task difficulty plays an important role in influencing humans' 
calibration behavior. Therefore, it is necessary to take into account the 
ha rd-easy  effect to further investigate the issues examined in the present 
study. 
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APPENDIX A 

Some Sample Rules of the ES Knowledge Base 

Rule 4: 

IF (victims are contaminated) 

and (victims have blood circulation problems) 

THEN (perform treatment S on the victims) 

Rule 7: 

IF 

and 

THEN 

(the spill area is > 10 ram) 

(the spill is classified as type A) 

(establish command post C2) 

Rule 24: 

IF 

and 

THEN 

(the spill substance is chlorine) 

(the spill density is > 5 ppm) 

(classify the spill as type A) 
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Rule 37: 

IF 

and 

THEN 

(perform treatment S on the victims) 

(take evacuation route X) 

(assign the victims to the RED first aid zone) 

APPENDIX B 

A Sample Spill Scenario/Query System 

[Query]: Given the following facts, please identify the emergency level of  the spill 
incident ... A, B, C, D, or E? 

[Facts]: The spill is taking place in the chip product ion zone; spill substance is chlorine; 
night working shift is on duty; spill area is > 10 mm; victims are contaminated;  there is 
on-scene explosion; spill density is > 5 ppm; victims have breathing problems. 


