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TOTAL QUALITY MANAGEMENT, VOL. 8, NO. 6, 1997, 409 ± 416

Multi-response robust design by principal

component analysis

CHAO-TON SU & LEE-ING TONG
Department of Industrial Engineering and Management, National Chiao Tung University,

Hsinchu, Taiwan, ROC

Abstract Most previous Taguchi method applications have only addressed a single-response

problem. However, more than one correlated response normally occurs in a manufactured product.

The multi-response problem has received only limited attention. In this work, we propose an eŒective

procedure on the basis of principal component analysis (PCA) to optimize the multi-response problems

in the Taguchi method. With the PCA, a set of original responses can be transformed into a set of

uncor related components. Therefore, the con¯ ict for determining the optimal settings of the design

parameters for the multi-response problems can be reduced. Two case studies are evaluated, indicating

that the proposed procedure yields a satisfactory result.

Introduction

Robust design is an engineering method of quality improvement that seeks to obtain a lowest

cost solution to the product design speci® cation based on the customer’s requirements. The

Taguchi method, which combines the experimental design techniques with quality loss

considerations, is the conventional approach to achieve robustness. This method can only be

used in a single-response case; it cannot be used to optimize a multi-response problem.

However, a customer normally considers more than one quality characteristic in most

manufactured products and the quality characteristics are usually correlated. Engineering

judgement has, up until now, been used primarily to optimize the multi-response problem in

the Taguchi method (Phadke, 1989). Unfortunately, an engineer’s judgement increases the

uncertainty during the decision-making process. Another approach to solve this problem

entails assigning a weight for each response (Hung, 1990; Shiau, 1990; Tai et al., 1992).

Nevertheless, determining a de® nite weight for each response in an actual case still remains

di� cult. Another method employs the regression technique (Logothetis & Haigh, 1988;

Pignatiello, 1993). However, such an approach increases the computational process complex-

ity, and the possible correlations among the responses may still not be considered. In addition,

a factor which is signi® cant in a single-response case may not be signi® cant when considered

in a multi-response case. Therefore, a more eŒective approach is required to solve this

complicated problem.

In this work, we propose a systematic procedure via principal component analysis (PCA)

to optimize the multi-response production process. By using PCA, a set of original responses

is transformed into a set of uncorrelated components so that the optimal factor/level

combination can be found. The proposed procedure includes a series of steps capable of
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410 C.-T. SU & L.-I. TONG

decreasing the uncertainty in engineering judgement when the Taguchi method is applied.

This work addresses only the static quality characteristic problem, in which the desired

response value is ® xed.

PCA

Pearson and Hotelling (1933) ® rst introduced PCA. PCA is used to explain the variance±

covariance structure through the linear combinations of the original variables. Assume that

there are p components to represent the system variability. By using PCA, this variability can

be explained by a small number, k(k < p), of the principal components, i.e. k principal

components will account for most of the variance in the original p variables. Let Y 1 , Y2 , . . . ,

Yp be a set of variables. Through the PCA, we have the following uncorrelated linear

combinations:

X 1 5 a11Y1 + a12Y 2 + . . .+ a1pYp

X 2 5 a 21Y1 + a 22Y 2 + . . .+ a 2pY p

:

X k 5 ak1Y1 + ak2Y 2 + . . .+ akpYp

where a
2
k1 + a

2
k2 + . . .+ a

2
kp 5 1. Further, X 1 is called the ® rst principal component, X 2 is called

the second principal component and so on. The coe� cients of the kth component are the

elements of the eigenvector corresponding to the kth largest eigenvalues. The option of

performing the PCA is available on SAS and SPSSX.

More than one correlated quality characteristic is usually considered in a manufactured

product. PCA is an eŒective means of determining a small number of constructs which

account for the main sources of variation in such a set of correlated quality characteristics.

Proposed procedure

In this section, an eŒective procedure is developed to transform a set of responses into a set

of uncorrelated components such that the optimal conditions in the parameter design stage

for the multi-response problem can be determined. Assume that we have p responses. The

proposed procedure is described in the following.

Step 1: Compute the quality loss for each response. Let L i j be the quality loss for ith response

at jth trial. L i j can be computed on the basis of Taguchi’ s loss function.

Step 2: Normalize L i j . To reduce the variability, the scale of the quality loss for each response

is normalized. L i j is transformed into Y i j (0 < Y i j < 1) by using the following formula:

Y i j 5
L+

i 2 L i j

L+
i 2 L

2
i

where Y i j 5 the normalized quality loss for ith response at jth trial; L+
i 5 max{L i1 ,

L i2, . . . , L i j} ; L 2
i 5 min{L i1 , L i2 , . . . , L i j}.

Step 3: Perform the PCA on the basis of the computed data, Y i j .

Step 4: Determine the number of principal components, k, and compute

X kj 5 R
p

i 5 1

akiY i j
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MULTI-RESPONSE ROBU ST DESIGN 411

where ak1 , ak2 , . . . , akp are the elements of the eigenvector corresponding to the kth largest

eigenvalue. X can be considered as a multi-response performance index, which can be used

to determine the optimal conditions. Based on Kasier’ s (1960) study, the components with

eigenvalue greater than 1 are chosen to replace the original responses for further analysis.

Step 5: Determine the optimal factor/level combination. The larger the X value implies the

better the product quality. If k 5 1, the factor eŒects can be estimated and the optimal control

factors and their levels determined on the basis of a single X value. If k > 1, trade-oŒs might

be necessary to select a feasible solution.

Illustrations

This section demonstrates the eŒectiveness of the proposed procedure by using two case

studies.

Case study 1

This case study involves improving a hard disk drive’ s quality. The Industrial Technology

Research Institute, Taiwan, performed the case study. In this study, an experiment was

performed to determine the eŒects of design parameters on the responses. Optimal settings

could, it was hoped, be found such that a low variability for the responses could be achieved.

The four desired responses are:

PW: 50% pulse width (smaller-the-better);

HFA: high-frequency amplitude (larger-the-better);

OW: over write (larger-the-better);

PS: peak shift (smaller-the-better).

In the experiment, ® ve controllable factors were selected for optimization. Table 1 lists these

factors and their alternative levels. The standard array L18 was selected for the experiment.

Table 2 summarizes the data for 18 experiments.

W hen the proposed procedure is applied in this case study, the quality loss for each

response is ® rst computed and normalized, as shown in Table 3. Next, the PCA is performed

on these normalized data using SAS. Table 4 lists the eigenvalues. Based on Kasier’ s criterion,

the ® rst principal component is chosen to represent the original four responses. The

eigenvector for the ® rst largest eigenvalue is [0.59716, 0.50583, 2 0.3296, 0.52883].

Consequently, we have

X 1j 5 0.59716Y 1j+ 0.50583Y 2j 2 0.3296Y 3j+ 0.52883Y4j

Table 1. Factors and their levels (case study 1)

Factors Level 1 Level 2 Level 3

A: Disk writability 8000 10 000 Ð

B: Magnetization width 2.5 3.0 3.5

C: Gap length 0.3 0.4 0.5

D: Coercivity of media 1200 1400 1600

E: Rotational speed 3000 3500 4000

N (noise): Flying height 2 4.0 4.5

Starting levels are identi® ed by italics.
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412 C.-T. SU & L.-I. TONG

Table 2. Data summary by experiment (case study 1)

Factors PW HFA OW PS

Exp.

no. A B C D E F G H N1 N2 N1 N2 N1 N2 N1 N2

1 1 1 1 1 1 1 1 1 63.5 66.0 286.7 257.6 2 32.2 2 30.1 10.9 12.0

2 1 1 2 2 2 2 2 2 64.2 66.0 343.0 310.6 2 34.8 2 33.3 11.6 13.0

3 1 1 3 3 3 3 3 3 65.6 67.0 381.1 354.4 2 36.2 2 35.3 13.6 14.7

4 1 2 1 1 2 2 3 3 54.5 56.6 328.1 295.4 2 33.5 2 31.5 9.2 10.8

5 1 2 2 2 3 3 1 1 56.2 57.8 368.3 333.0 2 36.2 2 34.9 10.2 11.2

6 1 2 3 3 1 1 2 2 87.5 89.3 234.3 213.5 2 40.0 2 38.4 17.8 19.1

7 1 3 1 2 1 3 2 3 63.6 66.1 288.0 259.2 2 31.7 2 29.5 10.1 11.8

8 1 3 2 3 2 1 3 1 64.3 66.1 335.8 304.9 2 35.2 2 33.9 10.7 12.1

9 1 3 3 1 3 2 1 2 65.6 66.9 312.7 282.8 2 43.7 2 46.5 14.4 15.4

10 2 1 1 3 3 2 2 1 47.7 49.5 451.0 393.8 2 15.6 2 22.3 11.0 11.8

11 2 1 2 1 1 3 3 2 74.9 77.0 291.6 263.0 2 33.6 2 32.6 16.3 17.9

12 2 1 3 2 2 1 1 3 74.9 76.5 346.8 312.4 2 35.1 2 33.8 16.9 18.6

13 2 2 1 2 3 1 3 2 47.7 49.5 447.9 393.8 2 25.8 2 22.3 10.0 11.6

14 2 2 2 3 1 2 1 3 75.0 77.0 312.8 280.5 2 29.7 2 28.9 14.6 16.5

15 2 2 3 1 2 3 2 1 74.9 76.5 271.9 245.4 2 38.4 2 38.9 18.0 19.2

16 2 3 1 3 2 3 1 2 54.5 56.6 385.2 336.7 2 20.4 2 17.2 11.6 13.4

17 2 3 2 1 3 1 2 3 56.2 57.8 378.7 341.5 2 35.6 2 34.6 12.1 13.4

18 2 3 3 2 1 2 3 1 87.4 89.3 270.6 244.6 2 38.5 2 37.0 19.4 21.3

Table 3. Normalized data and X values (case study 1)

L18

Exp.

no. A B C D E F G G PW HFA OW PS X

1 1 1 1 1 1 1 1 1 0.6641 3 0.44870 0.78924 0.9021 4 0.84032

2 1 1 2 2 2 2 2 2 0.6559 4 0.73942 0.85558 0.8373 3 0.92640

3 1 1 3 3 3 3 3 3 0.6270 8 0.87899 0.88714 0.6822 8 0.88745

4 1 2 1 1 2 2 3 3 0.8672 0 0.67398 0.82224 1.0000 0 1.11638

5 1 2 2 2 3 3 1 1 0.8373 5 0.82543 0.88352 0.9551 5 1.13128

6 1 2 3 3 1 1 2 2 0.0000 0 0.00000 0.93825 0.2360 2 0.18423

7 1 3 1 2 1 3 2 3 0.6617 6 0.45898 0.77444 0.9364 3 0.86709

8 1 3 2 3 2 1 3 1 0.6535 5 0.71303 0.86540 0.9051 8 0.94423

9 1 3 3 1 3 2 1 2 0.6283 0 0.60521 1.00000 0.6131 5 0.67602

10 2 1 1 3 3 2 2 1 1.0000 0 1.00000 0.00000 0.9062 3 1.58178

11 2 1 2 1 1 3 3 2 0.3752 1 0.48406 0.83626 0.3879 8 0.39854

12 2 1 3 2 2 1 1 3 0.3822 5 0.74998 0.86349 0.3156 6 0.49009

13 2 2 1 2 3 1 3 2 1.0000 0 0.99757 0.50777 0.9470 7 1.43494

14 2 2 2 3 1 2 1 3 0.3738 4 0.59826 0.73805 0.5481 2 0.57244

15 2 2 3 1 2 3 2 1 0.3822 5 0.34811 0.93128 0.2185 4 0.21317

16 2 3 1 3 2 3 1 2 0.8672 0 0.85425 0.06560 0.8205 4 1.36188

17 2 3 2 1 3 1 2 3 0.8373 5 0.85467 0.80169 0.8016 9 1.06758

18 2 3 3 2 1 2 3 1 0.0016 1 0.33984 0.91838 0.0000 0 2 0.12953

where Y j1 , Y j2 , Y j3 and Y j4 represent the normalized quality loss for the responses PW, HFA,

OW and PS at jth trial respectively. The X values are computed and listed in the last column

of Table 3. Table 5 summarizes the main eŒects on X and Fig. 1 plots their corresponding

factor eŒects. The controllable factors on X value in order of signi® cance are: C, E, D, B

and A. The larger the X value implies the better the quality. Consequently, the optimal

condition can be set as A 1B1C 1D 3E3 .
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MULTI-RESPONSE ROBU ST DESIGN 413

Table 4. Eigenvalues for the principal components (case study 1)

Principal component Eigenvalue

First 2.93478

Second 0.68014

Third 0.33771

Fourth 0.04736

Table 5. Main eŒects on X (case study 1)

Factor Level 1 Level 2 Level 3 Max 2 min

A 0.5950 0.5926 Ð 0.0024

B 0.6623 0.5163 0.6027 0.1460

C 1.0108 0.6380 0.1325 0.8783

D 0.5147 0.5900 0.6771 0.1624

E 0.2029 0.6474 0.9311 0.7282

Figure 1. Factor eŒects on X (case study 1).

This case study is also analyzed by the Taguchi’ s approach. The tentative optimum

setting can be separately made in the following:

PW: A2B1C 1D 1E3

HFA: A2B1C 1D 3E3

OW: A1B2C3D 1E1

PS: A 1B3C 1D 2E3

These results demonstrate that diŒerent levels of the same factor can be optimum for diŒerent

responses. As a result, the decision-making process is di� cult. Based on the signi® cance of

the factor eŒects and the engineering judgement, the optimal condition is set as A1B1C 1D 1E3 .

To predict the anticipated improvements under the chosen optimum conditions, the

signal to noise (SN) ratios for these four responses are predicted using the additive model.

Table 6 displays the computations. This table reveals that no signi® cant diŒerence arises in

the eŒectiveness between the proposed procedure and Taguchi’ s approach. However, the

proposed procedure can be considered as a more convenient approach than Taguchi’ s method

in the multi-response case, owing to the fact that the decision-making’s complexity is reduced.
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414 C.-T. SU & L.-I. TONG

Table 6. Prediction of SN ratios using the additive model (case study 1)

Optimum Anticipated

condition (dB) improvement (dB)

Starting

condition Taguchi’ s Proposed Taguchi’s Proposed

Factor (dB) approach procedure approach procedure

PW 2 36.277 2 33.733 2 33.738 2.544 2.539

HFA 50.465 51.422 52.225 0.957 1.760

OW 31.510 29.816 27.710 2 1.694 2 3.80

PS 2 21.480 2 19.366 2 19.366 2.114 2.114

Case study 2

Phadke (1989) considered a case study to improve a polysilicon deposition process. This

study was conducted by Peter Hey in 1984. Six controllable factors were identi® ed: deposition

temperature (A), deposition pressure (B), nitrogen ¯ ow (C), silane ¯ ow (D), setting time (E)

and cleaning method (F). All the factors were studied at three levels each. The L18 orthogonal

array was used and factors A± F were assigned to columns 2, 3, 4, 5, 6 and 8 respectively.

The quality characteristics of interest were the surface defects (smaller-the-better), the

thickness (nominal-the-best) and the deposition rate (larger-the-better). The target value in

the study for the thickness of polysilicon layer was 3600 AÊ . Nine observations were taken for

each trial run. The starting condition was set as A2B2C 1D 3E1F1 . The optimum condition

chosen from the experimental data by Phadke was A1B2C1D 3E2F2 .

The above case is analyzed again by the proposed procedure. The quality loss for each

response is computed and normalized as shown in Table 7. Next, the PCA is performed on

these normalized data using SAS. Table 8 lists the eigenvalues. The ® rst principal component

Table 7. Normalized data and X values (case study 2)

L18

Exp. Surface Deposition

no. A B C D E F G H defects Thickness rate X

1 1 1 1 1 1 1 1 1 1.0000 0 0.98227 1.00000 1.72010

2 1 1 2 2 2 2 2 2 0.9996 6 0.98472 0.91315 1.67160

3 1 1 3 3 3 3 3 3 0.9979 3 0.98580 0.88463 1.65466

4 1 2 1 1 2 2 3 3 0.9999 8 0.99908 0.91596 1.68119

5 1 2 2 2 3 3 1 1 0.8867 6 0.50158 0.60600 1.16437

6 1 2 3 3 1 1 2 2 0.8945 6 0.96755 0.82783 1.54883

7 1 3 1 2 1 3 2 3 0.9386 2 0.49694 0.56539 1.17057

8 1 3 2 3 2 1 3 1 0.0688 9 0.64065 0.12499 0.46156

9 1 3 3 1 3 2 1 2 0.5879 0 0.94250 0.00000 0.87348

10 2 1 1 3 3 2 2 1 1.0000 0 0.85922 0.96887 1.63552

11 2 1 2 1 1 3 3 2 1.0000 0 0.99404 0.98542 1.71815

12 2 1 3 2 2 1 1 3 0.9807 2 0.99233 0.89924 1.65612

13 2 2 1 2 3 1 3 2 0.9945 3 0.95994 0.79942 1.59001

14 2 2 2 3 1 2 1 3 0.9997 2 1.00000 0.85550 1.64698

15 2 2 3 1 2 3 2 1 0.8348 0 0.99066 0.78605 1.50072

16 2 3 1 3 2 3 1 2 0.9999 7 0.95780 0.56227 1.45670

17 2 3 2 1 3 1 2 3 0.1066 9 0.56430 0.16314 1.46518

18 2 3 3 2 1 2 3 1 0.0000 0 0.00000 0.37354 0.21342
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MULTI-RESPONSE ROBU ST DESIGN 415

Table 8. Eigenvalues for the principal components (case study 2)

Principal component Eigenvalue

First 2.37892

Second 0.46894

Third 0.15215

is chosen to represent the original three responses. The eigenvector for the ® rst largest

eigenvalue is [0.61559, 0.54279, 0.57134]. As a result, we have

X 1j 5 0.61559Y 1j+ 0.54279Y 2j+ 0.57134Y3j

where Y j1 , Y j2 and Y j3 represent the normalized quality loss for the surface defects, thickness

and deposition rate at jth trial respectively. The X values are computed and listed in the last

column of Table 7. The factor eŒects on X can be obtained and the optimal conditions can

therefore be set as A 1B1C 3D 2E3F2 .

To predict the anticipated improvements under the chosen optimum conditions, the SN

ratios for surface defects, thickness and deposition rate are predicted using the additive mode.

Table 9 displays the computations for Phadke’s study and proposed analyses. According to

this table, an improvement in surface defects for the proposed procedure analysis is equal to

[( 2 2.29) 2 ( 2 56.69)] 5 54.40 dB, which is larger than the improvement in Phadke’ s study

of 36.85 dB. Similarly, the improvement in thickness uniformity for the proposed procedure

analysis is better than that of Phadke’ s study. A slight reduction occurs in the deposition rate

for the proposed procedure. Consequently, in this case study, the proposed procedure can

be considered as a more eŒective approach than Phadke’ s study (based on an engineer’ s

judgement) in the multi-response problem.

Conclusions

A procedure has been proposed in this study to achieve the optimization of multi-response

problems in the Taguchi method. By using PCA, a set of (correlated) responses is transformed

into a set of a small number of uncorrelated components. Principal components reduce

the number of dimensions and decrease the complexity of the multi-response problems.

Accordingly, based on these uncorrelated components, the optimal conditions in the par-

ameter design stage can be easily chosen in an objective manner. In addition, two case studies

demonstrate the eŒectiveness of the proposed procedure.

Table 9. Prediction of SN ratios using the additive model (case study 2)

Optimum Anticipated

condition (dB) improvement (dB)

Starting

condition Phadke’ s Proposed Phadke’ s Proposed

Factor (dB) study procedure study procedure

Surface defects 2 56.69 2 19.84 2 2.29 36.85 54.40

Thickness 29.95 36.79 41.23 6.84 11.28

Deposition rate 34.97 29.60 27.21 2 5.37 2 7.76
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