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ABSTRACT. An important class of interactive Markov migration models is characterized 
by gruuity-type transition kernels, in which migration flows in each time period are 
postulated to vary inversely with some symmetric measure of migration costs and directly 
with some population-dependent measure of attractiveness. This two-part study analyzes 
the uniqueness and stability properties of steady states for such processes. In this first 
part, it is shown that a flow version of the steady-state problem can be given a 
programming formulation which permits global analysis of steady-state behavior. Within 
this programming framework, it is shown that when attractiveness is diminished by 
increased population congestion, the steady states for such processes are unique. The 
second part of the study will employ these results to analyze the stability properties of 
such steady states. 

1. INTRODUCTION 
The class of interactive Markov models first introduced by Matras (1967) 

and Conlisk (1976) has been widely studied and applied in the social sciences 
(as for example in Conlisk, 1982,1990; Bartholomew, 1982,1985; DePalma and 
Lefevre, 1983; and Kulkarni and Kumar, 1989). In modeling collective popula- 
tion behavior, De Palma and Lefevre (1989) have shown that interactive 
Markov models are a direct consequence of population-dependent choice 
behavior by individuals. With respect to  migration behavior in particular, such 
population dependencies can often be characterized in terms of those agglom- 
eration effects (both positive and negative) which determine the relative 
attractiveness of population centers to migrators. The most common models of 
this type are gravity models, in which migration choices are positively 
influenced by the attraction effects of population centers and negatively 
influenced by the distance-deterrence effects of moving to these centers (as for 
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example in Poot, 1984; Kanaroglou et al., 1986a, 1986b; Nijkamp and Poot, 
1987; Boots and Kanaroglou, 1988). 

Although these models have been widely applied, surprisingly little is 
known about their structural properties. In particular, while steady states for 
such models are known to exist under very general conditions, there are very 
few analytical results on either the uniqueness or stability properties of such 
steady states (Conlisk, 1992). From a theoretical viewpoint, such properties are 
of special importance for the present class of dynamical models. In particular, 
such models were originally proposed by Conlisk (1976) as low-dimensional 
deterministic approximations to  very high-dimensional Markov chains.l More- 
over, while for large populations this approximation can be shown to be very 
good for any initial segment of the deterministic process (Brumelle and 
Gerchak, 1980 and in Lehoczky, 19801, the asymptotic behavior of the determin- 
istic and stochastic versions can in principle be quite different. In particular, 
such asymptotic behavior is only guaranteed to be the same when the 
deterministic process exhibits a unique globally stable steady state (see the 
Corollary to  Theorem 3.3 in Brumelle and Gerchak, 1980). Thus, if one wishes 
to  employ the steady-state properties of interactive Markov chains to  draw 
inferences about asymptotic population behavior, then it is of prime importance 
to establish conditions under which such steady states are unique and globally 
stable. 

Hence the central objective of the present two-part paper is to  establish 
conditions for uniqueness and stability of steady states for a rather general 
class of gravity-type interactive Markov chains, characterized by continuously 
differentiable attraction functions and symmetric deterrence functions. Our 
approach focuses on the spatial-flow chains implicit in such models, and shows 
that the steady-state problem for these flows can be given an explicit program- 
ming formulation. More precisely, it is shown in Part I that the steady states for 
each such process are equivalent to the Karush-Kuhn-Tucker (KKT) points of 
an appropriately defined minimization problem. Hence uniqueness of steady 
states is equivalent to uniqueness of minima. In particular, it is shown that for 
‘pure congestion’ processes in which increased population densities always 
decrease the attractiveness of population centers, the objective function for the 
associated minimization problem is strictly convex, so that steady states are 
always unique. More generally, it is shown that for mature systems in which 
the total population is large relative to the number of regions, there exists at 
most one ‘fully congested’ steady state. 

In Part I1 (Smith and Hsieh, 1997) the stability properties of gravity-type 
interactive Markov chains are analyzed in terms of the continuous (differential 
equation) versions of such models. More general models have been studied by 

IHowever, in some cases it is possible to regard these deterministic models as viable models 
of behavior in their own right. For further discussion of this point see the concluding remarks to 
Part 11. 

D The Regional Science Research Corporation 1997. 



SMITH & HSIEH: INTERACTIVE MARKOV MODELS PART I 655 

DePalma and Lefevre (1983), Haag and Weidlich (1988a, 1988b), and Dendri- 
nos and Sonis (19901, among others. Our main purpose is to show that for the 
present class of gravity-type models, the objective function in Part I is a global 
Lyapunov function for appropriately defined continuous versions of the corre- 
sponding flow processes. This Lyapunov property in turn yields a number of 
powerful global stability results. In particular, it is shown that each such 
process must always converge to its set of steady states. Hence, for the 
continuous version of pure-congestion processes, the unique steady state is 
globally asymptotically stable. More generally, the set of locally stable steady 
states for any gravity-type process is shown to correspond precisely to the set of 
isolated local minima for its associated Lyapunov function. Finally, it is shown 
that for the case of unique steady states, global convergence is inherited by all 
gravity-type interactive Markov chains with sufficiently small adjustments, 
that is, which are ‘sufficiently close’ to  their continuous-time versions. 

To establish the results for Part I, we begin in the next section with a 
formal definition of gravity-type interactive Markov chains together with 
several alternative characterizations of their steady states. This is followed in 
Section 3 by a formulation and analysis of the spatial flows implicit in each 
gravity-type interactive Markov chain. In particular, the steady states for these 
spatial-flow chains are given an explicit characterization and are shown to 
exhibit a one-to-one correspondence with steady states for the underlying 
interactive Markov chains. In Section 4 the steady-state problem for spatial- 
flow chains is shown to have a simple programming formulation. In particular, 
this formulation is employed to show that steady states for the ‘pure- 
congestion’ case are always unique. Finally, in Section 5 we lay the groundwork 
for the stability analysis of interactive Markov chains in Part 11. Here it is 
shown that stability can fail to hold even when steady states are unique. 
However, if time periods are made short enough to ensure that only a small 
fraction of the population considers migrating in any given period, then such 
processes exhibit much greater stability. This motivates an analysis of the 
limiting version of interactive Markov chains obtained by letting the period 
length go to zero. The resulting class of interactive Markov processes and 
associated spatial flow processes are formalized in this final section, and are 
analyzed in greater detail in Part 11. 

2. GRAVITY-TYPE INTERACTIVE MARKOV CHAINS 
For any fixed population of N behaving units (individuals) distributed over 

a finite set of spatial locations (regions), i E I = (1, . . . , q ) ,  let p :  denote the 
population fraction in region, i E I ,  in time period t.2 Migration behavior in such 
a system is said to be governed by a Markov chain with transition matrix, M = 

2Alternatively, p can be interpreted as the probability that a randomly sampled individual 
occupies region i in period t .  The present nonprobabilistic interpretation of p j  as a population 
fraction is designed to be consistent with the notion of ‘interactive Markov chains’ defined below. 
See footnote 10 below for further discussion. 
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From a behavioral viewpoint, such models are severely limited by the con- 
stancy of the transition matrix, M, which implies that individual migration 
decisions are not influenced by the current distribution of the p~pulat ion.~ 
Hence, if one postulates that migration behavior in period t does depend on the 
current population distribution, pt = (p:: i E I ) ,  then the model in (1) can be 
generalized by allowing M to depend on pt as follows: 

If the probability simplex, 

I I i 
IFJ~ = p = (pi:  i E I ) €  R;: 2 pi = 1 

is now taken to represent the set ofpopulation distributions on I = {l, . . . , q]  
then (following Conlisk, 1976) these models may be formalized as follows: 

DEFINITION 1: (i  ) Each continuously differentiable matrix-valued function, 
M: Pq - R:xq, satisbing Zj Mij (p )  = 1 for all i E I and p E Pq is designated as a 
transition function on I.  
( i i )  The model in  (2)  is then designated as a n  interactive Markov chain5 on I 
with transition function, M.6 

In particular, M J p t  ) represents the fraction of individuals at i who migrate to  
region j in period t given current population distribution pt. For later purposes, 
we note that if each p E P, is treated as a row vector and if the associated 
transition matrix for p is denoted by M(p) = [Mij(p): i, j E I ] ,  then (2) can be 

3The following standard notation is employed throughout. Let Z+(R+) denote the nonnega- 
tive integers (reals) and let Z++(R++) denote thepositive integers (reals). 

4For a detailed discussion of this point, together with references to  additional relevant 
literature, see Plane (1993). 

5As mentioned in the introduction, the notion of an ‘interactive Markov chain’ originated as 
an approximation to  a Markov chain with states corresponding to all possible spatial allocations of 
a finite population. The practical significance of this approximation is to reduce the dimensionality 
of the state space down to  the number of discrete locations (regions) considered. For our present 
purposes, these approximation issues can be avoided by focusing exclusively on the deterministic 
model in which eachp: is interpreted simply as a continuous fraction of the population N .  It should 
be noted, however, that these deterministic models do indeed represent instances of Markov chains 
with continuous state spaces and ‘degenerate’ transition kernels, as treated for example in 
Brumelle and Gerchak (1980) [and in more detail by Doob (1953, section V.5)1. 

6Note also that model (2) can be viewed as a n  instance of the ‘universal’ discrete-time model 
of relative dynamics studied by Dendrinos and Sonis (1990, p. 21). 
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written in matrix form as 

(3) pt+l  = p t M ( p t ) ,  t E Z + 7  

As mentioned in the introduction, it is reasonable to  assume that these 
fractions are positively influenced by the attraction effects of region j and are 
negatively influenced by the distance-deterrence effects of moving from i to  j .  
In particular, the attractiveness of region j for potential migrants will 
generally depend on the current population level in j (or factors such as 
population density that are influenced by this population level). But since the 
total population N is taken to be fixed, it follows that the current population 
level in j is given by N p f  (and similarly that population density is given by 
Npf/A, where A, is the area of region j ) .  Hence such population factors are 
determined solely by population fractions, pf, and it follows that attractiveness 
can be written as a function of p f ,  say a,(pj). In this context, it may then be 
postulated that Mz,(p t )  increases with a,(pf ). Similarly, if distance-deterrence 
effects are representable by some measure of migration costs, czJ ,  between i and 
j ,  and if accessibility, f (cz,), of i to  j is a decreasing function of czJ ,  then it may 
also be postulated that Mz,(p t )  increases with f(c,,). The simplest model 
incorporating these effects is the classical gravity model in which M,,(p t )  is 
postulated to be proportional to a,(pf)f(c,,), and hence which (in view of the 
normalization condition X, M,, ( p )  = 1) takes the explicit form 

(4) 

Example 1: A ‘Logit’ Model of Migration 
This type of interactive Markov model can be illustrated within the 

choice-theoretic framework of DePalma and Lefevre (1983) as follows. Consider 
a migration model in which the housing cost, hj, in j depends on the current 
population, p j ,  in j ,  so that the total moving cost for a migrant from i to  j is 
given by h j ( p f )  + c i j .  Here it is postulated that the net utility of region j for a 
randomly sampled individual in region i is of the form, U i j ( p f )  = Bij - 
O[hj(p f )  + cijl, where the ‘perceived benefits’ of j are assumed to vary among 
individuals at i ,  and in particular, are assumed to be independently Gumbel- 
distributed random variates, Bij ,  with common ‘dispersion parameter,’ O-’ .8 In 
this context, it is well known that the probability, M i j ( p t ) ,  of a randomly 
sampled (utility maximizing) migrant from i will choose region j must have the 

7Alternatively, one may employ column-vector notation by employing the transpose of the 
transition matrix and writing, pt+l = M ( P ~ ) ~ ~ ‘  or by redefining MLj(pt) to be the fraction of 
individuals at j who move to i. 

*An alternative quadratic form of such utilities is given in Weidlich (1988, p. 335). 
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following ‘logit’ form:9 

exp [-e[h,(pf) + c,l] 
i , j E I  

M L J ( p t )  = 2 exp (-O[h,(pi) + cLkl]  ’ 
k 

This is immediately seen to be of the form (4) with a J ( p f )  = exp [-Oh,(pf)l and 
f (c,) = exp [- Oc,,] .lo A variety of similar examples of (4) can also be developed 
within this choice-theoretic framework. 

Note in the above example that if increased population levels reflect 
increased competition for housing, then hJ may well increase with p f ,  so that 
attraction, aJ, decreases with p f .  More generally, those cases in which higher 
population densities always decrease the attractiveness of regions will be 
designated as ‘pure-congestion’ cases, and are of special interest in the analysis 
to follow. Note also that migration costs in this example are taken to be 
constant. More generally, although distribution of population can significantly 
influence the relative attractiveness of regions, it is assumed in gravity models 
that this distribution has little effect on transport costs.ll Hence, it will usually 
be convenient to  suppress c,, and write simply, LJ = f (c,,). Our final assumption 
is that migration costs between i and j are the same as between j and i, so that 
fi, = I‘Jl for all i ,  j E I .  This symmetry assumption is not unreasonable at the 
interregional scale (and indeed, is standard in essentially all empirical 
applications of gravity models).12 With these observations, we now formalize 
the relevant class of transition functions for our purposes as follows: 

DEFINITION 2. ( i  ) For any positive continuously d i f f e ren t i~b le l~  attraction 
functions, a,: R, - R,, , j E I, and positive accessibility weights, L J ,  with LJ = I‘JL 
for all i ,  j E I ,  the positive transition functzon, Ma,f: P, - R:?, defined for all 

gThis logit form corresponds to the model in Section 2 of De Palma and Lefevre (1983) 
with 1-1 = W1. An alternative class of dynamical models involving logit forms can be found in Sonis 
(1992). 

‘ONote as in footnote 2 that the identification of choice probabilities with population 
fractions, Mc,(pf) ,  can also be justified by the approximation arguments in Brumelle and Gerchak 
(1980) and Lehoczky (1980) [as observed by De Palma and Lefevre (1983)l. 

llIn particular, while local population congestion can have profound effects on within-city 
traffic flows, such effects are often less significant at the interregional level. Hence at  this scale of 
analysis, transport costs are usually treated as constant. Possible relaxations of this constancy 
assumption are discussed in the concluding section of Part 11. 

I2It should be noted that apparent asymmetries between migration costs often relate to 
properties of the origin and destination regions, rather than to flows between them. For example if 
it  is more expensive to locate in one region than another, then such differences can be reflected in 
their respective attraction factors (see also Haag and Weidlich, 1988a, pp. 16-17). Possible 
relaxations of this symmetry assumption are discussed in the concluding section of Part 11. 

131t should be noted that continuous differentiability of attraction functions is only required 
in Section 5 ,  where the differential-equation approximation of interactive Markov chains is 
developed. All other results are easily seen to hold for continuous attraction functions. However, we 
choose for convenience to maintain the same definitions and assumptions throughout. 
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is designated as a gravity-type transition function on I. The vector of attraction 
functions, a = (aj: j E I ) ,  is designated as the attraction profile for Ma,‘ and the 
matrix of accessibility weights, f = ( f i j :  i j  E I X I ) ,  is designated as the 
accessibility matrix for Ma,f.14 
(ii I f  in  addition each attraction function aJ is nonincreasing then Mapf is said 
to exhibit pure congestion effects.15 

Hence, for any given gravity-type transition function in (51, the adjustment 
process in (2) takes the explicit form 

and is designated as a gravity-type interactive Markov chain. 
Our interest in such dynamical models focuses on uniqueness and stability 

of their steady states. A steady state for a transition function, M, is a 
distribution, p E P,, which remains invariant in (31, that is, which satisfies the 
fixed-point condition, p = pM(p). The class of steady states for M is denoted by 

(7) S(M) = (p E Pq: p = pM(p)J 

For gravity-type transition functions in particular, the fixed-point condition, 
p = pM(p), is seen from (5) to take the explicit form: 

It is convenient to  record the following useful properties of steady states for 
later use. If the set ofpositive population distributions is denoted by Pi = Pq n 
R:+, then 

14This class of models is also an instance of the ‘gravitational interaction models’ outlined in 
Dendrinos and Sonis (1990, pp. 165-167). 

I5It should be emphasized that this use of the term ‘congestion’ is meant only to  be 
suggestive. Many other types of population-related effects could produce such a monotonic relation. 
In Example 1, for instance, this relation is more accurately described in terms of the housing- 
market response to the increased demand generated by higher population levels. Similar illustra- 
tions could be developed in terms of job-market responses, for example. 
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PROPOSITION 1: For each transition function, M: P, - [wTxq, there exists at 
least one steady state, that is, S(M) # 0. I n  addition, the steady states for each 
grauity-type transition kernel, Ma,f, are positive, that is, S(Ma,f) c $4‘. 

Proof: Since every continuously differentiable function is necessarily 
continuous, it follows that the mapping, T: P, - P,, defined by T(p) = pM(p), 
p E P,, must also be continuous. But since P, is convex and compact, it then 
follows from the Brouwer Fixed-Point Theorem that there must exist at least 
one fixed point, p = T(p), which is by definition an element of S(M). Moreover, 
for each gravity-type transition function, Ma,f, the positivity of a and f implies 
that MaS(p) is positive. But since at least one component of p is positive, and all 
are nonnegative, it  then follows at  once from (8) that all components of p must 
be positive. 

The following example shows, however, that such steady states need not be 
unique: 

Example 2: Nonuniqueness of Steady States 
As the extreme opposite of pure congestion, one may consider a ‘pure 

agglomeration’ case in which higher population densities are always more 
attractive.16 In particular, let q = 3 and suppose that each attraction function is 
of the form, a j (p j )  = exp [6pj1, j = 1, 2, 3. Suppose also that the spatial 
configuration is symmetric with migration costs, cii = 0 and cij = 2 for all 
distinct i ,  j = 1,2,3, and with accessibilities of the form, f i j  = f ( c i j )  = exp [-cij] .  
Then the steady states for this case can be depicted as in Figure 1, where the 
triangle represents the probability simplex, P3, with vertices denoting the 
‘complete concentration’ states, (1, 0, O), (0, 1, O), (0, 0, 11, in which all of the 
population resides in a single region. The notion of ‘pure agglomeration’ 
suggests that each vertex should be a steady state. Although this is essentially 
true, it follows from Proposition 1 above that all steady states must be strictly 
positiue. Hence the actual steady state shown at vertex (1, 0, 01, for example, is 
approximately (0.99932, 0.00034, 0.00034) (with the others being correspond- 
ing permutations of these values). In addition, symmetry implies that midpoint 
of the triangle, (Y3, %, %), must also be steady state. This steady state is clearly 
unstable, however, since slight increases in the population of any region will 
increase the attractiveness of that region relative to others. (Stability proper- 
ties will be discussed in detail below). Finally, there are three other ‘painvise’ 
steady states in which all population is essentially shared equally by two 
regions. In the case of regions 1 and 2, for example, the corresponding painvise 
steady state is approximately (0.49625, 0.049625, 0.00750). Hence this pure 
agglomeration example exhibits seuen distinct steady states. W7 

16As with ‘congestion,’ the term ‘agglomeration’ is meant only to be suggestive. 
I7For further discussion of this example, see the concluding remarks to Part 11. 
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FIGURE 1: Example of Multiple Steady States. 

For our later purposes, it is convenient to  develop an equivalent form of the 
steady-state conditions, (8), for gravity-type transition functions: 

THEOREM 1: Equivalent Steady-State Conditions. For any grauity-type 
transition function, Ma,f, a distribution, p E P,, is a n  element of S(MaC) i f f  there 
exists apositive scalar, p, such that 

This scalar is uniquelygiven by p = [CiJui(pi)aj(p,)fij I - 1  

right-hand side of (8) and observe from the symmetry off that 
Proofi To see that (9) implies (81, one need only substitute (9) into the 

aj(Pj)fij aj (Pj ) f i j  c Pi = 2 [pai(Pi) c k ak(Pk)fki] 2 a k ( P k ) f i k  

k 
c ak(Pk)fik 

k 

- 
- PJ 
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To establish the converse, observe that if p satisfies (8)  then, letting aj = a j (p j )  
for notational simplicity, it follows from (8) that for all j E I, 

where 8, = pJ/[aJ C k  ak&k ), j E I .  But since all attraction functions and 
accessibility weights are positive, it  then follows from the identity 
1 = c, (a,fJ,/& ak &kl  that each 0, is a positive convex combination of 
(el, . . . , This is only possible if all 6,’s are equal. For if min, 8, < max, 8, = 

8,, say, then since all positive convex combinations must be strictly less than 
the maximum value, 8,, this would imply from (10) that 

which contradicts the definition of 8,. Hence mini Oi = maxi Oi, and all ei’s are 
equal. In particular, if we now set p = then it follows that 

for all j E I, and hence that (9) holds for this choice of p. Finally, the identity, p = 
[CiJ a, ( p  i )aJ (p j ) f , J ] - l ,  follows at once from (9) together with the normalization 
condition, Cjpj = 1. W 

3. EXTENSION TO SPATIAL, FLOWS 
To motivate our approach to the analysis of these steady states, we begin by 

observing that our present notion of state transitions for spatial populations 
necessarily involves spatial flows. Moreover, these flows involve costs which are 
fundamental determinants of behavior. For gravity-type transition functions in 
particular, it turns out that the structure of this behavior is most easily 
revealed by modeling spatial flows explicitly. Hence we now shift our attention 
from ‘population stocks,’ which constitute the basic state variables of interac- 
0 The Regional Science Research Corporation 1997 
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tive Markov chains, to  ‘population flows’ which define the changes in these 
stocks.ls 

In particular, we now consider a space of flow states, i j E Z X I ,  and develop 
the class of ‘spatial flow chains’ on Z x I ,  generated by such transition functions. 
The population distributions, pt = (pf: i E I ) ,  for interaction Markov chains are 
replaced by their corresponding flow distributions, P,  = [P,(ij): i j  E Z X Zl,  
where P,( i j )  denotes the fraction of population in flow state i j  in period t ,  that 
is, the fraction of population flowing from i to j in period t .  If the probability 
simplex 

(11) 
I . .  

SJ 

is taken to represent the set of flow distributions on Z X I ,  then for each P E 

PYxq,  we denote the row marginals of P by P(i.1 = Cj  P ( i j ) ,  i E I ,  and column 
marginals of P by P( .  j )  = Ci P ( i j ) ,  j E 1. The corresponding row marginal 
distribution and column marginal distributions for P are denoted, respectively, 
by P(Z-1 = [P(i.): i E I ]  E P, and P(.I) = [P(. j ) :  j E I ]  E P,. If P, is the relevant 
flow distribution in period t ,  then we now take P,(i-) to  be the fraction of 
population in i at the beginning of period t ,  and take P,(.i) to  be the fraction of 
population in i at the end of period t ,  so that by definition, 

(12) P,(.i) = Pt+l(i.>, i E I ,  t E z+ 
that is, the population fraction in i at the end of period t is the same as the 
fraction in i at the beginning of period t + 1. With these conventions, it follows 
from an inspection of (6) that for any given gravity-type transition function, 
Ma,f, the fraction of population in flow state i j in period t must be given by 

Hence (13) defines the sequence of spatial flows generated by Ma,f. This may be 
expressed in terms of ‘flow adjustments’ from period to period by evaluating 
(13) at t + 1 and applying (12) to the right-hand side to  obtain 

18Although flow formulations are quite standard in network models (such as in traffic 
networks for example), they appear to be relatively new to interactive Markov models. A notable 
exception is the (implicit) flow analysis employed by Brumelle and Gerchak (1989, p. 76) to 
characterize interactive Markov models as limiting forms of Markov models. 
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In this form, we now designate the sequence of flow distributions given by (14) 
for any initial flow distribution, Po E PqX,, as the spatial-flow chain generated 
by transition function Marf. To see the relation of this spatial-flow chain to  the 
original interactive Markov chain, observe by summing both sides of (14) with 
respect to i that 

and hence that the column marginal distributions, P,(.I) E P', define precisely 
the interactive Markov chain in (6>.19 Thus, if we now define a steady-state flow 
distribution for this spatial-flow chain to be any P E PqX, satisfying 

(16) 

then is also follows at once by summing (16) with respect to i that the column 
marginal distribution, P ( - I )  E P',, must satisfy 

(17) 

and hence must be a steady state for Msf. Our objective is to  study the 
properties of these steady states in terms of their corresponding steady-state 
flow distributions. 

To do so, we first note by summing (16) with respect to  j that every 
steady-state flow distribution satisfies the natural flow-balance condition 

(18) P(i-> = P ( - i ) ,  i E I  

that is, the flows going into i must be the same as the flows going out of i. Using 
this condition, we may now give the following sharper characterization of these 
steady-state flow distributions: 

THEOREM 2: Steady-State Flows. For any grauity-type transition function, 
Ma,f, a flow distribution, P E PqXq, is a steady-state flow distribution for Ma,f i f f  
there exists some scalar 1-1 > 0 such that 

(19) P ( i j )  = llai[P(.i)laj[P(.j)lfij, ij E I X I 

Proof (i) To see that every P of the form (19) is a steady-state flow 
distribution for Ma,f, observe first from (19), together with the symmetry off, 

IgThe use of column marginals here is simply a matter of convenience. In particular, if we 
replace t everywhere by t + 1 in (15) and apply (12) once again, we obtain the same adjustment 
relation for the row marginals. 

o The Regional Science Research Corporation 1997 



SMITH & HSIEH: INTERACTIVE MARKOV MODELS PART I 665 

that P ( i j )  = P ( j i )  for all i j  E I x I .  Hence, replacing P ( i j )  by P ( j i )  in (19) and 
summing with respect to  j we obtain, 

(20) P(.i)  = p a i [ ~ ( . i ) l  2 ak[P(-k)lf ik,  i+zl 
k 

Finally, dividing (19) by (20), and multiplying by P(.i)  we see that (16) must 
hold. 

(ii) To establish the converse, observe that if P satisfies (16) then the 
column marginal distribution, P(-I) E EDq, satisfies (17), which implies from 
Theorem 1 that (20) must hold for some p > 0. Hence it follows from (20) and 
(16) together with the positivity of a and f that each steady-state flow 
distribution is strictly positive. Thus by letting 

we see from (16) together with the symmetry off that 

where +L = OL/ui [ P ( i ) ] .  Hence by employing the flow-balance condition (181, we 
may conclude from (21) that 

~ ( i j > + ~  = ~ ( j i ) + ,  * 2 P ( '  Z J ) $ ~  ' = P(.i)+i = P(i.)+i 
j 

(22) 

which together with the positivity of P and the identity P(i.) = Cj P ( i j )  implies 
that each $i is a positive convex combination of (+1, . . . , $*I. But this implies, 
as in the proof of Theorem 1 above, that all +ifs are equal, so that by definition 

Finally, by letting p = O,/ul [P(.l)l we may conclude that 

and hence that (19) holds. 
As one basic consequence of Theorem 2, observe from the form of (19) that 

every steady-state flow distribution, P, for a gravity-type transition matrix, Magf 
is symmetric, that is, that P = PT (where PT denotes the transpose of matrix 
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This symmetry property (which depends critically on the symmetry off)  
has important implications for steady-state flow behavior. In particular it 
implies that steady-state flows in such processes are reversible in the sense that 
the 'inverse' process obtained by reversing the time order (analogous to running 
a movie film backwards) is indistinguishable from the original process, as 
discussed for the case of Markov chains by Howard (1971, section 9.3). From a 
practical viewpoint, this symmetry property is also seen to provide a natural 
test of gravity-type interactive Markov models. For if the system is governed by 
such a model and is close to a steady state, in the sense that P,( i j )  = Pt+l ( i j )  for 
all i j ,  then it must true that P, ( i j )  -- Pt( j i  1. Hence if steady-state behavior is 
observed to violate this condition then such behavior cannot be consistent with 
any gravity-type interactive Markov chain.21 

Next observe from the normalization condition, C$(i j )  = 1, that the 
multiplier in (19) must have the explicit form, p = (Xij ai [P(-i )laj [P( .  j ) I f l j ) k l ,  
and hence depends on both a and f. Given this characterization, if we now 
designate the class of steady-state flow distributions for Mar by 

(23) SFD [a, f l=  [P  E PqXq: P satisfies (19) for some p > 0) 

then it is can be shown [Smith and Hseih (1996)l that there is a simple 
one-to-one correspondence between S(Ma,f) and SFD [a, f], and in particular 
that 

THEOREM 3: Bijective Correspondence. For each gravity-type transition 
function, Mazf, the mapping, Pajf: S(Ma,f) - P q x q ,  defined for all p E S(Ma,f) by 

(24) P:f ( i j )  = p(p)a i (p i )a j (p j ) f i j ,  i j g I X I  

with p ( p )  = [Ci j  ai (p i  )aj(pj)fljI-l is a bzjection from S(Ma,f) to SFD[a,  fl 

By employing this bijective correspondence, we may analyze properties of 
steady-state distributions, p E S(Mavf), entirely in terms of their corresponding 
steady-state flow distributions, P;'E SFD [a, fl. 

4. A PROGRAMMING FORMULATION OF STEADY-STATE FLOWS 
Given these general properties of steady-state flow distributions for Ma,f, 

we turn now to a more explicit analysis of their structural properties. Our main 
result is to show that these steady-state flows can be characterized in terms of 
an appropriately defined programming problem. To construct this program- 

20Note also from the identity, P(.i )M:f [P(.Z)] = P(i j ) ,  in (16) that this symmetry property is 
equivalent to the following 'detailed balance' condition for steady-state population distributions, 
P(.i)M:'[P(.Z)] = P(j)M$f[P(.Z)l, i, j EZ, [see also Weidlich (19881. 

21Note however that such a test implicitly requires symmetry of deterrence weights. 
Moreover, even if migration costs are symmetric, there may exist other significant deterrence 
factors which are asymmetric, and hence which are consistent with steady-state asymmetries. 
Such behavior is discussed further in the concluding remarks to  Part 11. 
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ming problem, we first introduce an extension of the classical (Kullback- 
Leibler) divergence function, D: R:xq XR:? - R, defined for all nonnegative 
matrices, V = [V(ij): ij E I X I ]  E R:xq, and positive matrices, W = [W(ij): 
ij E I X I] E R:?, by 

D(V, W> = C V ( i j )  log ~ ( i j ) / ~ ( i j ) ~  (25) 

where by convention, 0 log (0) = 0. Observe in particular that for any fixed 
matrix, W E R:?, the restricted function, D(-, W), is continuously differentiable 
on the open subset, R:yc R4+'*. Next, for any attraction profile, a, and 
accessibility matrix, f, we may employ this divergence function to construct an 
objective function, 2: R:" - R, defined for all F E R:,* byz2 

. .  
LJ 

With these definitions, we now consider the programmingproblem, ../'[a, fl : 

minimize: Z(P) subject to: P E P,,, 

where by definition, P,,, c R:,'. To analyze this programming problem, we 
begin by observing that all local minima for A a ,  fl are positive, that is, are 
elements of the set of positive distributions, P i x q  = Pax* n R:?. To see this, 
consider any distribution, P E Pqxq, with P ( i j )  = 0 for some ij E I X I, and let 
Io(P) = (ij: P ( i j )  = 0) # 0. Then since our assumptions on a and f imply that 2 
is continuously differentiable on R:?, and since for any choice of positive 
distribution, Q E Pi,?, we must have aQ + (1 - a)P E P4fxq for all a E (0, 11, it 
follows that the function, Z(a)  = Z [ a Q  + (1 - a)Pl, is differentiable on (0, 11. In 
particular, this derivative is seen to be of the form 

(27) 

where the second term, B(a),  is a bounded function on [O, 11, and where the first 
term is given by 

22The formal structure of this objective function is closely related to the 'cumulative cost' 
functions employed in certain programming formations of stochastic network equilibria [as for 
example in Smith (1988)l. This relation is discussed further in the concluding section of Part 11. 
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for appropriately defined bounded functions T(a)  and R(a) on [0, 11. Hence it 
follows from the positivity of Q and boundedness of B ,  T ,  and R that the 
derivative in (27) approaches minus infinity as cx approaches zero. But since 
this implies that 2 decreases in the feasible direction of movement from P 
toward Q, it follows that P cannot be a local minimum for Y[a, f1. Hence all 
analysis of local minima for 9[a, fl can be restricted to P&. 

Observe next that all local minima of ./)[a, fl must satisfy the Karush-Kuhn- 
Tucker (KKT) conditions. Hence, if each distribution, P E P4=,, satisfying the 
KKT-conditions for Y[a, f]  is designated as a KKTpoint, and if the set of such 
points is denoted byKKT[a, fl, then our main result is to show that: 

THEOREM 4: Programming Equivalence. For any grauity-type transition 
function, Ma,f, the steady-state flow distributions for Ma,f are equivalent to the 
KKTpoints for H a ,  f1, that is 

(29) SFD [a, fl = KKT[a, fl 

Proof. By Theorem 2 it suffices to  show that the KKT-points for ./>[a, f1 are 
precisely the distributions, P E Pix,, satisfying (19). To do so, let the 
Lagrangian function for ./"a, fl be given by 

(30) 

so that the partial derivative, V,, %, of 55 with respect to  P ( i j )  takes the form 

(31) V,, %(P, y) = 1 + log PGj)  - logf,, - log a,  [P(i-)l - log aJ [P(.j)l - y 

Now consider any KKT-point, P E KKT[a, f] c PlXq, and observe that by 
definition there is some scalar, y E [w, such that the pair, (P, y), satisfies the 
KKT-conditions for .@[a, fl. In particular, the positivity of P together with the 
KKT-condition, V,, X(P, y) . P ( i j )  = 0, implies that V,, Z(P, y> = 0 for all i j  E 

I x I .  But by setting (31) equal to  zero and solving for P ( i j )  we obtain 

(32) log P ( i j )  = (y - 11 + log a, [P(i.)l + log aJ [P( j ) l  + logf,, 

Finally, exponentiating both sides and setting p = exp [y - 11 > 0, we see that 

P ( i j )  = pa, [P(i.)la, [P(j>lf , , ,  i j E I x l  

and hence that P E SFD[a, fl. Thus KKT[a, fl c SFD[a, fl. To establish the 
converse, choose any P E SFD [a, fl and for p in (19) set y = 1 + log (p). Then it 
follows at once that the pair (P, y) satisfies (381, which together with the 
positivity of P is easily seen to imply that (P, -y> satisfies all KKT-conditions for 
.P[a,  fl. Hence P is a KKT-point for .P[a, fl, and it follows that SFD[a, f] c 
KKT[a,fl. W 
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As an important consequence of this result, we obtain the following 
sufficient condition for uniqueness of steady-state flow distributions. In particu- 
lar, recalling Definition (ii), we now show that: 

THEOREM 5: Uniqueness of Steady-State Flows. I f  Mazf is a grauity-type 
transition function with pure congestion effects, then there exists a unique 
steady-state flow distribution for Ma,f, that is, ISFD[a, f ]  1 = 1 

Proof By Theorem 4 it suffices to  show that there is a unique KKT-point for 
.P[a,  f]. But since the constraint set Pqx4 is convex and compact, it is enough to 
show that the objective function in (26) is strictly convex on Ppxp. Moreover, 
since the divergence function, D(., f ) ,  is well known to be strictly convex 
(Kullback, 19681, it remains only to  show that the last two terms define convex 
functions on Pqxq. Finally, since each term is a sum of functions of the form, 
Cz +,[L, (P)], where the L,'s are linear, it  suffices to establish convexity of the 
4,'s. To do so, observe that each +, is of the form, +,(z) = G g , ( x )  dx, for a 
continuous function, g,. Hence, each +, will be convex whenever its derivative, 
g,(z), is nondecreasing. But since eachg, is of the form, g,(x) = -log [a,(x)l, and 
since each attraction function, a,, is hypothesized to be nonincreasing, we may 
conclude that g,  is nondecreasing, and thus that each is convex. H 

As a direct consequence of this result, we obtain the following uniqueness 
condition for steady states of gravity-type transition functions: 

THEOREM 6: Uniqueness of Steady States. IfMa,f is a gravity-type transition 
function with pure congestion effects, then there exists a unique steady state for 
Majf, that is, IS(Ma,f ) I  = 1 

Proof By Proposition it is enough to show that there cannot be more than 
one steady state. Hence suppose that there exist distinct steady states, pl and 
p2, for some gravity-type transition function, Ma,f, with attraction profile, a, 
and accessibility matrix, f .  Then defining the flow distributions, P' and P2, by 

P a ( i j )  = p,ai (pq )aj(pJ-* )hj, i j  E I X I ,  a = 1 , 2  

it follows at  once from Theorem 3 that Pl and P2 must be distinct elements of 
SFD[a , f l .  But since this together with Theorem 4 is seen to contradict 
Theorem 5 ,  we may conclude that no such pl and p2 can exist. 

Hence in cases where higher population densities always induce higher 
levels of undesirable congestion, there must be a unique steady state for the 
system. Even when congestion effects hold only for large population levels, this 
uniqueness property implies that there can be at most one 'fully congested' 
steady state. In particular, if the system population level, N, is sufficiently large 
to  ensure that each region j is congested for all population levels exceeding 
some critical fraction, jij  of N, then it may be postulated that attraction profile, 

W 
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a, exhibits eventual congestion effects in the sense that each aJ is nonincreasing 
for all pJ 2 pJ. Hence if the vector of critical levels is denoted by p = 

(PI, . . . , p q ) ,  and if each distribution, p E Pq, with p 2 p is said to be a fully 
congested distribution, then we have the following additional consequence of 
Theorem 5:  

THEOREM 7: Congested Steady States. If Ma,f is a gravity-type transition 
function with eventual congestion effects, then there is at most one fully 
congested steady state for Ma,'. 

Proof: If the derivative ofu, is denoted by a;, then since uJ is nonincreasing 
on the closed half line [FJ, m), it follows from the continuous differentiability of 
aJ that a;(pJ) i 0. Hence defining the function, EJ: R, - R, + , by Z, (p,) = aJ(pJ 1 - 
aj(&)(pJ - p J )  forp, E [O,pJ1 and iiJ(pJ) = aJ(pJ )  forp, E E,, m1, it may readily be 
seen that ZJ is continuously differentiable and nonincreasing on R, . Hence by 
Theorem (26) there exists a unique steady state for the gravity-type transition 
function, Mz,f, with attraction profile, ii = (El ,  . . . , Zq). But since M',f(p> = 
Ma,f(p> for all p 2 p, it follows that every steady state, p for ML,fwith p 2 p is 
automatically a steady state for Ma,f. Hence there can be at most one such 
steady state. B23 

Note that this does not imply the existence of fully congested steady states. 
(In particular, there exist no fully congested distributions whatsoever unless 
ZJpJ 5 1.) Conditions for existence of such steady states will be developed in a 
subsequent paper. 

5 .  STABILITY OF INTERACTIVE MARKOV CHAINS 
Given these uniqueness properties of steady states, we turn now to the 

important question of convergence to steady states. The task of this final 
section is to  motivate the central concepts to  be employed in the stability 
analysis of Part 11. To do so, it is appropriate to begin with an example which 
shows that even when steady states are unique, the sequence of population 
states defined by (3) need not converge at all. 

Example 3: Failure of Convergence 
For q = 3 consider a pure congestion case with attraction functions of the 

form, u j ( p j )  = aj exp (-Pgj), with a1 = 20, a2 = 15, a3 = 5, PI = 14, P2 = 15, P3 = 
6. If accessibilities are again given byfij = exp ( -cij) with migration costs cii = 0 
and cij = 5 for all distinct i ,  j = 1,2,3, then the unique steady state for this case 
is given approximately by the point, s = (0.299, 0.265, 0.4361, shown in Figure 
2. Here the initial condition, po = (0.90, 0.01, 0.091, in (3) generates a sequence 
(PO, pl, p 2 ,  . . .)which converges to  a two-point limit cycle defined by the points 

23As mentioned in footnote 13 above, this proof can easily be modified to cover all continuous 
attraction functions. 
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(001) ( 100) 

FIGURE 2: Failure of Convergence. 

s1 = (0.007, 0.691, 0.302) and s2 = (0.705, 0.003, 0.292). Hence the sequence 
never approaches the steady state, s. Moreover, since it is clear from Figure 2 
that s is not on the line joining s1 and s2 it also follows that no ‘averaging’of this 
sequence will ever approach s. 

Interactive Markov Processes 
An examination of this example shows that failure of convergence results 

from an ‘over adjustment’ by migrators in each period.24 In particular, 
movement in and out of region 2 (shown by vertical displacement in the Figure) 
is seen to overshoot the mark in each period. One can gain insight into this type 
of behavior by focusing on the relevant notion of a ‘period in such models. From 
an information-theoretic viewpoint, it is implicitly assumed that migration 
decisions in any given period are based on knowledge about the population 
distribution in the previous period. Hence if each period were to represent a 
decade, then such migration decisions would presumably be based on informa- 
tion as much as ten years old. But if information flows were indeed this slow, 
then it is not hard to see how such migration decisions could lead to oscillatory. 
behavior (as illustrated by Example 3, where migration into the least populated 
region persists long after it has become the most populated one). However, if 

24111ustrations are given in Dendrinos and Sonis (19901, where such ‘over-adjustments’ in 
fact lead to chaotic behavior. 
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information updating is relatively fast in comparison to the average frequency 
of migration decisions, then one can expect to observe a much 'smoother' 
adjustment process. Hence, although the behavioral effects of information lags 
are not without interest, it is implicitly assumed in most models that periods 
are sufficiently short to allow such effects to  be discounted. 

To give meaning to the notion of 'sufficiently short' periods, it is essential to 
introduce time, explicitly. Hence we now reformulate the basic adjustment 
process in (2) as follows. If t denote a point in real time, and if A denotes a 
positive time interval, then each time period can be represented by the time 
points t and t + A. Here one could in principle simply replace t + 1 in (2) by t + 
A. But this brings us to a second implicit assumption in (21, namely that all 
individuals make migration decisions in each period. Although the diagonal 
components, MLi(- ) ,  in the transition function can in principle be taken to 
include those individuals who do not consider migrating during a given period, 
the introduction of period length, A, makes it clear that M i i ( - )  must then also 
depend on A. To avoid this complication, it is convenient to interpret the 
transition function as pertaining only to  migration decisions, so that Mii(.) 
represents the fraction of migration decisions that involve only local moves 
within a given region (or decisions not to migrate at all). This convention allows 
an explicit separation to be made between migration decision makers and all 
others in the population. In particular, one may postulate that the fraction, 
a(A),  of individuals making migration decisions within any time interval A is an 
explicit nondecreasing function, a: $++ - (0, 11, which we now designate as the 
participation function for the p ~ p u l a t i o n . ~ ~  With this convention, the appropri- 
ate adjustment process now takes the form 

where for each region j the first term on the right-hand side represents the 
fraction of individuals in region j who make no migration decisions in time 
interval ( t ,  t + A) and hence remain in j ,  and where the second term represents 
the fractions of decision makers in all regions who choose to migrate to j 
(including decision makers in j who choose to stay in j ) .  If (33) is written in 
vector form as 

25From a probabilistic viewpoint, the population fraction a ( A )  can also be interpreted as the 
probability that any randomly sampled individual in the population decides to reconsider (review) 
his current locational choice in time interval A. The present formulation represents a simplified 
version of the model in De Palma and Lefevre (1983) where the fraction of migration decision 
makers is allowed to depend on the current population distribution, p t ,  as well. A similar model of 
this type is developed in Boots and Kanaroglou (1988). 
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(010) 

(a) a = .97 (b) a = .90 

(c)  cx = S O  (d) cx = .05 

FIGURE 3. Time-Dependent Smoothing. 

then (2) is seen to be the special case of (34) in which A = 1 and a(1) = 1. 
However, (34) is most usefully regarded as simply a reparameterization of (2). 
For if the q X q identity matrix is denoted by I, then expression (33) is seen to be 
an instance of (2) with M(-) replaced by a new transition function, [l - a(A)]I  + 
a(A)M(.), in which the diagonal elements are singled out for special treatment. 
In terms of this parameterization, we shall henceforth characterize each 
interactive Markou chain as a triple (M, a, A) with transition function, M(.), 
participation function, a(*), and adjustment period, A. Note in particular, that 
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for all p E Pq,  A > 0, and participation functions, a(*)  

p = pM(p) m d A ) p  = a(A)pM(p) 

[1 - 4Nlp + = [1 - 4 A ) l p  + a(A)pM(p) 

m P = p{[l - a(A>lI + a(A>M(p)} 

so that the steady states for (M, a,  A) are seen to depend only on M, and not on 
the choice of a or A. Hence for any given transition function, M, the 
parameterizations, (M, a, A), yield a family of interactive Markov chains that 
differ only with respect to their dynamical behavior, and not their steady-state 
behavior. These parameterizations will form the basis for all of our subsequent 
dynamical analyses .26 

For any given interactive Markov chain, (M, a,  A>, observe that as the 
adjustment period A becomes small the fraction a ( A )  of individuals making 
migration decisions should also become small, so it is natural to assume that 
limA+o a ( A )  = 0. Under this condition, the key feature of such processes is that 
adjustment behavior becomes 'smoother' as A - 0. This is illustrated by the 
modifications of Example 3 shown in Figure 3. Here we see in Figure 3a that 
when the value of a = &(A) decreases from a = 1 to a = 0.97 the oscillatory 
behavior in Figure 2 eventually diminishes and the process converges to  s. 
Hence even when the fraction of nondecision makers in the population is as low 
as 3 percent, the adjustment process is damped enough (in this example) to 
ensure eventual convergence to a steady state. Moreover, Figures 3b, 3c, and 3d 
show that the oscillatory behavior of the process disappears altogether as a 
decreases and, in particular, that the process is quite smooth when the fraction 
of migration decision makers is no greater than 5 percent (a  5 .05). 

Given these observations, our main objective is to study the dynamical 
behavior of interactive Markov chains (M, a, A) as A becomes small. To do so, 
observe that by rearranging terms and dividing by A, (33) is equivalent to 

pf'" - Pf - 7 [ P;@,j(pt) - pf , j E I ,  tlA E Z, I - 
A (35) 

where the left-hand side is seen to approximate the time derivative, pf, ofpj as 
A - 0. In particular, ifparticipation rate, a(A)/A, (i.e., participation per unit of 
time) has a well defined limit, say l imA~o(a~A)/Al = A > 0, then (35) is 
approximated for small A by the (autonomous) differential equation systemZ7 

26We return to the explicit analysis of these parameterizations in Section 4 of Part 11. 
271t should be noted at this point that our assumption of continuously differentiable attrac- 

tion functions is needed only to  ensure this uniqueness property. Hence the results of this section 
(as well as most of those in Part 11) can be extended to all attraction functions which are at least 
locally Lipschitzian. 
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where A denotes the limitingparticipation rate for the given population. If this 
differential equation system is written in matrix form as 

(37) P(t) = A(p(t)M[p(t)l - p(t)], t E R, 

then we begin by focusing on the convergence behavior of these limiting 
processes. Our ultimate objective is to  show that certain of these convergence 
properties are inherited by those associated interactive Markov chains, (M, a, A), 
with A sufficiently small. In this way, one can give concrete meaning t o  the 
above notion of ‘sufficiently short’ periods. 

To analyze these limiting processes, we begin by recalling from the 
Picard-Lindelof Theorem (for example Theorem 3.1 in Hale, 1980) that the 
continuous differentiability of M implies the existence of a unique (continu- 
ously differentiable) solution to (37) for each initial condition, po E Pq.z8 Of 
particular importance for our present purposes is that each solution starting in 
Pq must stay in Pq. More formally, if a set 0 c Rq is designated as an invariant 
set for the differential equation system (37) iff for every solution, p: R, - Rq, 
with p(0) E 0 it is true that p(t ) E 0 for all t E R, , then we have 

PROPOSITION 2: Invariant Sets: The set of  distributions P, is always an  
invariant set for (32). In addition, if M is positive then $4‘ also an invariant set. 

Proof. (i ) If for each A > 0 with AA < 1 we consider the following difference 
equation defined for all n E Z+ by 

and construct a standard ‘Euler approximation’(pt,) of (37) defined for all t E R, 
by the linear interpolation, 

nA - t n A + A - t  
Pi = 7 Pnh + PZ++l, t E [nA, nA + A1 

A 

then the convexity of Pq implies that for each choice of initial condition, pi = po 
E P,, this family of functions (pa: AA < 1) lies entirely in P,, and in particular is 
uniformly bounded. Moreover the continuous differentiability of M also implies 
that this family is equicontinuous on R, . Hence it follows from the compactness 
of P, together with an application of the Arzela-Ascoli Theorem (Royden, 1968, 
Theorem 33, p. 179) that (p,) converges (uniformly on each bounded time 
interval [O,  TI) to a continuous bounded function, p: R+ - P,, which can be 
shown (by an application of the Lebesgue Dominated Convergence Theorem 

28Note also that this differential equation system is an instance of the more general family of 
‘master equations’ studied by Haag and Weidlich (198%) and others. In particular, if we substitute 
the identity, C,+, MJL [ p ( t ) ]  = 1 - Mj,[p(t)l ,  into the right-hand side of (361, then this equation is 
seen to have the equivalent form, p,(t) = h [ C j t j p i ( t ) M ~ [ p ( t ) ]  - X+,p,(t)M , i [ p ( t ) ] ) ,  which is an 
instance of the ‘pure migratory’equation in Haag and Weidlich (1988b, p. 30). 
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(Royden, 1968, Theorem 16, p. 229) to  satisfy (37) with initial condition po  (see 
for example in Kushner and Clark, 1978, pp. 20-21). But by the Picard-Lindelof 
Theorem this solution is unique, and hence P, is an invariant set for (37). 
(ii ) From the continuity of M and compactness of P, it follows for each i j  E I X I ,  
the component function Mi, achieves a minimum in P,, which together with the 
positivity of Mij  implies that minpEpqM i j ( p )  > 0. Hence letting a = minLj 
(minPEp Mij ( p ) ]  > 0, it  follows from (36) that 

Thus, if for any solution of (37) with p(0 )  E $4‘ we let E~ = min (p j (0) ,  ad21 > 0 for 
each j E I, then it follows from (38) that j j ( t )  > 0 wheneverpj(t) = E ~ .  But since 
p j (0 )  I E, by definition, we may then conclude that p j ( t )  2 ej > 0 for all t E R,, 
and hence that p( t  ) E Rq + for all t E R, . Finally since (i  ) implies that p( t  E P, 
we must have p ( t )  E P, n RT+ = P l  for all t whenever p(0) E Pl. 

With these observations, we may now formalize this class of limiting 
processes as follows: 

DEFINITION 3: ( i )  For any transition function, M: Pq - QXq, the differential 
equation system in  (37) is designated as a interactive Markov process on I with 
intensity parameter, A > 0.29 Each such process is denoted by the pair (M, A). 
( i i )  Every continuously differentiable function, p :  R, - P,, with values, p ( t ) ,  
satisfying (37) is said to be a n  adjustment path forprocess (M, A) with starting 
point, p(0 )  E P,. Such paths are also denoted by p(.). 
(iii ) For each gravity-type transition matrix, Marf, the interactive Markov 
process (Ma,f, A) is also said to be of gravity type. 
( iv )  I n  addition, if each aj is nonincreasing then (Ma,f, X) is designated as a 
gravity-type interactive Markov process with pure congestion effects. 

Next observe that since steady states, p E P,, for the differential equation 
system (37) are defined by the condition, p = 0, it follows that the steady states 
for (M, A) are precisely the steady states, S(M), for the transition function, M, 
in (3) above. Hence we shall use the two concepts interchangeably. 

Extension to Spatial-Flow Processes 
To analyze convergence to these steady states, we again focus on the 

spatial flows associated with such processes. As in the discrete case, we begin 
with a space of flow states, i j  E I x I ,  and develop a class of continuous 
‘spatial-flow processes’on I x I ,  with flow paths, P, = [P,(ij): i j  E I X I ] ,  where 

29From a formal viewpoint this non-probabilistic model is more accurately described as a 
deterministic version of a Markov process, as for example in De Palma and Lefevre (1983, Section 4) 
[In particular, the present model is seen to be a n  instance of model (11) in De Palma and Lefevre 
where the intensity rate, A, corresponds to their constant ‘review rate’ R.] However, the present 
terminology serves to emphasize the parallel between these continuous-time models and interac- 
tive Markov chains. 
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Pt(i j )  denotes the fraction of population in flow state i j at time t ,  that is, the 
fraction of population flowing from i to j at time t. But unlike the analysis of 
Section 4 that involved only steady-state properties, we are now interested in 
the full range of adjustment paths generated by each process. Hence, while it 
was sufficient in Section 4 to  focus on the single the most natural representa- 
tion of spatial flows (designated there as the spatial-flow chain associated with 
the g-iven interactive Markov chain), it is now important to emphasize that 
there are many different spatial-flow processes which are consistent with the 
same interactive Markov process.30 In particular, it will be shown in Part I1 
that for purposes of stability analysis, it is convenient to study a ‘symmetric 
flow version’ of gravity-type interactive Markov processes which differs from 
the natural continuous analog of spatial-flow chains (designated as the 
‘canonical flow version’ in Example (35) below). 

To develop the full range of possibilities here, it is convenient to  begin with 
a very general definition of ‘flow processes’ and then specialize to those 
‘spatial-flow processes’ of interest. Hence, if P,,, in (11) again denotes the set of 
possible flow distributions on I X I, then we now consider the general class of 
processes governed by differential equations of the form 

(39) Pt = u[@(P,) - Ptl, t E R, 

for some continuously differentiable function, @: P,,, - Pqxq, and positive 
scalar, u. The properties of system (39) closely parallel those of (37). First of all 
the steady states for this system are again defined by the condition that P = 0, 
so that a flow distribution, P E Pqxq,  is a steady state for (39) iff @(P) = P. If the 
set of such steady states is denoted by 

(40) 

then the argument in Proposition 1 again shows that there is always at least 
one fixed point, @(P) = P, for @ and hence that S(@) # 0. Next observe from the 

, continuous differentiability of @ that (again by the Picard-Lindelof Theorem) 
there exists a unique continuously differentiable matrix-valued function, 
P: 52, - (Wqxq, satisfying (39) for any choice of initial conditions, Po E Pqx4.  
Moreover, if we now designate a set, 1R c Rqxq, as an inuariant set for (39) iff for 
every solution, P: R, - Rqxq, with Po E 1R it is true that Pt E 1R for all t E R,, 
then we have the following parallel to Proposition 2: 

S(@) = {P E Pqxq: @(PI = P) 

PROPOSITION 3: Invariant Flow Sets: The set ofdistributions Pqxq is always 
an inuariant set for (39) 

30This is easily seen in the discrete case by observing that each interative Markov chain 
corresponds to the marginal distributions of its associated spatial-flow chain, and that in general 
there are many different joint distributions with the same marginal distributions. An explicit 
example for the case of interactive Markov chains is given in Part I1 (footnote 1). 
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Proof. If for each A > 0 with Au < 1 we now consider the difference equation 
defined for all n E Z+ by 

P;+l = (1 - Aa)P; + Au@(P;) 

together with the Euler approximations (Pf ) of (39) defined for all t E R, by 

nA - t n A + A - t  A 
pt“ = ___ p,“ + A Pn+l, t E [nA, nA + A] 

A 

then the convexity of Pqxq again implies that for each choice of initial condition, 
P t  = Po E Pqxq, the family of functions (PA: Au < 1) lies entirely in Pqx4. Hence 
the same argument as in Proposition 2 shows that ( P A )  converges to the unique 
solution of (37) with initial condition Po, and thus that Pqxq is an invariant set 
for(39). 

Hence solutions to  (39) starting from any initial flow distribution Po E PqXq 
always yield flow distributions, P, E Pqxq, at each point in time, and thus can 
potentially describe meaningful ‘flow adjustments’ in this sense. However, it is 
important to  note that if such a flow interpretation is to make physical sense, 
then every steady state of the system must satisfy the additional ‘balancing’ 
constraint that total flow into each region i be exactly the same as total flow out 
of region i .  Hence, if for each distribution, P = [P( i j ) :  i j  E I X I ] ,  we again 
denote the row marginals by P(i-1 = Zj P ( i j ) ,  i E I ,  and column marginals by 
P ( - j )  = Ci P ( i j ) ,  j E I ,  then (as a parallel to  (18) for the discrete case) we require 
that each steady state, P E S(CP), satisfy the flow-balance condition: 

(41) P(i.1 = P ( 4 ,  i E I  

These observations may be summarized as follows: 

DEFINITION 4. (i ) For any continuously differentiable function, CP: P,,, - 
Pqxq, and positive scalar, u, the differential equation system in (39) is designated 
as a flow process, (CP, a), on I X I iff every steady state, P E S(CP), satisfies 
flow - balance condition (4 1). 
( i i )  Each continuously differentiable matrix-ualued function, P:  R, - PqX,, 
satisfying (39) is designated as a flow-adjustment path for (@, a) with starting 
point, Po E PqXq. Such flow-adjustment paths are also denoted by (P,). 

Within this general framework, we now consider those flow processes on 
I x I which ‘generate’ interactive Markov processes on I .  To do so, observe first 
that for any flow-adjustment path, (P,), both of the corresponding marginal 
distributions, P,(I-) and P,(-I) ,  generate paths in P, that can in principle 
represent adjustment paths for interactive Markov processes. Hence, as a 
parallel to  the discrete case, we again focus on the ‘column’ marginals, P,(-I), 
and consider those flow processes with column marginals corresponding to a 
given interactive Markov process. To do so, observe first that since by definition 
the identity, P,(.j) = Xi P, ( i j ) ,  implies the corresponding identity, P,(.j) = Xi 
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p t ( i j ) ,  it follows that the column marginals of a given flow process correspond to 
the interactive Markov process in (36) iff the following marginal consistency 
condition is satisfied: 

(42) P , ( j >  = A 2 Pt(-i)Mij[P,(.I)l - P , ( j ) ]  , 
l i  

j E I, t E R, 

However, there are certain ‘trivial’ flow processes which automatically satisfy 
this condition, as illustrated by the following example. 

Example 4: Prod uct-Flow Processes 
For any interactive Markov process (M, A) on Z with adjustment paths p ( - )  

in Pq, we may construct a unique flow process with ‘flow-adjustment’ paths 
given by the simple ‘product’ condition, P,( i j )  = pi(t)pj(t). Observe that by 
definition the identity, P,(I-) = p ( t )  = P,(.I), implies that each steady state of 
this process automatically satisfies (41) and hence defines a ‘flow process.’ 
Moreover, this identity also implies that the column marginals for each 
flow-adjustment path agree identically with the adjustment paths for (M, A), 
and hence that (42) is automatically satisfied. To construct the differential 
equation specification of this process observe that we may differentiate the 
identity, P,(ij) = pi(t  )pj (t ), and employ (36) to obtain 

Hence, by setting 01 = 2X and = C k  P, (.k)(l/zP, ( . j )Mki[P t(-I)l + 
%P, (.i)Mkj[P ,(-I)]) we obtain an explicit product flow process, (a, a), which 
always generates the interactive Markov process (M, A). (Note also that this 
same argument yields a product-flow process which generate any given process 
with paths in P, .) 

However, although the steady states, P, of this product flow process always 
generate the steady states of (M, A), the individual flow shares in P do not 
necessarily correspond to those implicit in the transition function, M. In 
particular, observe that for any steady-state flow distribution, P, the fraction of 
all flow from i that goes to j is given by P(ij)/P(i-) .  But by the interpretation of 
M it follows that Mij[P(.I)l must represent the steady-state fraction of 
population at i who migrates to j (which by (41) is equivalent to Mij[P(I-)l). 
Hence in order that a given flow process (a, a) yield meaningful steady-state 
flows consistent with (M, A), it is necessary that each steady state for (a, a) 
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satisfy the following additional transitional consistency ~ o n d i t i o n : ~ ~  

(43) P(ij)/P(i .)  = M,, [P(I.)l, i j E I X I  

It  may be verified by inspection that simple product-flow process in Example 4 
generally fails to satisfy this condition. Hence we now focus on those flow 
processes which satisfy both of these consistency conditions: 

DEFINITION 5: For any given interactive Markou process, (M, A), a flow 
process, (a, a), is designated as a flow version of (M, A) iff (a, u) satisfies the 
marginal consistency condition (42), and each steady state, P E S(@), satisfies 
the transitional consistency condition (43). 

As a first illustration of these concepts, it is appropriate to  develop a 
continuous analog of the spatial-flow chains in (13) and (14) above which shows 
that there always exists as least one flow version of any interactive Markov 
process (M, A): 

Example 5: Canonical Flow Version 

with u = A and with operator, W P,,, - PqX4, defined for all P E Pqx4 by 

(44) q ( P >  = P(.i)M,,[P(.I)I, i j E I X I  

It then follows from (39) and (44) that a distribution, P E PqXq,  is a steady state 
for (W, A), iff 

(45) P(.i)M,, [P(-I)l= P ( i j ) ,  i j E I x I  

Hence summing (45) with respect to j we see that (41) holds identically, and 
hence that (W, A) is a flow process. Moreover, by using (41) and dividing both 
sides of (45) by P(i.>, we also see that each steady state for (W, A) satisfies the 
transitional consistency condition (43). Finally, by substituting (44) into (39) 
and summing both sides with respect to  i ,  we see that (42) holds, and hence that 
(W, A) is a flow version of (M, A), which we now designate as the canonical flow 
version of (M, A). H 

An important additional example involving ‘symmetric’ flows will be 
developed in Part 11. There it will be shown that the stability properties of these 
symmetric flow versions of gravity-type interactive Markov processes can be 
fully analyzed in term of the objective function, 2, in (26). In particular, it will 
be shown that this objective function yields a global Lyapunov function for such 
processes on an appropriately defined invariant flow set containing all steady 
states of the process. 

For any interactive Markov process (M, A) consider the process (W, a) 

31Note also from (41) that this condition is essentially a generalization of condition (16). 
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