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ABSTRACT. In Part I of this paper (Smith and Hsieh, 1997) a programming formulation 
of steady states was developed for gravity-type interactive Markov chains in terms of their 
associated spatial-flow chains. These results are here applied to analyze the stability 
properties of interactive Markov chains. In particular, the objective function for this 
programming formulation is shown to constitute a Lyapunov function for an appropriately 
defined continuous-time version of spatial-flow chains. The Lyapunov stability properties 
of these spatial flows are then shown to yield corresponding stability properties for the 
continuous-time versions of interactive Markov chains. In particular, these processes 
always exhibit global convergence to steady states. Finally, it  is shown that when steady 
states are unique, these convergence results are inherited by those interactive Markov 
chains that are ‘sufficiently close’ to their continuous-time versions. 

1. INTRODUCTION 
This paper constitutes the second part of the steady-state analysis of 

gravity-type interactive Markov chains begun in Smith and Hsieh (19971, here 
designated as Part I. In that paper a programming formulation of steady states 
was developed in terms of the spatial-flow chains defined by such processes. 
The main objective of the present paper is to  show that this programming 
approach can also be used to analyze stability properties. As with most 
discrete-time processes, interactive Markov chains can be highly unstable 
when period-to-period adjustments are large. Hence it is appropriate to  allow 
period lengths (adjustment sizes) to  become arbitrarily small, and to focus on 
the limiting continuous-time versions of such chains. These limiting versions, 
designated as interactive Markov processes, were formalized in the final section 
of Part I, along with their associated spatial-flow processes. It was also observed 
that this correspondence is nonunique, and that there are generally many ‘flow 
versions’ of interactive Markov prbcesses. 

In the present paper, we develop a symmetric flow version of gravity-type 
interactive Markov processes that can be completely analyzed in terms of the 
programming formulation in Part I. In particular, it  is shown that the 
corresponding objective function is a global Lyapunov function for this sym- 
metric flow version on the invariant set of symmetric flows (which contains all 
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steady states of the process). Hence all standard Lyapunov stability properties 
can be established for these processes. Such stability properties are in turn 
shown to be inherited by the interactive Markov processes that they generate. 
Specifically, it is shown that all gravity-type interactive Markov processes 
necessarily converge to their set of steady states (so that no ‘cycling’ behavior is 
possible). Since this implies that unique steady states must be asymptotically 
globally stable, it then follows from the results in Part I that gravity-type 
interactive processes with pure-congestion effects must be globally asymptoti- 
cally stable. More generally, it follows that the set of locally asymptotically 
stable steady states for any gravity-type interactive Markov process must 
correspond precisely to  the set of isolated local minima for its associated 
Lyapunov function. Finally, it  is shown that for the case of unique steady states, 
global convergence is inherited by all gravity-type interactive Markov chains 
with sufficiently small adjustments, that is, which are ‘sufficiently close’ to  their 
continuous-time versions. 

To establish these results, we begin in the next section by focusing 
explicitly on flow versions of gravity-type interactive Markov processes. In 
particular, the important class of symmetric flow versions is developed. The key 
Lyapunov property of the objective function in Part I is then established in 
Section 3, and is employed to obtain a number of stability properties of 
interactive Markov processes. Finally, global asymptotic stability of the 
corresponding interactive Markov chains is treated in Section 4. The paper 
concludes in Section 5 with a brief discussion of possible extensions of the 
present results. To minimize restatement, we shall refer directly to  definitions 
and results in Part I by including ‘I’ in their designations [e.g., Definition 1.3 
and expression (1.511. 

2. GRAVITY-TYPE SPATIAL FLOW PROCESSES 
Given the general properties of flow versions for interactive Markov 

processes developed in Part I, we now focus on the flow versions ofgravity-type 
interactive Markov processes. To do so, we first show that all steady-state 
properties of the spatial flow chains in Part I are inherited by these continuous 
flow versions. We then develop the important class of symmetric flow versions of 
interactive Markov processes that will form the focus of our subsequent 
analysis. 

Steady States for Flow Versions 
We begin by showing that the steady states, S(@), for each flow version 

(@, a) of a given interactive Markov process (Ma,f, X) are necessarily equivalent 
to steady states of the corresponding spatial-flow chains in Part I. To do so, 
recall first from Theorem 1.3 that if S(Ma,f) denotes the class of steady states for 
(Ma,f, I ) ,  and ifSFD[a, fl denotes the class ofsteady stateflow distributions, P E 

PqXq, satisfying 

(1) P( i j>  = iai[P(.i)laj[P(.j)lflj, i j c I x Z  
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for some p > 0, then the mapping, Parf: S(Ma,3 - Pqxq, defined for all p E S(Maf) by 

(2) q'<ij> = p(p>ai(pi>aj(pj)fij, i j c l x l  

(with p ( p )  = [Cij ai (p i )a j (p j ) f j1- l )  is a bijection from ,"(Ma,') to SFD[a,  f l .  This 
in turn implies from Theorem 1.1 that each steady-state flow distribution, P, is 
equivalently characterized by the condition that 

P ( j >  = paj[P(j>l 2 Uk [P.k)lfkj, j E I  
k 

(3) 

Using these results, we now have the following extended version of Theorem 1.2: 

THEOREM 1: Steady State Flows. For any flow version (@, u) ofa grauity-type 
interactive Markou process, (Mapf, X) 

(4) S(@) = SFD [a, fl 
Proofi ( i )  First observe that if P E S(@) then it follows at once from (1.5) 

together with the flow-balance condition (1.41) and transitional consistency 
condition (1.43) that for all i j E I X I 

which is precisely expression (1.16). Thus it follows from the argument in part (ii) of 
the proof of Theorem 1.2 that P E SFD [a, fl , and hence that S(@) c SFD[a, fl . 
( i i )  To establish the converse, choose any PO E SFD[a, fl and let po = PO(.I) = 
(Pa,3-l(PO) E S(Ma,3. Then, by setting Pixq = (P E PqXq: P(-I) = pol, it follows on the 
one hand from the bijective property of Paxf that 

(6) (P"] = SFD[a, f l  n Pixq 
(since for any P E SFD [a, f l  n Pixq  we must have P(.I) = p o  t S(Ma,f) + 
(PaV1(P) = (Pa,')t1(Po) + P = PO). But, on the other hand, since it follows 
from marginal consistency (1.2) that P(.I) = 0 for each P E P,,, with P(.I) = P O ,  

we also must have 
r 1 

=3 c Qij(P) = P ( j )  = p; ,  j E I  
2 - @(P> E P&, 

Hence @(Pix ) c Pix4' which, together with the continuity of @ on the compact 
convex set P!,,,irnphes (from the Brouwer Fixed-Point Theorem) that @(PI = 

P for some P E Pixq.  However, since part (i) together with (1.40) then shows 
D The Regional Science Research Corporation 1997. 
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that P E SFD[a,  fl, it follows from (6) that P = PO, and thus that @(Po) = Po. 
Hence we may conclude from the arbitrary choice of Po that SFD[a, fl c S(@). 

Given these properties of all flow versions of gravity-type interactive 
Markov processes, we now develop the class of flow versions that is most useful 
for the stability analysis to follow. 

Symmetric Flow Versions of Gravity-Type Processes 
As in Part I, it follows from (1) that each steady-flow distribution, P E 

SFD[a,  fl, is symmetric, that is P = PT. But in the present context, the 
mathematical consequences of this symmetry property go much deeper. In 
particular, it turns out that gravity-type interactive Markov processes have 
symmetric flow versions that exhibit symmetry away from steady states as well. 
To formalize these flow versions, observe first that if the subset ofpositive flow 
distributions in Pqxq is denoted by = Pqxq n Iw4+x+4, so that the set ofpositive 
symmetric distributions in Pqxq is given by 

(7) 

then the desired symmetric flows versions can be defined in terms of invariant 
sets as follows 

s = {P E qxq: P = P') 

DEFINITION 1: A flow version (a7 u) o ~ ( M ~ , ~ ,  A) is said to be symmetric i f f 5  is 
an  invariant set for (a, u). 

To construct a symmetric flow version of (Ma,f, A), we first define the 
functions, Clij: P, - R,, i j  E I X I ,  for all p E P, by 

and construct the associated matrix-valued function, Q: Pqx, - Pyx,, for all 
P E P,,, and i j  E I X I by 

(9) 

If the function, @a,f: P,,, - Pqxq, is then defined for all P E P,,, by 

(10) Q:jf(P) = '/z&ij(P) + '/zQji(P), i j E I X 1  

our objective is to show that the desired symmetric flow version of (Ma,f, A) is 
given by the process (@a,f, u) with (T = 2A. By (1.39) the differential equation 
system for (@a,f, 2A) is given by 

(11) P,<ij> = 2A[?h[Qij(P,) + Qji(Pt)l - P,(ij)], i j E I X I  
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and can also be written in matrix form as: 

P, = 2X(['/zQ(Pt) + YzQT(P,I - Pt] 

In particular, the steady states of (@a,f, ZX) are precisely the distributions, P E 

Pqxq, satisfying the condition 

(12) P = @a,f(P) = 1/,Q(P) + 1/2QT(P) 

which together with the symmetry of @a,f(P) implies that P must be symmetric. 
Thus every steady state automatically satisfies the balance condition (1.411, 
and it follows that (@a,f, 2x1 is a flow process. With these observations we now 
show that 

THEOREM 2: Symmetric Flow Versions. For any grauity-type interactive 
Markov process, (Ma,f, A), the flow process (@a,f, 2A) is a symmetric flow version 
of(Masf, X). 

Proofi To establish that (@a,f, 2X) is a flow version of (Ma,f, X), observe first 
that for all i j  E I X I 

(13) 

which together with (1.5) shows that (@a,f, 2X) satisfies the marginal consis- 
tency condition (1.42). To establish transitional consistency (I.43), observe first 
that the marginal distribution, P(*I), for every steady state P of (@a,f, 2X) must 
satisfy (31, which together with (9) and the symmetry off, implies that 

P ( i )  P ( j >  
= P =  

ai [P(.i 112 ak [ ~ ( , k ) l f i k  aj [ p ( j ) l  C ak [P(-k)lf;.k 
k k 
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for all i j  E I X I. But since every steady state P of (@a,f, 2x1 must also satisfy 
(121, we may then conclude that for all ij E I X I 

where Ma,f is the transition function for (Ma,f, 1). Thus (@a,f, 2h) satisfies 
transitional consistency, and must be a flow version of (Ma,f, X). Finally, to verify 
that S is an invariant set for (@a,f, ah), observe first from the symmetry of 
Q(P> + QT(P) that the differential equations for P,(ij) and P , ( j i )  in (11) are 
identical. But since for any distribution, Po E S we must have Po(i j) = P,(ji 1, it 
follows that the unique adjustment path, (P,), for (@a,f, 2X) with starting point 
Po must satisfyP,(ij) = Pt( j i )  for all t E R,. Hence P, = PTfor all t E R,, so that 
by Proposition 1.3 it remains only to show that Po E S implies P, E RT:q for all t E 

R,. To do so, recall first from part (ii) of the proof of Proposition 1.2 together 
with the positivity of Ma,f that 01 = minij {minpEpq M2f(p)] > 0. Moreover, since 
the marginal consistency condition (1.47) implies that the marginal, [p,(.I)l, of 
each adjustment path, (P,), must be a solution of (1.37) for M = Maxf, it also 
follows from part (ii ) of the proof of Proposition 1.2 that if for any Po E S we set 
ej = min [Po( j ) ,  01/21 > 0 and let E = minj ej > 0, then P , ( j )  3 E for all t E R, and 
j E I. Hence, observing from (9) that Qij(P,) = Qji(Pt) 3 €01 for all t and i j E I X I, 
we see from (11) that 

P,(ij) 2 2h(l / , [~a + €011 - Pt(ij)] = ~ X [ E O ~  - P,(ij)I, i j E I X l  

for all t E R,. Finally, by setting e i j  = min {Po(i j), ed2} > 0, it may be concluded 
from the argument following (1.38) in the proof of Proposition 1.2 that P,(i j) 2 

e i j  > 0 for all t E R+, and thus that P, E R::q for all t E R,. 
This process (@a,f, 2x1 will play an important role in our subsequent 

analysis, and hence is now designated as the symmetric flow version of 
(Maxf, X1.l In particular, it follows from Theorem 1 above that in analyzing 

'It is of interest to note that this symmetric flow version is precisely the symmetrization of 
the canonical flow version to (Ma,', A), as can be seen from a comparison of (9) with (5) and (1.44). 
The intensity factor 2 A  simply allows this process to be written in standard form (1.39). It is also of 
interest to note that this symmetrization yields a flow version of gravity-type interactive Markov 
chains that differs from the spatial-flow chain developed in Part I. In particular, the flow chain 
definedforanygiventransitionfunction,M, byP,+,(ij) = Pf(.i)MtJIPt(.Z)l +P,(j)M,,[P,(.Z)] fori # j  
and P,+ '(ii) = (2ML, [P,(,Z)l - l)P,(.i) is easily seen to  yield a symmetric version of the interactive 
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in analyzing the steady-state flow distributions for (Ma,f, A), there is no loss of 
generality in restricting our attention to the steady states of (@a,f, 2A). 

3. ASYMPTOTIC STABILITY FOR THE CONTINUOUS CASE 
As mentioned in the Introduction, the single most important property of 

the programming problem .@[a, fl in Part I is that the objective function, 2, 
exhibits a Lyapunov property with respect to the symmetric flow version of 
(Masf, A). Hence our present objective is to  establish this property, and to 
develop its stability consequences for (Ma,f, A). To do so, it  is important to  begin 
by observing that when analyzing the stability behavior of the interactive 
Markov process (Ma,f, A) in terms of its symmetric flow version (@a$f, 2x1, there 
is a many-to-one correspondence between the adjustment paths for (@a.f, 2 X )  
and those of (Ma,f, A). To see this, observe simply that for all starting points, 
Po E Pqxq, with a given marginal distribution, Po(-I) = po E Pq, the marginal 
consistency condition (I. 16) implies that the resulting flow-adjustment paths 
(P,) for (@a,f, 2x1 must all generate the same adjustment path for (Ma,f, A) with 
starting point po. But since there are infinitely many flow distributions Po with 
Po(.I) = PO, it follows that infinitely many flow-adjustment paths of (@a,f, 2X) 
correspond to the same adjustment path for (Ma,f, A). This is true even if the 
starting points are restricted to symmetric flow distributions in S (which, for 
each row vector, PO, always includes the adjustment path with ‘product’ starting 
point, Po = (p0Fpo E S, in Example 1 of Part I). 

Hence, to  analyze the stability of adjustment paths p(.) in terms of their 
corresponding flow-adjustment paths (Pt), it is convenient to  construct an 
explicit set of unique representative flow-adjustment paths. To do so, we begin 
by observing that there is one additional condition that a ‘reasonable’ choice of 
representative flow-adjustment paths should satisfy. In particular, if a given 
adjustment path p(.) for (Ma,f, A) starts at a steady state, that is, with po 
satisfying (1.81, then p(.) will be a stationary path in the sense that p(t ) = PO. 

However, flow-adjustment paths (P,) with stationary marginals p(-) need not 
themselves be stationary. For example, since the ‘product’ distribution, (p0Fpo, 
will generally not satisfy (12) when po satisfies (1.81, it follows that the 
flow-adjustment process (P,) with starting point Po = ( P O ) ~ P O  will not be 
stationary, even though its marginal process is. In other words, such flow- 
adjustment paths will continue to ‘move’ even though their marginal adjust- 
ment paths do not. 

Markov chain generated by M (i.e., symmetry of PO implies symmetry of Pt for all t ) .  Moreover, this 
process also satisfies the marginal consistency condition, Pt+l(-Z) = Pt(.Z)MIPi(-Z)l, and hence 
generates the given interactive Markov chain. Note however that these spatial flows violate the 
‘consistency’ condition (1.12) in Part I that gave rise to the spatial-flow chain representation. Note 
also that such flows are only guaranteed to be nonnegative if M,,(-) 2 1/2. Hence this particular 
model is meaningful only when periods are short enough (i.e., decision intensities are low enough) 
to ensure that the majority of individuals do not consider migrating in each period. 
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Flow Correspondence Mapping 
With these observations, our first objective is to  construct a 'continuous 

selection' of flow-adjustment paths (P,) for adjustment paths p(-) satisfying the 
condition that stationary adjustment paths always correspond to stationary 
flow-adjustment paths. To do so, we begin by adopting an appropriate topology 
for analyzing continuous paths in S as follows. If the uftne hull of S (i.e., the 
smallest affine space containing S), is denoted by 

(14) 

then the appropriate topology for our purposes is taken to be the topology on 
H ( S )  induced by the Euclidean metric topology on Rqxq, with open sets given by 
the intersections ofH(S) with open sets in Rqxq. In particular, since S is seen to 
be the intersection ofH(S) with the positive orthant, that is, S = H ( S )  n [W4=+4, it 
follows that S is open in H(S) .  More generally, all subsequent references to  
open (closed, compact) subsets of S or to  continuity of functions from or to S will 
be with respect to this topology on H ( S ) .  Finally, it  should also be noted that 
this topology is homeomorphic to the Euclidean space, [Wn(q), with exponent, 
n(q) = [q(q + 11/21 - 1, denoting the number of 'degrees of freedom' remaining 
after the symmetry and normalization conditions in (14) have been imposed. 
Hence we may also treat S as an open subset of 

Within this framework, our present objective is to  construct for each 
gravity-type transition function, Ma,f, a continuous matrix-valued function, 

IP; - S, with images W:f satisfying the condition that marginals of W:' 
always agree with p,2 that is, 

when appropriate. 

(15) W;f(*I) = p, P Pq 
and that W:f be a steady state for (@a,f, 2x1 whenever p is a steady state for 
(Masf, X), that is 

(16) 
To construct such a function, we first let the function 0: P, - S, be defined for 
a l lp  E P, and ij € 1  X I b y  

(17) 

where Bij is given by (8) above. Next, if the closure of S in H ( S )  is denoted by s, 
and if the mapping, D: s X S -+ R,, denotes the restriction of the divergence 
function D, defined in (1.25) of Part I, to  the set, X S c P,,, X [W::,, then for 
each probability vector, p E R;, we now consider the programming problem: 

(18) min: D(P, 0,) 

p E S(Ma,f) + W:f E S(@a,f), P E Pq 

@,(ij) = YZOij(P) + 1/2Oj[(P) 

subject to: P E S(p) = (P E 3: P(.1) = p) 

2Recall that for the mapping Pa,f in (2) this marginal correspondence holds only a t  steady 
states. 
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Observe that pTp E S(p) for all p E P,, so that the feasibility space, ?S(p), is 
always a nonempty compact convex subset of 3. Moreover, since p E P: implies 
that pTp E Pix,, it  follows by letting Q = pTp in the argument of (1.28) in Part I 
that there is a unique positive solution, q:f E S, t o  problem (18). These positive 
solutions thus yield a well-defined function, ?Ira,f: P: - S, which we now 
designate as the flow-correspondence mapping for Ma,f. The following result, 
proved in Smith and Hsieh (1996), shows that the mapping ?ya,f satisfies the 
desired correspondence properties, together with certain additional mapping 
properties. In particular, if the range of Va,f is restricted to the image set, 
Wa,f(Pq+) = [T:f: p E P;], then the resulting map, .\Va,f: P i  - Va,f(P;), is a 
homeomorphism, that is, a continuous bijection with continuous inverse: 

PROPOSITION 1: The flow-correspondence mapping, 
(151, (16), and its restriction, 
continuous inuerse, [Va,fl-l: Wa,f(Pf) - Pq+, given by 

lP: - S ,  satisfies 
P' - W,f(Pp+ 1, is a continuous bijection with 

(19) [Wf] -1(P) = P(-I), P E W,f(Pq+ ) 

As a direct consequence of this result, it follows that by restricting the 
we obtain precisely the bijection Pa,f from S(Ma,f) to  domain of to  

S(@a,f) (=SFD[a,  fl) in (2) above: 

PROPOSITION 2. The restriction, Wa,f: S(Malf) - Ta,f[S(M "sf)], is equal to Pa,f. 

Proof If for any p E S(Ma,f) we let P:' = P E SFD[a,  fl, then it follows by 
summing (1.24) over i and applying Theorem 1.1 that p = P(*I). Moreover, since 
@a,f(P) = P by Theorem 1, it then follows by combining (l), (2), (91, (lo), and (17) 
that 
qp .  a f  (LA . .  = y20ij(p) + y2ftji(p) = Y ~ ~ J P ( ~ I ) I  + l / z ~ , [ ~ ( - ~ ) i  

= 1/2Qij(P) + Y2Qji(P) = @$f(P) = P ( i j )  

and hence that q;f = P = qf for all p E S(Ma,f). 
Given this flow-correspondence mapping, observe next from Theorem 

2 together with Definition 1 that for each choice of starting points, po E P; and 
Po = V:: E S, the resulting adjustment path (P,) for (@a,f, 2X) must lie in S. 
Moreover, since (15) also implies that *::(-I) = PO, it follows from the marginal 
consistency condition (1.42) that the adjustment paths [P,(-I)l and p(.) must be 
identical. Hence if (P,) converges to a steady-state flow distribution, P, then it 
follows at once that p(.) must converge to the marginal steady-state distribu- 
tion, P(.I). More generally it follows that all stability properties of (@a,f, 2X) in 
the invariant set S are inherited by (Ma,f, A). Hence, by employing the 
flow-correspondence mapping, we can study the stability properties of 
(Ma,f, A) in terms of its symmetric flow version, (@a,f, 2X). 
o The Regional Science Research Corporation 1997. 
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Lyapunov Property 
With this end in mind, our primary purpose is to  show that the objective 

function, 2, in Part I [expression (21) below] is a Lyapunov function for (@a,f, 21) 
on S. To do so, we first observe that for any continuously differentiable function, 
H Rp=;l - R, and adjustment path, P :  R, - S, for 2x1, the composite 
function, [Ho PI: R, - R, defined for all t E R, by [Ho Pl ( t )  = H(P,) is also 
continuously differentiable, so that the time derivative 

(20) 

is well defined and continuous. Thus letting the function fi: Pixq - R, be 
defined for all P = [P(i j ) :  i j  E I X I ]  E S by 

H ( P )  = 2 . .  v , + ( P ) [ Q ~ ~ ( P )  - ~ ( i j ) ~  
LJ 

so that by definition, 

d 
- dt [H 0 PKt) = fi(P,) 

it follows that the sign of (dldt) [H 0 Pl( t )  on every adjustment path for (@a,f, 2h) 
is determined by the function H ,  which is completely independent of paths. 
With these observations, we now define the appropriate notion of a Lyapunov 
function for our purposes as follows: 

DEFINITION 2: I f  R c S is an open invariant set for (@a,f, 2x1, then a 
continuously differentiable function, H R - R, is designated as a Lyapunov 
function (or strict Lyapunov function) for 2X) on R i f  H satisfies the 
following two conditions for all P E R 
( i )  H ( P )  5 0,  
( i i )  H ( P )  = 0 * W f ( P )  = P 

In particular, since S is itself an open invariant set for (@a,f, 2X) it follows that 
any function, H S - R, satisfymg ( i )  and (ii) for all P E !S is a Lyapunov finction for 
(W,f, 2x1 on S. With this definition, our main result can be stated as follows: 

THEOREM 3: Lyapunov Property. For any grauity-type interactive Markou 
process (Ma,f, A) the continuously differentiable function, 2: RT:q - R, defined 
for all V E [w$:q by 

is a Lyapunov function for the symmetric flow version (@a,f, 2X) of (Masf, h) on S3 

3Although the domain iWy=;l is more convenient for partial differentiation of 2, the relevant 
Lyapunov function in Definition 2 is implicitly taken to be the restriction of Z to S c Ry:q. 
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Proof: By using (1.31) in Part I, we see from (20) and (21) together with the 
identity C i j  [@$f(P) - P(ij)] = 0 on S that for any P E S 

i ( P >  = c v i j z ( P > [ q f ( P )  - P(ij>l 
i j  

(22) 

But since the symmetry of P E S implies 

(23) 

for all i E I, we see that if the distribution W E S is defined for all ij E I X I by 

P(i-)  = 2 P ( i j )  = 2 P ( j i )  = P(* i )  
J J 

(24) w(i j> = Ka,[P(-i)laJIP(~>lf,J 

withK = [ Z l j  a,[P(.i)laJIP(.j)]f,J]-l, then it follows from (10) [with Q = Q(P) and 
QT = QT(P)] together with (23) and the identity, CIJ [@:'(P) - P(ij)l = 0, that 
(22) may be rewritten as 

(25) 

= DCQ, W) - D(P, W)l - D(Q, P) 
o The Regional Science Research Corporation 1997. 
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Asimilar argument applied to the second bracketed term shows that (25) can be 
written as 

(26) A(P)= l/z([D(Q, W )  - D(P, W>l - D<Q, PI] 

+ '/z { [D (QT,  W )  - D ( P ,  W>1 - D (QT, P)] 

In this form, observe that if for any P E S we consider the programming 
problem, .fi [PI: 

min: D(V,  W )  subject to: V E P,,, and V(I-) = P(I.)  

then the argument in (1.28) of Part I again shows that the solution to .fi PI must lie 
in P&,. Hence the only binding constraint is V(1.) = PUT), and it follows that the 
solution to :Yj(P) is given by the first-order conditions of the Lagrangian function 

%,W, (a,)]  = D(V, W )  + c a, [V( i - )  - P(i*)l 

0 = v,, X1W, (a,)] = 1 + logV(ij) - log W ( i j )  - a, 

1 

In particular, the solution V satisfies 

so that we must have 

(27) V ( i j )  = A,W(ij), i j E l x I  

where A, = exp [a, - 11 > 0. But since P ( i )  = P(i.) = V(i . )  = ZJ V ( i j )  = 

A, XJ W ( i j )  = h,W(i.) together with (27) implies that 

k 

it then follows from (9) that V = Q. Finally, since P automatically satisfies all 
the constraints of [PI and hence is feasible, we may conclude that 

(28) D(Q,  W )  5 D ( P ,  W) 

In a parallel manner, if we consider the programming problem, .&(P)] : 

min: D(V,  W )  subject to: V E P,,, and V(.I )  = P( .I )  

then the same argument as above shows that the solution to .&[PI is given by 
the first-order conditions of the Lagrangian function 

XZ [v, (@,>I = DW, W )  + 2 pJ [V( . j )  - P(.j)l 
J 

which for each V ( i j )  takes the form 

0 = V, S2W, (@,)I = 1 + log V ( i j )  - log W ( i j )  - pJ 
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Again for V(i j >  we obtain 

(29) V ( i j )  = pJW(ij) ,  i j E Z X 1  

with pj  = exp [p j  - 11 > 0, so that P ( j )  = V ( j )  = p j W ( j )  together with (231, (29) 
and the symmetry off now yields 

(30) 

Hence (30) together with (9) now implies that V = QT. But since P automati- 
cally satisfies the constraints of .e(PP>, we may also conclude that 

(31) D(QT, W) 5 D(P, W) 

Finally, observing from the well-known properties of the divergence function 
(Kullback, 1968, Theorem 3.1) that D(V, W) 2 0 for all V E Pqxq and W E Plxq ,  
andD(V, W) = 0 iffV = W, it follows from (28) and (31) that the right-hand side 
of (26) is always nonpositive and is zero iff Q = P = QT. Hence we may conclude 
from (26) that Z ( P )  9 0 for all P E S and from (10) that Z ( P )  = 0 iff @a,f(P) = P. 
Thus, 2 is a Lyapunov function for (@a,f, 2h) on S, and the result is estab- 
lished. 4 

Remark. There is a striking parallel between this result and the classical 
Lyapunov property exhibited by those 'master equations' with (i time- 
invariant transition kernels, K, and ( i i )  steady states, p", satisfying the 
'detailed balance' condition,pfKij = p*$ji, for all i and j .  For such systems, it is 
well known that the corresponding steady states, p*, are both unique and 
globally stable, with a Lyapunov function given by the divergence function, 
D(p, p*) = Xi pi In (pi/pf ) (see for example Schnakenberg, 1976 and Weidlich, 
1988). In the present case, while our transition kernel, Ma,f [P(*1)1, is state 
dependent (and hence not time invariant), the marginal process in (13) is 
indeed equivalent to  a master equation system with steady states satisfying 
the detailed balance condition above (as was shown in footnotes 20 and 28 of 
Part I). Moreover, for the special case in which time invariance holds (i.e., in 
which the attraction weights, ai, are constant), it follows from (21) that Z ( P )  = 

Cij Pij log (Pi!&) - Cij Pi, log (ai)  - C i j  Pij log (aj)  = D(P,  P"), where P* has the 
form, P f j  = paiajfij. In addition it follows from Theorems 1.2 and 1.4 (together 
with the fact that every constant function is nonincreasing) that P* must be the 
unique steady-state flow distribution for this case. Hence Theorem 3 may in 
this sense be viewed as an extension of the classical result above to those 
master-equation systems with gravity-type interactive Markov kernels. 

Stability Properties of Steady-State Flows 
To apply this result, we require a number of stability concepts for 

differential equation systems. For any nonempty open set, X c R", and 
continuously differentiable function, F: X - R", we now suppose that X is an 

4 
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invariant set for the (autonomous) differential equation system 

(32) x(t = F[x(t  11, t E R, 

Then every solution, x(.), to  (32) defines a continuously differentiable function, 
x: R, - X .  If for any z E R" and nonempty set R c R" we define the distance, 
d(z, R), from z to R by 

d ( z ,  R) = inf I(z - yI( 

then a solution x(.) is said to converge to Q, written x(t ) - R, iff limt4m d [x(t ), 
01 = 0. Note also that since d(., 0) is a continuous function (Dugundji, 1966, 
Theorem IX.4.21, it follows that for closed sets, R, there always exists a point in 
R closest to z ,  so that 

(33) d(z,  0) = a =$ llz - yjl = a for some y E R. 
Finally, if for any subset, R c X ,  we define the (closed) E-neighborhood of R in X 
for each E > 0 by 

X(R, E) = (x E X .  d (x, a) 5 E} 

JOURNAL OF REGIONAL SCIENCE, VOL. 37, NO. 4, 1997 

Y dl 

then we may define the following stability concepts for system (32): 

DEFINITION 2: For any nonempty compact subset, R c X ,  we say that 
( i )  R is an  attractor in X iff there exists some E > 0 such that for every solution, 
X(*>, 

(34) x(0) E X ( R ,  E) * x( t  - a; 
(ii ) R is a global attractor in X iff (34) holds for all E > 0; 
(iii) R is stable in X i f f  for each E > 0 there exists some 6, E (0, E) such that for 
every solution, x(-), 

(35) 

( iu )  R is asymptotically stable in Xi f f  R is both an  attractor and stable in X; 
( u )  R is globally asymptotically stable in X iffR is both a global attractor and 
stable in X.  

When the domain X is understood, we say simply that R is stable 
(asymptotically stable). Also when R is a singleton, say, R = [x), we say that x is 
stable (globally asymptotically stable, etc.). To relate the above stability 
concepts to  the Lyapunov function in (211, we begin with the following basic 
convergence result, where 2 ~ ~ ( 0 )  = {P E S: Z(P) = 0). 

x(0) E X ( Q ,  6,) * [x(t): t E R,} c x(R,E): 

PROPOSITION 3: Path Convergence. For any nonempty subset, R c S, with 
closure, 

[P~: t E R, } c R 3 P, - I3 n Z-~(O)  

L 3, and any adjustment path, P: R, - S, for (@a,f, 2X), 
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Proof: Since the Lyapunov function, 2, is continuous on 3 and since the 
boundedness of S implies that [P,: t E R+} is bounded, the assertion follows at  
once from the more general result in Theorem X.1.3 of Hale (1980L4 

To state the desired stability properties for (@a,f, 2x1, it is convenient to  
introduce two additional concepts. First, if for any subset, R c S, we denote the 
set of minimizers of 2 in R by 

min [a] = ( P  E 0: Z ( P )  = min Z(V)} 

then a set, R c S, is designated as a locally 2-minimal set in S iff there exists 
some E > 0 such that 

a = min [!%a, E)I 

(Observe from the continuity of 2 and boundedness of S that each locally 
2-minimal set, R G S, is compact.) Second, we say that subset of steady states, 
R c S(aasf), is isolated in S(@a,f) iff no other steady states are ‘arbitrarily close’ 
to  R, that is, iff there is some E > 0 such that R = S(sZ, E) n S(@a,f). With these 
concepts, we now have the following stability properties of steady-state flow 
distributions: 

Z VEdl 

Z 

THEOREM 4: Stability of Steady-State Flow Distributions: For each gravity- 
type interactive Markov process, (Ma,f, A), and nonempty compact set ofsteady- 
state flow distributions, R c S(aatf), 
(i ) I f  R is locally 2-minimal in S, then R is stable in S; 
(ii I f  R is stable in S and isolated in S(@a,f), then 
S; 
(iii) The set of all steady state flows, S(@a,f), is a global attractor in S; 
( i v )  I f  S(@a,f) = [P*) then P* is a globally asymptotically stable in S. 

is asymptotically stable in 

Proof: (i j If R = min, [S(R, eO)I then it suffices to establish (35) for all 
E < E ~ ,  since (35 )  will then hold for any u > E by setting 6, = 6,. To do so, observe 
first that if there is any adjustment path (P,)  for (@a,f, 2X) with Po E S(R, E) and 
P, 4 S(R, E) for some t ,  then by continuity of d(., R) and (Pi )  there is some t’ E 

(0, t ) with d(P,, a) = E. This together with the compactness of implies that 
the boundary set, bdS(R,  E) = [P E S: d ( P ,  a) = €1, is nonempty and compact. 
Hence by the continuity of 2 there exists a minimum value, V, = min {Z(P):  
P E bdS(R,  ~ j ] .  Moreover, since n bdS(R,e)  = 0 implies that V, > Vo = 
min (Z(P):  P E a] there must exist some 6, E (0, E) with max {Z(P):  P E S ( ~ ,  
S,)} < V,. To see that this 6, satisfies (351, observe that if for any adjustment 
path (P,) with Po E S(R, 6,) [rS(Q, S,)] it is true that P, g S(a, E) for some t ,  
then d(Po,  R) 5 6, < E and d(P,, R) > E again imply the existence of some t ’ E 

4Note that the result in Hale should be interpreted with respect to the Euclidean space, [Wn(q), 

defined following expression (14). 
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(0 ,  t )  with d(Pt t ,  R) = E. Hence P,, E bdS(R,  E) and we must have Z(P,,) z V,. 
Finally, since 2 5 0 on S by Theorem 3, it also follows that 

(36) 

and we obtain a contradiction. Hence no such adjustment path can exist, and it 
follows that (35) holds for this choice of 6,. 
(ii) Observe first from Theorem 3 together with property (ii ) of Definition 2 that 
the steady state flow distributions, P ,  for @a,f are given precisely by the 
condition that 2(P) = 0, so that 

(37) s(w,~) = i - 1 ( 0 )  = S n 2-l(0) 
Hence if R is a stable set in S and if R = S(R, a) n S(maP) for some a > 0, then 
by choosing E E (0, a) sufficiently small to  ensure that {P,: t E R,] c S(Q a) for 
all adjustment paths (P,) with Po E S(R, E), it follows from Proposition 3 and 
Equation (37) that 

P, E S(R, E) + P, - S(R, a> n Z - ~ ( O )  = %(a, a) n s ( @ ~ , ~ >  = R 

and hence that R satisfies (34) for this choice of E > 0. 
(iii) Since the continuity of @a,f and boundedness of S imply that S(@a,f) is 
compact, and since S is an invariant set for (@a,f, 2X), it follows at once from (37) 
and Proposition 3 that for all adjustment paths (P,) and E > 0, 

p0 E s"s(w~), EI G S * {P,: t E R,} c_ S P, - S n Z-VO)  = ~ ( ~ f t  
and hence that S(@a,f) is a global attractor in S. 
(iu) If S(Wf) = [P*] then P* is the (unique) global attractor in S by (iii 1. This in 
turn implies that for any P # P* we must have Z(P) > Z(P*). For if Z(P> 5 
Z(P*), then Z(-) 5 0 would imply from the argument in (36) that the path (P,) 
with Po = P does not converge to P. Hence P # P* + Z(P) > Z(P*), and we may 
conclude that P* is the unique 2-minimum in S. Thus, P* is stable in S by (i  1, 
and must therefore be globally asymptotically stable in S. 
Stability Properties of Steady-State Population Distributions 

2X), we can now employ the 
flow-correspondence mapping, to obtain stability results for the interac- 
tive Markov process, (Ma,f, X). As a parallel to  the topological conventions for 
flow distributions, we now denote the ufine hull of Pq by 

Given these stability properties of 

(38) 

and let the appropriate topology on H(P,) be that induced by Rq, so that the set 
of positive distributions, $4' (=P, n R",), is now seen to be open in H ( P )  with 
compact closure, P,. This topology is homeomorphic to  the Euclidean space, 
Rq-l, so that P: can be regarded as an open set in 1Wq-l. In particular, it 
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follows from Proposition 1.2 that Pi is an open invariant set for the interactive 
Markov process, (Ma,f, A), and hence that P; now plays the role of S in the above 
analysis. With these observations, if we again say that a subset of steady-state 
population distributions, R c S(Mazf), is isolated in S(M"S) iff R = P,(R, E) n 
S(Ma,f) for some E > 0, then we now have: 

THEOREM 5: Stability of Steady-State Population Distributions. For each 
gravity-type interactive Markov process, (Maaf, A), with flow-correspondence 
mapping, *"af, and each nonempty set of steady-state population distributions, 

i i )  If qa,f(R) is locally 2-minimal in S, then R is stable in P4+; 
(ii) If yfa,f(R) is locally 2-minimal in S and R is isolated in S(Ma,f>, then R is 
asymptotically stable in P;; 
(iii The set of all steady states, S(Mazf), is a global attractor in  Pi;  
iiu) I f  S(Ma,f) = [p*) then p* is globally asymptotically stable in  

R c ), 

Proofi First observe that if qazf(R) is locally 2-minimal in S, then is 
compact in H ( S ) .  Hence it follows from the continuity of the inverse function, 
[Yr"f-l ,  in Proposition 1 that R must be a compact subset of the open set, Pi,  in 
H(P,). In particular, this implies from the continuity of d i - ,  0) that P,(R, a) c 
P: for some a > 0.6 Hence to study the stability properties of R, it suffices (by 
the argument following (37) above) to  consider neighborhoods, P i  (a, E), of R in 
Pi with < a, [so that in particular, Pl(R, E) c PJR, a)]. Nexf, observe from the 
compactness of P,(R, a> that the restriction Vasf: Pq(R, a) - 51, is uniformly 
continuous (Theorem XI.4.6 in Dugundji, 1966), so that for each E > 0 there is 
some a(€) E (0, E) such that for all p, p' E P,(R, E), 

(39) IIp - p'JI 5 a(€) * pP;f - q;fll 5 E 

Hence, if the 'marginal' function, +: P,,, - P,, is defined for all P E P,,, by 

(40) *(PI = P(*n 
so that +(P) = [W,f]-l(P) for all P E S(@a,f) by Proposition 1, then it again 
follows from the compactness of P,,, that JI is uniformly continuous, so that for 
each E > 0 there is also some P(E) E (0, E) such that for all P, P' E P,,, 

(41) 

With these preliminary observations, we can now establish assertions (i ), (ii ), 
and (i i i):  
(i) To establish stability of R in P i  it suffices to  show that for each E < a there 

IIP - P'II 5 P(E) 3 IIP(*I) - P(.I)ll = II+(P) - +(P')II 5 E 

51t should be noted in both assertions (iii) and (iu) that $4' can be extended to all of Pq. In 
particular, the positivity of pM".'(p) for each p E Pq implies from (1.37) and together with 
Proposition 1.2 that each adjustment path p(-) in Pq must satisfy p(t ) E P i  for all t > 0. 

'%ince bdP, is compact and fl n bdP, # 0, an admissible choice of u is given by u = ?/z 
min (d(p, a): p E bdp,] > 0. 
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exists some 0, E (0, E) such that for all adjustment paths p(-) for (Ma*f, A), 

(42) 

To do so, let 8, = ~ i [ 6 ~ ( , ) ]  for a and P in (39) and (411, respectively, and for 6 in part 
( i )  in the proof of Theorem 4. Then by definition, 8, < E < u implies that 
$4' (0, 8,) L P,(LR, a), so that by (39) and (33) 

(43) p(0) E PJ(s1, 8,) 3 (/p(O) - pi/ 5 6, = a"sB(,)l for some p E 

P(O) E P; (a, 6,) - p(t) E $4' (0, E), t E R+ 

3 IlW$) - W;fll 9 6,,,) =3 Wiifo, E s"yra*f(n), 6P(,)I 

Now let (P,) denote the unique adjustment path for (@a,f, 2A) with Po = W;&, so 
that Po(-I) = p(0) by (15), and observe from the marginal consistency condition 
(1.42) together with the uniqueness of the adjustment path p(-) for (Ma,f, A) with 
starting point p(0) that 

(44) 

But since Theorem 4 (i ) together with the hypothesized local 2-minimality of 
Wa,f(0) implies that Pt E S[yfa,f(sl), p(41 for all t E R+, and since for any P E P,,, 
it must be true that 

Po(*I) = p(0) => P,(*I) = p(t), t E R, 

P E Wa,f(n) * P(.I) = [WIr",f]-l(P) E [ W q  -1[Wa,f(s1)} = R 

we may conclude from (43) and (44) together with (33) that for each t E R, 

p(0) E Pga, 6,) = P, E s[Wa,f(n), P(E11 

3 llPt - V,ll 5 P(E) for some V, E Warf(sl) 

= IIp(t) - Vt(*I)ll 2 E and V,(.I)  E R 3 p(t) E Pi(0,  E) 

so that (42) holds for this choice of 6,. 
(ii ) By (i ) it follows that R is stable in Pi, so that we need only show that R is an 
attractor in P;. To do so, observe that since R isolated in S(Ma,f) there must 
exist some E > 0 with 

(45) s1 = P,(R, E) n S(Ma,f) 

Hence we first show that this must imply that Wa,f(Cl) is isolated in S(aasf). For 
if not, then for each n there would exist some P, E (3[Wasf(s1), llnl n S(aaxf)) - 
Was(R). But for any n with (lln) < @(el, it would then follow from the 
compactness of Waff(R) together with (33) and (19) that 

(46) P, E 3 Wa,f(fi), - - lip, - PI1 9 P(E) for some P E Waaf(fi) i :I 
=3 llP,(.I> - P(-I)ll 5 E and P(*I) E R 3 P,(.I) E P4(R, E) 

which together with P,, E S(@a,f) and Proposition 2 implies that P(.Z) E Py(lL, 
E) n S(MaS). However, since P, g Wa,f(fL) together with the bijective property of 
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Wazf in Proposition 1 implies that Pn(*I) = -l(P .) g f l  we would then have 
{P,(R, E )  n S(M a,f)} - R # 0, which contradicts (45). Hence Wa,f(R) is isolated in 
S(@a,f), which together with the local Z-minimality of Wa,f(0) in S implies from 
parts ( i )  and (i i)  of Theorem 4 that Wa,f(R) is asymptotically stable in S. Thus 
Vsf(R) is an attractor in S and there is some T > 0 such that for all adjustment 
paths (P,) for (@a,f, 2X> 

(47) 

Finally, letting E = (Y (T) ,  and observing from (39) that for any adjustment path 
P(*) 

(48) p(0) E P:(fl, E) + Ilp(0) - pi1 5 E = (~(7) for some p E R 

Po E S[W,f(R), TI * P, - Warn) 

3 p;&) - w;f11 5 7 * w;&) E S[wazf(R), TI 

it follows from (47) and (44) together with the continuity of [Wa,fl-l that for the 
unique adjustment path (P,) with Po = W:&) we must have 

(49) p(0) E Pl(R7 E )  + Po = *:&, E S[wa’f(R), 71 * P, Wa’f(fi) 

+ [Ff] -l(P,) - [Wa,f]-1(Wa7f(R,] = R + P,(.I) - n * p ( t )  - R 

Hence R is an attractor in P; and the result is established. 
( i i i )  Observe that since S(@,.T~) is global attractor in S, ifwe now set R = S(Masf) 
in (49) and recall from Proposition 2 that Wazf [S(M = S(@a,f), then the same 
argument now shows that S(Ma,f) is a global attractor in Pi .  
( i v )  Finally, if S(Ma4 = [p*] then p* is a global attractor by (i i i) .  Also from 
Proposition 2 it follows that S(@a,f) = (Wa,f(p*)], and hence (by the proof of 
Theorem 4 ( iu ) )  that Wa,f(p*) is the unique Z-minimum in S. Thus p* is stable 
by (i ), and the result is established. 

As an immediate consequence of this result, we have the following global 
stability property for the case of pure congestion effects: 

PROPOSITION 4. Global Stability of Pure Congestion Processes: If Mazf is a 
gravity-type transition function with pure congestion effects, then the unique 
steady state for each interactive Markou process, (Ma,f, X), is globally asymptoti- 
cally stable 

Proof: The result follows at once from Theorem 1.5 in Part I together with 
part ( i v )  of Theorem 5 .  W 

4. ASYMPTOTIC STABILITY FOR THE DISCRETE CASE 
Given these results for interactive Markov processes ( M ,  XI, with M = Ma,f, 

our final objective is to show that in ‘almost all’ cases in which global asymptotic 
stability holds with respect to a unique steady state, this property is inherited 
by the associated interactive Markov chains (M, a, A) when A is sufficiently 
small. To do so, we require the following stronger condition on admissible 
participation functions, a. In particular, we now require that that participation 
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rates, a(A)/A, not only have positive limit, A, but also that convergence to h is 
‘sufficiently fast’. More precisely, a: R,, - (0, 11, is now designated as a 
participation function iff 

(50) a ( A )  = AA + O ( A 2 ) ,  A > O  

The presence of the (Landau) residual, O(Aa),  implies the existence of some B > 
0 such that la(A) - AA/ 5 B A 2  for all small values of A > 0, which may 
equivalently be written as7 

(51) 

Given this restriction on a, the only particular feature of gravity-type interac- 
tive Markov chains which is needed for the present analysis is the positivity of 
Ma,f. Hence for each positive-valued transition function, M: P, - we now 
designate all associated interactive Markov processes, (M, A), and interactive 
Markov chains, (M, a,  A), as positive. In addition, for each positive M, it is 
convenient t o  define the associated function, +: P, - $4“ for all p E P, by 

(52) 

so that (1.37) can be written more simply as 

(53) p<t ) = A4[p( t  >I, t E R, 

Similarly, the adjustment paths associated with each interactive Markov chain 
can be written as 

(54) pt+* = pt + a(A)+(pt )  
If for any fixed value of A > 0 we now let t ,  = nA for each n E Z,, then it follows 
from (54) that the probability values, p i ,  at time points t ,  satisfy the difference 
equation 

(55) 

where 

(56) @,(PI = [w(AYAl+(p) 

These adjustment paths form the main objects of interest in the present 
analysis. Hence where specific reference to (M, a, A) is not necessary, we shall 
simply refer to  the class of solutions to (55) as the associated adjustment 
process, ( p i ) .  In particular, such adjustment processes are seen from (55) are 
seen to be instances of ‘one-step’ methods for approximating solutions to (531, as 

pi+’ = pi + a ( A ) & ( p t )  = pi + A @ , ( p i )  

7As is shown in Lemma 2 below, condition (51) ensures that adjustment paths for the 
interactive Markov chain (M,  a ,  A) converge to those of the Markov process (M, A)  uniformly on 
each finite time interval. 
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detailed for example in Gear (1971) and Stetter (1973). Hence the following 
analysis relies heavily on known results for this class of procedures. Our first 
objective, is to  show for 'almost all parameterizations' of 4 in (53) there is a 
neighborhood P,(p*, E) of p* and a delta value, Al, such that for each A < A, (55) 
defines a contraction mapping with respect to p* (in an appropriately defined 
metric), and hence must converge to p*. We then show that for any neighbor- 
hood, P,(p*, 4, there is also a delta value, A,, sufficiently small to ensure that 
for each A < A2 and initial starting point,po E P, the sequence (pi) generated by 
(55)  must eventually enter Pq(p*, E). It will then follow that global asymptotic 
stability of ( 5 5 )  must hold for all A < min [A,, A2}. 

To establish the local contraction property of ( 5 5 )  we begin by recalling that 
the entire process is restricted to the (q - 1)-dimensional space defined by the 
affine hull, H(P,), of P, in (38). Hence to facilitate the application of standard 
results, it is convenient to  change coordinates so that the process is now defined 
in Rq-' with a unique steady state at the origin. To do so, let the one-to-one &ne 
transformation, C: R - l -  H(Pq),  be defined for all x = (xl, . . . , x, -~> E Rq-l by 

(57) 

and observe that if the linear (projective) transformation, Co: [wq - Rq-l, is 
defined for all z = (zl, . . . z ~ . . ~ ,  z,) E Rq by Co(z) = (zl, . . . z,-~), then the 
restriction of Co to  H(P,) in the inverse of C [that is, Co(Cz) = z and C (Cop) = p 
for all z E R Q - l  and p E H(Pq) l .  Hence if for each p E H(P,) we let 

(58) 
so that by definition, Cz = p - p* 3 p = Cz + p* and z = Cop 3 p = Cz, then 
it follows that (53) can be rewritten as 

q-1 

C(X) = (XI, . . . , X q - l ,  1 - c Xi) E H(P,) 
1=1 

z = Co(p - p") = cop - cop* 

(59) CZ(t) = A+[Cz(t) + p*I 3 Z(t)  = kCo+[Cz(t) + p"] 

Hence, if we now let Z = (Co(p - p*): p E P,] c Rq-l, and define the map, +: 
Z - Rq-l, for all z E Z by 

(60) 

then we may replace the differential equation system (53) on P, with the 
equivalent differential equation system 

(61) Z(t) = A+[z(t)I, t E R, 

+(z) = CO+[CZ + p*l 

on Z. Similarly if we let z: = Co(pi - p*), then (55) can be rewritten as 

(62) Cz;+l+ p* = (Cz: + p*> + cy(A)+[Czi + p*l 

+ zi" = Z: + a(A)Co+(CzZ + p*) = z; + cy(A)+(zi) 

and is hence is seen to yield a 'one-step' method for approximating solutions to 
(1). To analyze the convergence properties of (621, we start by considering those 
of (61). First observe from Proposition 1.2 together with (59) that the set Z must 
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be an invariant set for the differential equation system (61). Moreover, since 
+(O) = +(p*) = 0, and since the positivity of +(*) implies that p* E P l  = int (P,), 
it also follows that (61) must be globally asymptotically stable with respect to 
the unique steady state, z* = 0 E int (Z). In addition, since the continuous 
differentiability of +(.) on P, implies that that the derivative of +(.) is 
continuous on Z and is representable by the matrix of partial derivatives, 
V+(-) = [ d ~ J ~ ~ ( . ) / d z ~ :  i ,  j = 1, . . . , q - 11, it is well known that V+(O) can have no 
eigenvalues with positive real parts (Theorem 9.2.1 in Hirsch and Smale, 1974, 
p. 187). Hence if the steady state is hyperbolic, that is, if the matrix V+(O) has 
no eigenvalues with zero real parts, then it follows that all eigenvalues of V+(O) 
must have negative real parts. In this case, (61) exhibits a strong form of local 
convergence to the steady state, z* = 0, which can be readily analyzed. 
Moreover, it is also well known (Theorem 7.3.3 in Hirsch and Smale, 1974, p. 
157) that almost all matrices have eigenvalues with nonzero real parts8 Hence 
if the admissible parameterizations of + allow an open set of possible values for 
the matrix V+(O), then this 'hyperbolic' property can reasonably be expected to 
hold for almost parameterizations of + that yield globally asymptotically to  
hold for almost parameterizations of + that yield globally asymptotically stable 
steady states. We now assume this to be the case, and designate the steady state, p*, 
as hyperbolic in Pq iff all eigenvalues of V+(O) have negative real parts.g Under this 
assumption, it can be shown (see Smith and Hsieh, 1996) that:1° 

LEMMA 1: I f  (M, A) is a positive interactive Markov process with globally 
asymptotically stable hyperbolic steady state, p*, then there exists some > 0, 
A1 > 0, and 1-1 E (0,  1) such that for each A E (0,  Al ) ,  E E (0, el), and n E Z+ 

(63) 

(64) 

This result covers behavior in a small neighborhood p*. The next result shows 
that such a neighborhood can always be reached. In particular, it can be verified 
that (see Smith and Hsieh, 1996): 

LEMMA 2: I f  (M, A) is a positive interactive Markov process with globally 
asymptotically stable steady state, p*, then for each E > 0 there exists a A, > 0 
sufficiently small to ensure that for each A E (0 ,  AJ there is some n ( A )  E Z+ such 

IIpz - p*II < + lim p? = p* and 
m-m 

lip: - p*l( < p~ IIpF - p"JI < E for all nz e n 

8More precisely, the set of n-square matrices not exhibiting this property has measure zero in 
RnXn for each n. 

91t should be noted that the above transformation, C, is essential for this purpose. In 
particular, if the matrix of partial derivatives of + is denoted by V+(.) = [d+,(.)/dp,: ij = 1, . . . , q] ,  
then the identity 2, +L(.) = 1 implies that 2, d+,(.)/dp, = 0, J = 1, . . . , q,  which can be written in 
matrix form as V + ( . ) l  = 0. Thus V+(p*) must always have a zero eigenvalue (with unit eigenvec- 
tor), so that the equilibrium, p*, can never be hyperbolic in Rq. 

'OThis result can also be established by an application of Corollary 2.3.9 in Stetter (1973) 
together with standard properties of linear difference equations. 
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that for every startingpoint, po E P,, the sequence (pi) defined by (55) satisfies 

(65) 

By combining these results, we can now establish the global asymptotic 
stability of interactive Markov chains that are ‘sufficiently close’ to  their 
continuous (globally asymptotically stable) counterparts. To do so, we now say 
(as a parallel to  the continuous case) that an interactive Markov chain (M, a,  A)  
is stable with respect to  a steady state, p* E P:, iff for each E > 0 there is some 
&(E) E (0, E) sufficiently small to ensure that I/p: - p*\1 < E holds for all n E B, on 
every adjustment path (pi) with IIpi - p*II < 8 ( ~ ) .  In addition, (M, a,  A) is said 
to be globally asymptotically stable with respect to  p* iff for every starting 
point, pi E Pq it is also true that limn+m lip; - p*II = 0. With these definitions, 
we now have: 

llPi(A) - P*II < E 

THEOREM 6: Global Stability of Interactive Markov Chains. I f  (M, X) is a 
positive interactive Markov process with globally asymptotically stable hyper- 
bolic steady state, p*, then there exists a A, > 0 suficiently small to ensure that 
each (positive) interactive Markov chain (M, a,  A)  with A < A, is also globally 
asymptotically stable with respect to p*. 

Proof: For A, in Lemma 1 and for A,, defined in Lemma 2 with respect to €1 

in Lemma, let A, = min [Al, Ah,,J > 0. Then to establish stability of (p:) for any 
A < A. 5 Al, it suffices from the argument in the proof of Theorem 4 (i ) to show 
that for each E < there is some 8 ( ~ )  E (0,  E) small enough to ensure that 
IIpi - p*II < E holds for all n E Z+ whenever - p*lI < S(E). However, by 
setting 8 ( ~ )  = in Lemma 1, it then follows from (64) with n = 0 that (pi) must 
be stable with respect to p*. Finally, to establish that for each A < A, and choice 
of starting points, pi E P, it is true that limn-% lip: - p* 11 = 0, observe from (63) 
that we need only show that lip;- p*II < for some n. But since A < A0 2 A,, 
implies from Lemma 2 that IIpi - p*II < for n = n(A) ,  we may thus conclude 
that (pi) is globally asymptotically stable with respect to  p* for all A < A,. W 

5. EXTENSIONS AND DIRECTIONS FOR FURTHER RESEARCH 
In this two-part paper we have shown that the uniqueness and stability 

properties of steady states for a large class of gravity-type interactive Markov 
chains can be fully analyzed in terms of an associated programming problem. 
This implies that the dynamical behavior of such processes must be intimately 
related to the structure of the objective function 2 in (21). In particular, it is 
clear from Theorem 5 that asymptotically stable steady states for these 
processes are implicitly associated with minimal values of 2. This minimizing 
property can be given an interesting behavioral interpretation. In particular, 
when attraction functions are given a cost interpretation, such as in the ‘logit’ 
model of Example 1.1 in Part I, the resulting objective function in (21) can be 
shown to represent ‘cumulative costs’ analogous to those employed in stochas- 
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tic network equilibrium models (as for example in Smith, 1988). Hence, by 
employing similar methods, such migration dynamics can be shown to be 
consistent with a ‘cost efficiency’ theory of migration behavior in which 
individuals exhibit an overall cost-minimizing tendency. This interpretation 
will be developed further in a subsequent paper. 

However, it should be emphasized that the present programming formula- 
tion depends critically on the assumptions of both symmetry and constancy of 
accessibility measures. Although these two assumptions are quite reasonable 
in most empirical applications of gravity models, it is nonetheless of interest to  
ask whether the present uniqueness and stability properties continue to hold 
under more general conditions. Turning first to symmetry, it will be shown in a 
subsequent paper that this assumption can often be relaxed for constant 
accessibility measures. In particular, it will be shown that the uniqueness and 
stability properties for certain generalization of the ‘pure congestion’ case 
continue to hold in the asymmetric case. However, there appears to  be no 
simple global ‘Lyapunov’ characterization of flow dynamics in this more general 
setting. Turning next to constancy, it is not surprising that relaxations of this 
assumption are considerably more difficult. However, one possible approach is 
suggested by the mathematical parallel between the structure of this problem 
and logit-type stochastic user equilibrium models of traffic flows. Here certain 
uniqueness and stability results have been obtained which may be extendable 
to  the present setting (see for example Daganzo, 1982). Such possibilities will 
be explored in subsequent research. 

Our remaining discussion focuses on the general nature of interactive 
Markov chains. We begin by recalling from the introductory discussion in Part I 
that for the case of unique steady states, the global asymptotic stability results 
in Section 4 above show that (for sufficiently small adjustment periods) 
deterministic interactive Markov chains are indeed valid approximations to 
their (higher dimensional) probabilistic counterparts. However, even when 
steady states are not unique, it can still be argued that interactive Markov 
chains may constitute viable models of population adjustment behavior in their 
own right. In particular, the ‘large number’ arguments used to characterize 
interactive Markov chains as probability limits of large-population Markov 
chains typically assume conditionally independent decision-making behavior 
by individuals. Hence, when such independence assumptions are violated, it is 
possible that interactive Markov chains may be better approximations to 
behavior than their higher dimensional counterparts. This is well illustrated 
by the case of ‘pure agglomeration’ behavior in Example 1.2 of Part I, where 
strong interactions between individuals (such as ‘band wagon’ effects) may 
violate the conditional independence assumption. Here the multiple steady 
states of the interactive Markov chain model may indeed have more behavioral 
relevance than the (unique) steady state of its higher dimensional probabilistic 
Markov chain version. In particular, it can be shown that in this probabilistic 
steady state, the system will ‘visit’ the three locally stable vertex states equally 
often. However, in reality the first vertex state visited may act more like an 
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‘absorbing state’ which persists for the entire future of the system. If so, then 
the local convergence property of the interactive Markov chain model may in 
fact be a more accurate description of behavior. 

These observations suggest that the dynamical properties of interactive 
Markov chain models (and their continuous approximations) can be of genuine 
behavioral interest in their own right. In particular, one may ask whether 
similar hereditary relations exist between interactive Markov chains and their 
continuous approximations when steady states are not unique. As one result 
along these lines, it can be shown that in typical cases consisting of finitely 
many locally stable hyperbolic steady states, with domains of attraction 
including all but a set of measure zero in P,, there are step sizes A sufficiently 
small to  ensure that all but an arbitrarily small set of adjustment paths (pi) 
must converge to some locally stable steady state in P,. Results of this type for 
multiple steady states will be developed in a subsequent paper. 

Finally, one may consider a number of possible extensions of the present 
class of interactive Markov chains, (M, a, A). First observe that fraction, a ( A ) ,  
of the population making migration decisions may in fact depend on the current 
state of the system, pt = <pi , ,  . . . , p i ) ,  as well as the time interval A (as in De 
Palma and Lefevre, 19831, and may also vary from region to region, a i ( A ,  pt), 
i = 1, . . . , q. For example in states, pt = (p i , ,  . . . , p i ) ,  where gross inequalities 
exist among the current attraction levels, at (p: ) ,  of various locations, it may be 
postulated that more individuals consider migrating from ‘unattractive’ regions 
than from ‘attractive’ regions during the given adjustment period A. Such 
variations in participation levels can be incorporated by employing conver- 
gence results for more general classes of discrete dynamical adjustment 
processes (as for example in Derevitskii and Fradkov, 1974). Moreover, by 
employing more recent results in stochastic approximation theory, it is possible 
to  introduce probabilistic variations directly into the interactive Markov chain 
model itself. For example, the ‘large deviation’ results of Kushner and Kuang 
(1981) allow certain ‘weak convergence’ results to  be obtained for cases in which 
random terms, et, are added to  +(pt) in (54). Such extensions will be considered 
in subsequent papers. 
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