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Abstract

The appraisals of treatment-covariate interaction have theoretical and substantial implica-

tions in all scientific fields. Methodologically, the detection of interaction between categorical

treatment levels and continuous covariate variables is analogous to the homogeneity of

regression slopes test in the context of ANCOVA. A fundamental assumption of ANCOVA is

that the regression slopes associating the response variable with the covariate variable are

presumed constant across treatment groups. The validity of homogeneous regression

slopes accordingly is the most essential concern in traditional ANCOVA and inevitably

determines the practical usefulness of research findings. In view of the limited results in

current literature, this article aims to present power and sample size procedures for tests of

heterogeneity between two regression slopes with particular emphasis on the stochastic

feature of covariate variables. Theoretical implications and numerical investigations are pre-

sented to explicate the utility and advantage for accommodating covariate properties. The

exact approach has the distinct feature of accommodating the full distributional properties of

normal covariates whereas the simplified approximate methods only utilize the partial infor-

mation of covariate variances. According to the overall accuracy and robustness, the exact

approach is recommended over the approximate methods as a reliable tool in practical

applications. The suggested power and sample size calculations can be implemented with

the supplemental SAS and R programs.

Introduction

The existence of interactive phenomena between predictor variables on the response variable

is an essential issue in all scientific studies. The detection of interactions between categorical

treatment levels and continuous covariate variables is equivalent to the test of homogeneity of

regression slopes test in ANCOVA designs. Notably, ANCOVA represents a constructive syn-

thesis of analysis of variance and multiple linear regression to account for the relationship

between the response variable and the concomitant or covariate variables in treatment com-

parisons. In addition to the fundamental assumptions of independence, normality, and con-

stant variance, the within-group regression coefficients of the criterion variable on the
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covariate variable are presumed to be equal in ANCOVA. Violation of the ANCOVA assump-

tions has been the target of attention in the literature such as Glass, Peckham, and Sanders [1]

and Harwell [2]. Naturally, the actual significance level and power of the regular test for treat-

ment effects can be distorted to some extent under nonparallel regression settings. Hence,

the validity of heterogeneity regression slopes plays a crucial role in applying the traditional

ANCOVA or generalized alternatives. As a general guideline, a test for nonparallel regression

lines is required as the preliminary procedure for use of traditional ANCOVA. If the test for

heterogeneity of regression slopes is significant, then it suggests that the standard ANCOVA is

no longer an appropriate technique. Accordingly, Fleiss [3], Huitema [4], and Maxwell and

Delaney [5] provide comprehensive exposition and general strategy under heterogeneity of

regression.

The statistical perspectives and appropriate strategies of covariate selection are presented in

Hauck, Anderson, and Marcus [6], Hernandez, Steyerberg, and Habbema [7], Pocock et al.

[8], Raab, Day, and Sales [9], and references therein. Moreover, the impact of omitted covari-

ates on the statistical inferences has been demonstrated in Hauck et al. [10], Gail, Wieand, and

Plantadosi [11], and Negassa and Hanley [12]. However, there is no related exploration about

the direct consequence of excluding covariate characteristics in power and sample size calcula-

tions. In view of the potential applicability in practice, this article focuses on the most funda-

mental ANCOVA designs for two treatment groups and a single covariate. For the purposes of

planning research designs and validating crucial interactions, power and sample size proce-

dures were considered in Dupont and Plummer [13]. Their formula is very attractive from a

computational standpoint and has been implemented in statistical packages. However, it is

important to note that the particular method involves several convenient approximations in-

cluding the use of a shifted t distribution for a noncentral t distribution and the substitution of

fixed parameters for random covariates. The inherent nature and implications of accuracy

were not addressed in Dupont and Plummer [13]. Accordingly, the existing illustrations

were not detailed enough to elucidate the potential deficiency of their approximate technique.

Because of the limited results in the literature, the current article aims to contribute to the

development of power and sample size methodology for the tests for heterogeneity of two

regression slopes. The emphasis is placed on the practical situation that not only the values of

response variables for each subject are just available after the observations are made, but also

the levels of covariate variables cannot be predetermined before data collection.

It is noteworthy that a different and prominent situation of interactive research involves

interactions between two continuous covariates. Although the model formulations and test

procedures of the interactive analysis are rather similar for the two types of covariate variable

combination: continuous by continuous and categorical by continuous, their test statistics and

associated distribution properties are considerably different. Therefore, the power and sample

size calculations of Shieh [14] for detecting interactions between two continuous variables in

multiple regression settings are not appropriate for assessing interactions between grouping

and continuous variables within the context of ANCOVA. In a continual effort to support the

analytical development and improve the essence of research findings in interaction studies,

this investigation updates and expands the previous work of Dupont and Plummer [13] in

such a way that the findings not only notify the fundamental deficiency of existing procedure,

but also reinforce the usefulness of interaction designs in applications.

The present study has three key aspects. First, to account for the stochastic nature of covari-

ate variables, the covariates are assumed to follow a normal distribution. Both exact and

approximate power functions and sample size procedures for detecting heterogeneity of

regression slopes are derived. Second, extensive numerical examinations were conducted to

examine the deficiency of the approximate methods and the advantage of the exact approach

On tests of treatment-covariate interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0177682 May 17, 2017 2 / 15

https://doi.org/10.1371/journal.pone.0177682


under a wide range of model settings. The performance and robustness of the described tech-

niques with respect to non-normality of the covariates are also investigated. Third, in view of

the limited features of existing software packages, both SAS [15] and R [16] computer algo-

rithms are developed to facilitate the implementation of the suggested power and sample size

computations.

Methods

The two-group nonparallel simple linear regression model is of the form

Y1j ¼ b01 þ X1jb11 þ ε1j and Y2k ¼ b02 þ X2kb12 þ ε2k; ð1Þ

where ε1j and ε2k are iid N(0,σ2) random variables, j = 1,. . ., N1, and k = 1,. . ., N2. It is often

informative to rewrite the regression model with heterogeneous slopes in Eq 1 as the following

interactive multiple regression model using a dummy variable M:

Yi ¼ b02 þMib0D þ Xib12 þMiXib1D þ εi; i ¼ 1; . . . ;N;N ¼ N1 þ N2; ð2Þ

where b0D ¼ b01 � b02; b1D ¼ b11 � b12;

Yi ¼ Y1j;Xi ¼ X1j; εi ¼ ε1j; and Mi ¼ 1 if i ¼ j; j ¼ 1; . . . ;N1;

Yi ¼ Y2k;Xi ¼ X2k; εi ¼ ε2k; and Mi ¼ 0 if i ¼ N1 þ k; k ¼ 1; . . . ;N2:

Note that a traditional ANCOVA model assumes that the regression slopes are equivalent

β11 = β12 = β1 and it postulates the parallel regression formulation

Yi ¼ b02 þMib0D þ Xib1 þ εi; i ¼ 1; . . . ;N: ð3Þ

Because the strategy and procedure for treatment comparisons differ for the nonparallel and

parallel regression frameworks, the equality of covariate regression coefficients is viewed as the

most crucial assumption in ANCOVA. Accordingly, a test for heterogeneity of regression

slopes is generally required to justify the use of ANCOVA. When the assumption of equal

within-group covariate regression coefficients is not tenable, the standard procedures of

ANCOVA are no longer appropriate and alternative methods such as Johnson-Neyman and

Picked-Point solutions for heterogeneous regression should be adopted. More conceptual and

thorough discussions of alternative solutions to traditional ANCOVA can be found in Rogosa

[17] and Rutherford [18].

In order to facilitate the detection of heterogeneous regression slopes, this article describes

and examines the corresponding procedures for power and sample size determinations. Under

the heterogeneous linear model assumption defined in Eq 1, it follows from standard results

that the least squares estimators b̂11 and b̂12 of slope coefficients β11 and β12 have the following

distributions

b̂11 � Nðb11; s
2=SSX1Þ and b̂12 � Nðb12; s

2=SSX2Þ;

where SSX1 ¼
PN1

j¼1
ðX1j �

�X 1Þ
2

and SSX2 ¼
PN2

k¼1
ðX2k �

�X 2Þ
2
, �X 1 and �X 2 are the respective

sample means of the X1j and X2k observations. Accordingly, b̂1D ¼ b̂11 � b̂12 � Nfb1D; s
2

ð1=SSX1 þ 1=SSX2Þg. On the other hand, ŝ2 ¼ SSE=n is the usual unbiased estimator of σ2

where SSE is the error sum of squares and ν = N– 4. Moreover, SSE/σ2 * χ2(ν), where χ2(ν) are

chi-square distribution with ν degrees of freedom. To detect the difference between two slope
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coefficients in terms of H0: β11 = β12 versus H1: β11 6¼ β12, the test statistic has the form

T ¼
b̂1D

fŝ2ð1=SSX1 þ 1=SSX2Þg
1=2
: ð4Þ

Under the null hypothesis H0: β11 = β12, the statistic has the distribution

T � tðnÞ; ð5Þ

where t(ν) is a t distribution with degrees of freedom ν. The null hypothesis is rejected at the

significance level α if

jTj > tn;a=2; ð6Þ

where tν,α/2 is the 100(1 – α/2) percentile of the distribution t(ν). Note that the inference setting

is discussed here only from the perspective of a two-sided test. The same concepts may be

readily extended to one-sided situations.

The statistical inferences about the heterogeneous slope effect are based on the conditional

distribution of the continuous covariates. Therefore, the corresponding results would be spe-

cific to the particular values of the covariates. However, before conducting a research study,

the actual values of covariates cannot be known in advance just as the primary responses.

Under such circumstances, it is more suitable to employ the random or unconditional setup as

explicated in Sampson [19]. The underlying similarities and differences between fixed and ran-

dom models have also been thoroughly illuminated in Cramer and Appelbaum [20] and Rau-

denbush [21]. Despite the complexity associated with the unconditional properties of the test

procedure, the tests of hypotheses and estimates of parameters remain the same under both

conditional and unconditional frameworks. Hence, the usual rejection rule and critical value

remain unchanged. The distinction between the two modeling approaches becomes important

only when power and sample size calculations are to be made. Thus, it is vital to recognize the

stochastic nature of the covariate variables and to evaluate the distribution of the test statistic

over possible values of the covariates. In order to elucidate the critical notion of accommodat-

ing the distributional properties of the covariate variables, the continuous covariate variables

{X1j, j = 1,. . ., N1} and {X2k, k = 1,. . ., N2} are assumed to have the independent normal distri-

butions Nðy1; t
2
1
Þ and Nðy2; t

2
2
Þ, respectively. It should be noted that the normality setting is

commonly employed to provide a convenient framework for analytical derivation and theoret-

ical discussion in interaction studies, for example, see Harwell [2], McClelland and Judd [22],

O’Connor [23], and Shieh [14].

To help justify the contribution of current investigation, a brief review of the simple interac-

tion model with two continuous covariates is presented here:

Yi ¼ bI þ XibX þ ZibZ þ XiZibXZ þ xi; ð7Þ

where Yi is the value of the response variable Y, Xi and Zi are the known constants of the con-

tinuous covariates X and Z, ξi are iid N(0,ω2) random errors for i = 1,. . ., N, and βI, βX, βZ, and

βXZ are unknown parameters. For the purpose of detecting the interaction effect in terms of

the hypotheses H0: βXZ = 0 versus H1: βXZ 6¼ 0, it is important to examine the distributional

property for the least squares estimator b̂XZ of βXZ:

b̂XZ � NðbXZ;Vðb̂XZÞÞ; ð8Þ

whereVðb̂XZÞ ¼ o2M,M is the (3, 3) element of ðXT
CXCÞ

� 1
, where XC = ½X1 �

�X; . . . ;XN �
�X�T,

�X ¼
PN

i¼1
Xi=N, and Xi = [Xi, Zi, XiZi]T is the 3 × 1 column vector for values of covariates Xi,
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Zi, and their cross product XiZi for i = 1,. . ., N. The corresponding test statistic TXZ is of the

form

TXZ ¼
b̂XZ

fô2Mg1=2
ð9Þ

where ô2 is the usual unbiased estimator of ω2. When the null hypothesis H0: βXZ = 0 is true,

the statistic TXZ is distributed as t(ν), and H0 is rejected at the significance level α if |TXZ| > tν,

α/2. At first sight, all of the model structure, tested hypothesis, and decision rule are similar to

the prescribed results given in Eqs 4–6 for detecting the treatment by covariate interaction.

However, the two test statistics TXZ and T have different forms and distribution properties

under alternative hypothesis. Specifically, an alternative expression for the centered design

matrix XC is XC = [xC, zC, wC] where xC, zC, and wC are the three N × 1 column vectors of XC.

Then, it can be shown that M = ðwT
CMACwCÞ

� 1
, MAC ¼ IN � XACðX

T
ACXACÞ

� 1XT
AC and XAC =

[xC, zC]. The complex expression of M generally does not have a simple analytic distribution

even though the two covariate variables X and Z may have a bivariate normal distribution. It

should be obvious that the product XZ of two normally distributed variables does not have a

normal distribution. Hence, it is inaccessible to obtain a transparent nonnull distribution for

the test statistic TXZ under random or unconditional framework with a given joint distribu-

tion of X and Z. Instead, Shieh [14] adopted a large-sample viewpoint and considered the

asymptotic distribution of M. The resulting nonnull distribution and associated power func-

tion of the statistic TXZ are considerably more complicated than the explications presented

later for the T test of treatment by covariate interactions. Consequently, the power and sample

size calculations of Shieh [14] for detecting interactions between two continuous variables in

multiple regression analysis are not applicable for assessing interactions between grouping

and continuous variables within the context of ANCOVA. In the following, particular atten-

tion is given to develop useful and specialized statistical techniques for power and sample size

computations in assessing the difference between two regression slopes.

In general, the statistic T has the nonnull distribution for the given values of SSX1 and SSX2:

Tj½SSX1; SSX2� � tðn;DÞ; ð10Þ

where t(ν,Δ) is a noncentral t distribution with degrees of freedom ν and noncentrality param-

eter

D ¼
d

ð1=SSX1 þ 1=SSX2Þ
1=2
; ð11Þ

where δ = β1D/σ. It follows from Johnson, Kotz, and Balakrishnan [24] that the first moment of

a noncentral t distribution is E[T] = (ν/2)1/2Γ{(ν−1)/2}Δ/Γ{ν/2}, where Γ{�} is the gamma func-

tion. Hence, an unbiased estimator of the effect size δ is

d̂UE ¼
ð1=SSX1 þ 1=SSX2Þ

1=2
Gfn=2g

ðn=2Þ
1=2

Gfðn � 1Þ=2g
� T ¼

Gfn=2g

ðn=2Þ
1=2

Gfðn � 1Þ=2g
�
b̂1D

ŝ
:

To derive the nonnull distribution of T, an exact and sophisticated approach is to utilize the

full distribution associated with SSX1 and SSX2. With the prescribed normal covariate assump-

tions, it can be readily established that K1 = SSX1=t2
1
� w2ðk1Þ and K2 = SSX2=t2

2
� w2ðk2Þ

where κ1 = N1−1 and κ2 = N2−1. For ease of illustration, the two random variables of K1 and

K2 are transformed to obtain K = K1 + K2 ~ χ2(κ) and B = K1/K ~ Beta{κ1/2, κ2/2} where Beta

{a, b} is a beta distribution with degrees of freedom a and b. Note that the random variables K
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and B are independent. Under the prescribed stochastic considerations of SSX1 and SSX2 in

terms of K and B, the T statistic has the following two-stage distribution

Tj½K; B� � tðn;DKBÞ; K � w2ðkÞ; and B � Betafk1=2; k2=2g: ð12Þ

where

DKB ¼
d

f½1=ðB1t
2
1
Þ þ 1=ðB2t

2
2
Þ�=Kg1=2

;

B1 = B, and B2 = (1 –B). Hence, the resulting power function for comparing nonparallel regres-

sion lines is

CKBðb1DÞ ¼ EKEB½Pfjtðn;DKBÞj > tn;a=2g�; ð13Þ

where the expectation EK[�] and EB[�] is taken with respect to the distribution of K and B,

respectively.

Alternatively, a simple and naive method to obtain a unconditional distribution of T is to

substitute the two sum of squares SSX1 and SSX2 in Δ with the corresponding expected values

E[SSX1] = k1t
2
1

and E[SSX2] = k2t
2
2
. Consequently, the distribution of T can be approximated

by a noncentral t distribution as

T _�tðn;DAÞ; ð14Þ

where

DA ¼
d

f½1=ðb1t
2
1
Þ þ 1=ðb2t

2
2
Þ�=kg

1=2
;

b1 = κ1/κ, b2 = κ1/κ, and κ = κ1 + κ2. The corresponding power function for the test for hetero-

geneity of regression slopes can be expressed as

CAðb1DÞ ¼ Pfjtðn;DAÞj > tn;a=2g: ð15Þ

On the other hand, Dupont and Plummer [13] presented a relatively more simplified

power function for the test of difference between two regression slopes:

CDPðb1DÞ ¼ PftðnÞ < DDP � tn;a=2g þ PftðnÞ < � DDP � tn;a=2g: ð16Þ

where

DDP ¼
d

f½1=ðp1t
2
1
Þ þ 1=ðp2t

2
2
Þ�=Ng1=2

;

p1 = N1/N and p2 = 1 –p1. Although the two noncentrality parameters ΔA and ΔDP are quite

similar, especially when the sample size N is large, the two approximate power functions CA

and CDP have a crucial difference. Note that the power function CA involves a noncentral t
distribution t(ν,ΔA), whereas CDP is formulated through a shifted t distribution t(ν) + ΔDP). It

is well known that if Z ~ N(0, 1) then X = (Z + μ) * N(μ, 1) where μ is a constant. However,

the result does not generalize to the case of t distribution, i.e., if t ~ t(df) then Y = (t + μ) does

not follow a noncentral t distribution t(df, μ) with noncentrality parameter μ and degrees of

freedom df. A random variable Y is said to have a noncentral t distribution t(df, μ) if and only

if Y = (Z + μ)/(W/df)1/2 where Z ~ N(0, 1), W ~ χ2(df), and Z and W are independent. Essen-

tially, Dupont and Plummer [13] extended the results under normal theory in Dupont and

Plummer [25] to the case of noncentral t distributions in the comparison of two regression
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slopes. The resulting formulation suffers the absence of proper theoretical justification. Despite

the computational appeal of the approximate power function CDP, the prescribed analytic

issue induces a fundamental question about its general adequacy as a reliable procedure.

It is essential to note that all the power functions CDP, CA and CKB depend on the differ-

ence between two coefficients {β11, β12} and error variance σ2 through the standardized effect

δ. Under the prescribed stochastic assumptions for the covariate variables, these power func-

tions rely on the covariate variances {t2
1
, t2

2
} through the associated noncentrality parameter,

but not the mean values of covariate variables {θ1, θ2}. Moreover, the approximate formula-

tions of CDP and CA only involve the central t and noncentral t distributions, whereas the nor-

mal covariate distributions lead to the unique and more complex conditional property of CKB

on the chi-square distribution and beta distribution. It can be shown that the noncentrality

terms ΔDP, ΔA, and ΔKB are asymptotically equivalent as sample size goes to infinity. Therefore,

the three power functions CDP, CA, and CKB have the same large sample properties. Despite

the close resemblance between the three power formulas, the corresponding behaviors for fi-

nite sample obviously differ. Their relative performance of power calculations will be appraised

in the numerical investigations.

For planning research design, the power formulas can be employed to determine the sample

sizes N1 and N2 needed to attain the specified power (1 – β) through a simple iterative search

for the chosen significance level α and parameter settings. In practice, a research study requires

adequate statistical power and sufficient sample size to detect scientifically credible effects. It is

sensible that the corresponding power calculations and sample size determinations must be

considered in the planning stage of a study. Consequently, it is of theoretical importance to

evaluate the potential discrepancy between the three procedures in power and sample size cal-

culations. In view of the wide variety of practical situations, the presumed normal covariate

distribution merely provides a convenient and important situation. Evidently, the degree of

robustness to nonnormal covariates for the resulting power and sample size procedures is also

an essential issue and requires further sensitivity assessments.

Simulation study

To justify the distinct advantage of the suggested exact approach and the potential deficiency

of the approximate methods, numerical examinations of power and sample size calculations

were conducted in two studies under a wide variety of model configurations. The first investi-

gation focuses on the situations with normal covariate variables, whereas several notable sce-

narios of non-normal covariates are examined in the subsequent appraisal.

Study I

For the purpose of explicating the critical discrepancy between the three power functions

CDP, CA, and CKB in using covariate information, the two covariates X1 and X2 are assumed

to have normal distributions with variances {t2
1
, t2

2
} = {1, 1} and {1, 3} for balanced design

with N1 = N2 and {t2
1
, t2

2
} = {1, 1}, {1, 3}, and {3, 1} for unbalanced design with N2 = 3N1.

As noted earlier, the power functions do not depend on the covariate means θ1 and θ2. With-

out loss of generality, they are set as θ1 = θ2 = 0. In addition, the selected configurations of

treatment means and error variance are β11 = 0.50 and 0.75, β12 = 0, and σ2 = 1. Hence, the

resulting standardized effect size has two different values δ = 0.50 and 0.75. Overall these

considerations result in a total of 10 different combined arrangements. These combinations

of different covariate structures, effect magnitudes, and sample size allocations were chosen

to represent as much as possible the extent of characteristics that are likely to be encountered

in actual applications.
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With the prescribed specifications, the required sample sizes were computed for the three

procedures with the chosen power value and significance level. Throughout this empirical

investigation, the significance level and nominal power are fixed as α = 0.05 and 1 – β = 0.80,

respectively. The computed sample sizes associate with the effect size δ = 0.50 and 0.75 are pre-

sented in Tables 1 and 2, respectively. For ease of illustration, the total sample sizes of the exact

approach for δ = 0.50 and 0.75 are plotted in Figs 1 and 2, respectively.

The graphs show that, for fixed values of sample size ratio r and covariate variance t2
1
, the

total sample sizes N decrease with increasing covariance variance t2
2
. It is clear that the com-

puted sample sizes in Table 1 are larger than those in Table 2 when all other characteristics are

the same. More importantly, the results show that the calculated sample sizes of the exact

approach differ from those of the two approximate procedures for all ten cases. The sample

sizes of the approximate methods are relatively smaller than those of the exact approach. Also,

the discrepancy are slightly larger for δ = 0.75 in Table 2 than those of δ = 0.50 in Table 1. In

order to evaluate the accuracy of the power functions, the estimated power or computed

power are also listed. Because of the underlying metric of integer sample sizes, the attained val-

ues are marginally larger than the nominal level for all three procedures.

Then, Monte Carlo simulation studies were performed to evaluate the accuracy of the sam-

ple size calculations. With the computed sample sizes, parameter configurations, and nominal

power, estimates of the true power were computed via Monte Carlo simulation of 10,000 inde-

pendent data sets. For each replicate, N1 and N2 covariate values were generated from the

selected normal distributions. The resulting values of covariate variables in turn determined

the mean responses for generating N1 and N2 normal outcomes with the designated ANCOVA

Table 1. Computed sample size, estimated power, and simulated power when δ = 0.50, Type I error α = 0.05, and nominal power 1 – β = 0.80.

Dupont and Plummer (1998) Approximate method Exact approach

Covariate

variance

Sample

sizes

Estimated

power

Simulated

power

Error Sample

sizes

Estimated

power

Simulated

power

Error Sample

sizes

Estimated

power

Simulated

power

Error

{1, 1} {64, 64} 0.8013 0.7773 0.0240 {65, 65} 0.8015 0.7859 0.0156 {67, 67} 0.8026 0.8000 0.0026

{1, 3} {43, 43} 0.8011 0.7804 0.0207 {44, 44} 0.8015 0.7844 0.0171 {46, 46} 0.8037 0.8065 –

0.0028

{1, 1} {43, 129} 0.8059 0.7894 0.0165 {44, 132} 0.8076 0.7977 0.0099 {45, 135} 0.8033 0.8014 0.0019

{1, 3} {36, 108} 0.8068 0.7831 0.0237 {37, 111} 0.8007 0.7943 0.0134 {38, 114} 0.8015 0.8011 0.0004

{3, 1} {22, 66} 0.8103 0.7674 0.0429 {23, 69} 0.8165 0.7920 0.0245 {24, 72} 0.8122 0.8169 –

0.0047

https://doi.org/10.1371/journal.pone.0177682.t001

Table 2. Computed sample size, estimated power, and simulated power when δ = 0.75, Type I error α = 0.05, and nominal power 1 – β = 0.80.

Dupont and Plummer (1998) Approximate method Exact approach

Covariate

variance

Sample

sizes

Estimated

power

Simulated

power

Error Sample

sizes

Estimated

power

Simulated

power

Error Sample

sizes

Estimated

power

Simulated

power

Error

{1, 1} {29, 29} 0.8008 0.7682 0.0326 {30, 30} 0.8014 0.7745 0.0269 {32, 32} 0.8045 0.8072 –

0.0027

{1, 3} {20, 20} 0.8068 0.7467 0.0601 {21, 21} 0.8080 0.7715 0.0365 {23, 23} 0.8135 0.8156 –

0.0021

{1, 1} {20, 60} 0.8180 0.7687 0.0493 {20, 60} 0.8016 0.7719 0.0297 {22, 66} 0.8125 0.8145 –

0.0020

{1, 3} {17, 51} 0.8236 0.7710 0.0526 {17, 51} 0.8020 0.7736 0.0284 {19, 57} 0.8124 0.8169 –

0.0045

{3, 1} {10, 30} 0.8068 0.7194 0.0874 {11, 33} 0.8211 0.7713 0.0498 {12, 36} 0.8126 0.8181 –

0.0055

https://doi.org/10.1371/journal.pone.0177682.t002
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designs. Next, the test statistic T was computed and the simulated power was the proportion of

the 10,000 replicates whose test statistics |T| exceeded the corresponding critical value tν,0.025.

Therefore, the adequacy of the approximate and exact sample size procedures is determined

by the error (= estimate power–simulated power) between the estimated power computed

from analytic formulas and the simulated power of Monte Carlo study. The simulated power

and error are also summarized in Tables 1 and 2 for all 10 design schemes.

It is noticeable from the results that there exists a close agreement between the estimated

power and the simulated power for the proposed exact sample size procedure regardless of the

model configurations. Specifically, all the incurred errors of the 10 designs are all within the

small range of –0.0055 to 0.0026. In contrast, the estimated powers for the two approximate

methods are consistently larger than the simulated powers for all 10 settings in Tables 1 and 2.

In particular, the errors associated with Dupont and Plummer’s [13] procedure are {0.0240,

Fig 1. Computed sample size for effect size δ = 0.50.

https://doi.org/10.1371/journal.pone.0177682.g001
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0.0207, 0.0165, 0.0237, 0.0429} and {0.0326, 0.0601, 0.0493, 0.0526, 0.0874} for δ = 0.50 and

0.75 in Tables 1 and 2, respectively. For the approximate method with power function CA, the

corresponding errors of the ten cases in Tables 1 and 2 are {0.0156, 0.0171, 0.0099, 0.0134,

0.0245} and {0.0269, 0.0365, 0.0297, 0.0284, 0.0498} for δ = 0.50 and 0.75, respectively. Al-

though some of the differences are not substantial, it delineates a clear pattern that the accu-

racy of the approximate power functions deteriorates to some degree for smaller sample sizes,

especially for the simple method of Dupont and Plummer [13]. Furthermore, the magnitudes

of errors correspond to the direct-paring cases (when larger covariate variance is paired with

larger sample size) are relative smaller than those of the inverse-pairing situations (when larger

covariate variance is paired with smaller sample size). Note that the resulting errors of Dupont

and Plummer’s [13] procedure associated with {t2
1
, t2

2
} = {1, 3} and {N1, N2} = {36, 108} and

{17, 51} under direct-pairing are 0.0237 and 0.0526 in Tables 1 and 2, respectively. However,

Fig 2. Computed sample size for effect size δ = 0.75.

https://doi.org/10.1371/journal.pone.0177682.g002
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the counterparts of inverse-pairing setting with {t2
1
, t2

2
} = {3, 1} and {N1, N2} = {22, 66} and {10,

30} are much larger with 0.0429 and 0.0874 for δ = 0.50 and 0.75, respectively. These realiza-

tions imply that the magnitude of sample sizes plays an essential role in the performance of the

approximate methods. More importantly, the adequacy of the approximate power formulas

and sample size procedures varies with model configurations. In contrast, the numerical per-

formance suggests that the exact methodology performs fairly well for the range of model spec-

ifications considered here.

Study II

The described exact power function is obtained under the essential framework that the covari-

ate variables have normal distributions. Instead of using the full features, the approximate

power formula CA only relies on the partial information of second moments or variances of

the covariates. At first sight, the simplified method may be more robust than the exact ap-

proach to the violation of normality assumption of the covariates. To further illuminate the

sensitivity issues and profound implications of the two distinct techniques, power and sample

size calculations were also conducted for the scenarios with non-normal covariates. Due to the

undesired and inferior performance of Dupont and Plummer’s [13] technique, their method is

not considered in this examination.

Specifically, the two covariates are assumed to have five different sets of distributions: Beta,

Exponential, Gamma, Laplace, and Uniform. For ease of comparison, the designated distribu-

tions were constructed to have variances {t2
1
, t2

2
} = {1, 1} and {1, 3}. Moreover, only balanced

designs were considered and the treatment means and error variance were fixed as β11 = 0.50,

β12 = 0, and σ2 = 1. Hence, the required sample sizes and estimated powers associated with the

exact procedure remain identical for the five different distributions. Unlike the previous study,

the estimated powers and related evaluations of the approximate method were computed with

the sample sizes determined by the exact approach. Table 3 summarizes the empirical results

of the ten combined structures of covariate distribution and associated variance. In the case of

Beta distribution, the actual two pairs of Beta covariates are X1 ~ Beta(2, 5)/c1 and X2 ~ Beta(2,

5)/c1, and X1 ~ Beta(2, 5)/c1 and X2 ~ Beta(2, 5)/c2 where c1 and c2 are selected such that the

resulting variances are 1 and 3, respectively. On the other hand, the parameter specifications of

Table 3. Computed sample size, estimated power, and simulated power when δ = 0.50, Type I error α = 0.05, and nominal power 1 – β = 0.80.

Approximate method Exact approach

Covariate distributions Sample sizes Estimated power Simulated power Error Estimated power Simulated power Error

Beta(2, 5)* and Beta(2, 5)* {67, 67} 0.8135 0.7973 0.0162 0.8026 0.7973 0.0053

Beta(2, 5)* and Beta(2, 5)** {46, 46} 0.8194 0.7960 0.0234 0.8037 0.7960 0.0077

Exponential(1) and Exponential(1) {67, 67} 0.8135 0.7775 0.0360 0.8026 0.7775 0.0251

Exponential(1) and Exponential(31/2) {46, 46} 0.8194 0.7697 0.0497 0.8037 0.7697 0.0340

Gamma(2, 1/21/2) and Gamma(2, 1/21/2) {67, 67} 0.8135 0.7905 0.0230 0.8026 0.7905 0.0121

Gamma(2, 1/21/2) and Gamma(2,

(3/2)1/2)

{46, 46} 0.8194 0.7830 0.0364 0.8037 0.7830 0.0207

Laplace(21/2) and Laplace(21/2) {67, 67} 0.8135 0.7927 0.0208 0.8026 0.7927 0.0099

Laplace(21/2) and Laplace((2/3)1/2) {46, 46} 0.8194 0.7814 0.0380 0.8037 0.7814 0.0223

Uniform(–1/2, 1/2) and Uniform(–1/2,

1/2)

{67, 67} 0.8135 0.8115 0.0020 0.8026 0.8115 –

0.0089

Uniform(–1/2, 1/2) and Uniform(–3, 3) {46, 46} 0.8194 0.8095 0.0099 0.8037 0.8095 –

0.0058

*Beta(2, 5) is scaled to have a variance 1

**Beta(2, 5) is scaled to have a variance 3.

https://doi.org/10.1371/journal.pone.0177682.t003
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the other four types of distribution can be found in Table 3. Similar to the numerical assess-

ments in Study I, Table 3 presents the computed sample sizes, estimated powers, simulated

powers, and associated errors of the two competing procedures.

A detailed inspection of the findings in Table 3 reveals that the performance of both the

contending procedures is affected by the non-normal covariate settings, especially for the

Exponential cases. However, it is important to note that the approximate technique incurs

larger estimated powers and errors between estimated power and simulated power than the

exact approach. The only exceptions occurred with the Uniform covariate distribution that the

exact procedure does not have a clear advantage over the approximate method. Conceivably,

the degree of robustness of the suggested exact technique presumably depends on the extent of

how badly covariate distributions deviate from normality assumption. Nonetheless, these

empirical evidences show that the exact procedure give acceptable results even for the non-

normal covariates. In view of the potentially diverse treatment and covariate configurations of

ANCOVA studies, it appears that the exact approach is relatively more consistent and accurate

than the approximate method to be considered as a general tool.

Results

The implementation of the suggested power and sample size calculations involves specialized

programs not currently available in prevailing statistical packages. To exemplify the computa-

tional aspects of the developed algorithms for design planning, the numerical demonstration

of evaluating two treatments for gingivitis in Fleiss [3, Section 7.3] is reexamined here. The

data consists of measurements of patients before and after treatment on a modification of the

Loe and Silness [26] index of gingivitis. A higher value indicates a more severe level of gingivi-

tis. Accordingly, the response variable of ANCOVA is the post-treatment measurement with

the pretreatment value serving as the covariate. It should be note that the illustration in Fleiss

[3] does not address the power and sample size issues. Moreover, the emphasis of this numeri-

cal demonstration is on the typical research scenario most frequently encountered in the plan-

ning stage of an ANCOVA study.

Due to the prospective nature of advance research planning, the general guidelines suggest

that typical sources like published finding or expert opinion can offer plausible and reasonable

planning values for the model characteristics, such as treatment effects, variance component,

and covariate properties. To explicate the essential processes, the prescribed data of comparing

two treatments of gingivitis is employed to provide planning values of the model parameters

and covariate configurations for related gingivitis studies. Specifically, the summary statistics

yield the designated treatment effects and variance component: β11 = 0.8502, β12 = 0.4008, and

σ2 = 0.04. In addition, the covariate variances are obtained from the reported pretreatment val-

ues as t2
1

= 0.0646 and t2
2

= 0.0526. With the sample sizes of {N1, N2} = {74, 64} and significance

level α = 0.05, the achieved power can be readily computed with the supplemental programs

(Programs A and C). The result shows that the achieved power of the particular unbalanced

design is CKB = 0.8650 which falls between the two fairly common levels of 0.80 and 0.90.

Therefore, the power calculation suggests that the designated configurations warrant a decent

chance of detecting the slope difference between two treatment groups.

Alternatively, under the notion of a balanced design, the presented algorithms (Programs B

and D) reveal that the equal sample sizes of {N1, N2} = {69, 69} yield the power of 0.8694. It is

interesting to note that, although the two sample size schemes {74, 64} and {69, 69} have the

identical total sample size 138, the balanced design has a slightly advantage over the unbal-

anced structure in power performance. For an illustration of sample size determination for

planning balanced study, detailed computations show that the balanced sample sizes of {N1,
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N2} = {58, 58} and {77, 77} are needed to achieve the target powers of 0.80 and 0.90, respec-

tively. It is noted above, because of the sample sizes need to be integer values in practice, that

the attained power is marginally greater than the nominal power level. Here, the correspond-

ing actual powers of the two sample size designs are 0.8043 and 0.9038, respectively. These

vital configurations are incorporated in the user specifications of the SAS/IML [13] and R [14]

programs presented in the supplemental files. With the prescribed explications, users can eas-

ily identify the statements containing the exemplifying values in the computer code and then

modify the program to accommodate their own model specifications.

Conclusions and discussion

Within the context of ANCOVA, an underlying assumption is the parallelism of the regression

lines associating the criterion variable with the covariate. It has been emphasized that the

homogeneity of covariate regression slopes is the most important statistical assumption in

ANCOVA. However, there are theoretical reasons and empirical evidences to document non-

parallel phenomenon of regression lines across many scientific fields. Although the test of the

hypothesis of parallel regression lines is a simple and straightforward procedure, the corre-

sponding analytic derivations and computational algorithms of power and sample size deter-

minations have not been examined in the literature. Conceivably, the corresponding power

analysis and sample size determination must also be considered before it can be adopted as

a general methodology in practice. To facilitate proper use and implication of traditional

ANCOVA and extended alternatives, this article presents both pedagogical explication and

numerical appraisal of power and sample size procedures for the detection of heterogeneity

between two covariate regression coefficients. Despite the simplicity, this scenario embodies

all the essential notion and critical feature of ANCOVA that can be useful in undertaking simi-

lar considerations for the more involved multi-group situations.

The existing method of Dupont and Plummer (1998) seems to provide a simple solution

and maintains reasonable accuracy for some model configurations. However, no research to

date has properly examined its properties both analytically and empirically. The presented ana-

lytic explication and empirical results showed that the approximate formula of Dupont and

Plummer [13] does not guarantee to give accurate power and sample size calculations. The

proposed exact approach has the distinct feature of accommodating the full distributional

properties of normal covariates whereas the simplified approximate methods only utilize the

partial information of covariate variances. It is important to note that although Glueck and

Muller [27] and Shieh [28] considered the problem of adjusting power for random covariates

in multivariate linear models, their model formulations do not cover the interaction effects

between treatment groups and continuous covariates. Hence, the corresponding power and

sample size procedures do not applied to the detection of slope heterogeneity considered here.

Moreover, due to the complexity of multivariate settings, only moments of the covariate vari-

ables are employed in the power formulas presented in Glueck and Muller [27] and Shieh [28].

Consequently, their methods do not take into account the full distributional features of covariate

variables. In view of the overall accuracy and robustness, the exact approach is recommended

over the approximate methods as a reliable tool in practical applications. The supporting SAS/

IML [15] and R [16] computer algorithms will yield accurate power calculations and sample size

determinations provided that all the required information is properly specified.
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