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We attempt to develop an effective forecastingmodel for the diffusion and substitution ofmultigenerationDynamic RandomAccess
Memory (DRAM) processing technologies.We considermarket share data and propose amodified Lotka–Volterramodel, in which
an additional constraint on the summation of market share is introduced.Themean absolute error is used to measure the accuracy
of our market share predictions. Market share data in DRAM industries from quarter one (Q1) of 2005 to 2013 Q4 is collected
to validate the prediction accuracy. Our model significantly outperforms other benchmark forecasting models of both revenue
and market share data, including the Bass and Lotka–Volterra models. Compared to prior studies on forecasting the diffusion
and substitution of multigeneration technologies, our model has two new perspectives: (1) allowing undetermined number of
multigeneration technologies and inconsecutive adoption of new technologies and (2) requiring less data for forecasting newborn
technologies.

1. Introduction

Dynamic Random Access Memory (DRAM), a semiconduc-
tor product that stores data bits in the form of capacitors
and transistors, is a necessary and critical component widely
used in information technology (IT) products. Growing with
the Personal Computer (PC) boom, DRAM sector is one
of the lead products in the semiconductor industry for last
decades [1]. In today’s modern IT industry, the demand
of DRAM is also driven by the data storage and big data
retrieval in social media and cloud computing [2]. Beyond
that,mobile DRAMalso drove record-high profits forDRAM
vendors during the second half of 2014 [3]. The total revenue
of DRAM products reached 39 billion US dollars in 2010,
which accounted for 12.8% of the revenue of the semicon-
ductor industry. According to Taiwan’s Industrial Technology
Research Institute (ITRI), almost 70% of DRAM sales are in
PCs (including notebooks) and servers. About 10% of DRAM
sales are in computer peripheral products and 20% are in
mobile communications and consumer electronics products.
Therefore, the prices of DRAM products have an important

influence on the costs of other industries, including com-
puters, mobile communications, and consumer electronics
industries.

Because of price competition, global DRAM manufac-
turers continue to upgrade their technologies and pro-
duction processes. The development of new technologies
allows smaller chips, which enables wafers to be cut into
more chips. This greatly reduces the production cost per
chip and enhances price competition. The market shares
of different DRAM processing technologies are shown in
Figure 1 [4–6]. In quarter one (Q1) of 2005, processing
technology based on 100–120 nanometers (nm) constituted
mainstream DRAM manufacturing, and its market share
reached 85%. Then, processing technology based on 90
nanometers began to develop. By 2010 Q4, processing tech-
nology based on 40 nanometers became mainstream, and
its market share reached 55%. Currently, processing tech-
nology based on 30 nanometers is developing and has a
market share of 21%. Figure 1 shows that the rapid substi-
tution of processing technology is common in the DRAM
industry.
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Figure 1: Rapid substitution of DRAM processing technolo-
gies. Data sources: DRAMeXchange, IHS iSuppli, andMorgan Stan-
ley Research (2014). Data collation: Industrial Technology Research
Institute of Taiwan and Taiwan Institute of Economic Research.

The rapid substitution of processing technologies makes
prediction important in the DRAM industry. Accurate pre-
diction of the substitution of processing technology helps
DRAMmanufacturers to invest appropriately in research and
development and get the right timing for updating manu-
facturing equipment. With accurate prediction, technology
leaders can plan and allocate resources for the next generation
of technologies and maintain their leading positions. Tech-
nology followers can ignore obsolete technology upgrades
to reduce their capital needs and operational risks. Hence,
producers need good forecasting models for predicting the
substitution of DRAM processing technology.

Many models, such as the Bass model and the Lotka–
Volterra model, are widely used to forecast the diffusion and
substitution of two technologies. The Bass model mimics
the diffusion process of an innovative product or technology
and shows how that new product or technology can be
adopted as an interaction between users and potential users.
The Lotka–Volterra model is a mathematical model that
mimics the dynamics of two species competing for common
resources. Both models are built based on the data of
adoption/shipment amounts and/or product revenues, which
may be affected by industry long-term trends, economic
cycles, and other confounding factors. Given this sort of
interference, both models may yield inaccurate predictions.

For multiple competing technologies, Peterka extended
the empirical model of Fisher and Pry to forecast the compe-
tition of multiple technologies based onmarket share data [7,
8]. Norton and Bass generalized the Bassmodel to encompass
the diffusion and substitution of successive generations of
DRAM processing technologies [9]. Though establishing
significant milestones, these forecasting models for multi-
generation of technologies have the following three issues.

First, the number of multigeneration technologies must be
preset. Second, inconsecutive adoption of new technologies
is not allowed.Third, the number of fitting parameters grows
quickly with the number of multigeneration technologies
and more data is required for prediction accuracy. However,
the total number of multigeneration technologies may not
always be predictable in practice. We also observe that new
generations of DRAM processing technologies may come to
premature end without adoption.

Our study concentrates on the above three issues.We first
consider dividing lines to partition the relatively old and new
DRAM processing technologies and their market share data
is adopted. Then, a modified Lotka–Volterra model with an
additional constraint on the summation of market shares is
proposed.

To measure the prediction accuracy of market share, we
use the mean absolute error (MAE). Market share data in
DRAM industry from 2005Q1 to 2013Q4 are collected to val-
idate the prediction accuracy. Our modified Lotka–Volterra
model significantly outperforms other benchmark forecast-
ingmodels, which include the Bass and Lotka–Volterra mod-
els based on either revenue or market share data. Also, our
modified Lotka–Volterra model may help DRAM mangers
determine the timing of capital investment decisions. More
importantly, this work sheds light on how to appropriately
apply the market share data in forecasting technological
diffusion and substitution.

The remainder of this paper is organized as follows.
Related literature is reviewed in Section 2 and our modified
Lotka–Volterra model is proposed in Section 3. In Section 4,
we present our data on the DRAM industry and empirical
studies are implemented to verify the performance of our
model. In Section 5, we summarize our work and discuss
directions for future research.

2. Literature Review

In this section, we review the Bass and Lotka–Volterramodels
and other variations.

2.1. Bass Model. The Bass model was introduced by Bass in
1969 [10]. The model describes the diffusion process of new
products or technologies being adopted and the interaction
between users and potential users. Bass relied on diffusion
theory to model the timing of adoption that leads to a
particular S-shaped growth pattern for new products or
technologies [11]. The diffusion rate of a new product in the
market is described by the following differential equation:

𝑑𝑁 (𝑡)
𝑑𝑡 = (𝑝 + 𝑞𝑁 (𝑡)) (𝑀 − 𝑁 (𝑡)) , (1)

where 𝑁(𝑡) is the cumulative number of adopters or users
at time 𝑡 and 𝑀 is the potential market size. The parameter
𝑝 is the coefficient of innovation, and 𝑞 is the coefficient of
imitation.

The Bass model and variations have been widely used
for diffusion and sales forecasting models of new products
or technologies. For example, Park et al. used the Bass
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model to develop a market penetration forecasting model
of Hydrogen Fuel Cell Vehicles incorporating infrastructure
and cost reduction effects [12]. Cheng used the Bass model
to construct predictive models of technology and market
diffusion for advanced ceramic powder materials. He exam-
ined the relationship over time between technology diffusion
and market diffusion [13]. Tsai et al. considered the effect
of price factors and modified the Bass model to study the
diffusion of the new liquid crystal display TVs [14]. Kong and
Bi studied the diffusion of electric vehicles in China with the
Bass model. They examined two common business models
of battery leasing and vehicle purchasing and analyzed the
impact and influence of social network to the innovation
coefficient and imitation coefficient [15].

2.2. Lotka–Volterra Model. The Lotka–Volterra model was
first proposed by Lotka in 1925 [16]. This model uses two
nonlinear differential equations to describe the dynamics and
balance of a biological system in which two species interact
as predator and prey. Volterra used Lotka’s model and his
own data to analyze the rise and fall of fish populations in
the Adriatic [17]. Lotka and Volterra based their model on
the logistic equation, including terms to account for species’
interactions.The following twodifferential equations are used
to describe how two species’ population growth rates evolve
over time:

𝑑𝑥 (𝑡)
𝑑𝑡 = (𝑎1 + 𝑏1𝑥 (𝑡) + 𝑐1𝑦 (𝑡)) 𝑥 (𝑡) , (2)

𝑑𝑦 (𝑡)
𝑑𝑡 = (𝑎2 + 𝑏2𝑦 (𝑡) + 𝑐2𝑥 (𝑡)) 𝑦 (𝑡) , (3)

where 𝑥(𝑡) and 𝑦(𝑡) represent the populations of two com-
peting species at time 𝑡, respectively. The terms 𝑥2 and 𝑦2
represent internal self-interaction of the same species. The
term 𝑥𝑦 represents the interaction between the two species.
The set of differential equations contains basic parameters
that affect the growth rates of both species. Parameter 𝑎𝑖 is
the logistic parameter of geometric growth for species 𝑖when
it is evolving. Parameter 𝑏𝑖 is the limitation parameter of the
niche capacity for species 𝑖. Parameter 𝑐𝑖 is the interaction
parameter with the other species.

The Lotka–Volterra model has been widely used to inves-
tigate relationships between biological species. For example,
Smitalova and Sujan proposed a competitive relationship
between two competing species [18]. Geijzendorffer et al.
used the Lotka–Volterra model to predict the long-term
coexistence patterns of grassland species [19].

Outside the field of biology, Goodwin introduced the
model into the field of economics by applying it to busi-
ness cycles [20]. Subsequently, researchers used this model
to investigate competitive relationships between different
industries, products, and technologies. Kreng and Wang
applied the Lotka–Volterra model to analyze the competition
between LCD TVs and PDP TVs [21]. Kim et al. considered
the dynamic competition of mobile phone subscription in
Korea and applied the Lotka–Volterra model to show the
commensalism relationship [22]. Watanabe et al. studied the
transition process from monochrome TV to color TV in

the 1960s and used the Lotka–Volterra model to forecast the
transition from analog broadcasting to digital broadcasting
in Japan [23].

2.3. Diffusion and Substitution of DRAM Processing Technolo-
gies. Forecasting market diffusion is important when a new
product or technology is under development.The Bassmodel
remains the most adopted and extends diffusion model.
Unlike the Bass model, the Lotka–Volterra model incor-
porates interactions between competitors. Although they
differ crucially in their treatment of competitors’ interactions,
the Bass and Lotka–Volterra models have both been used
to forecast the diffusion and substitution of new products,
technologies, technologies, and industries.

For example, Tsai and Li found that the development
of the integrated circuit (IC) design industry had a positive
influence on the ICmanufacturing and IC packing industries
[24]. They used the Bass and Lotka–Volterra models to
verify the commercial relationships between producers in
this Taiwanese IC cluster. Chiang explored the innovation
growth of 200mm and 300mm silicon wafers from Taiwan
with both the Bass and Lotka–Volterra models. They found
that the forecasting performances of the both models are
similar [25]. Chiang andWong used the two models to study
the competitive diffusion of desktop and notebook shipments
in Taiwan and found evidence of predator-prey relationships
[26].

Both models are built based on the data of adop-
tion/shipment amounts and/or product revenues, which may
be affected by industry long-term trends, economic cycles,
and other confounding factors. Unfortunately, this sort of
interference is one of the most important characteristics
of DRAM industry and both models may yield inaccurate
predictions under this sort of interference. It is therefore
questionable that the applicability of revenue data and the
effect of data characteristics are rarely analyzed in DRAM
industry.

2.4.Models forMultiple Competing Technologies. Under rapid
substitution, multiple generations of DRAMprocessing tech-
nologies coexist in the market. Several models are proposed
to encompass the diffusion and substitution of multiple com-
peting technologies. Peterka questioned the applicability of
revenue data and adopted market share data [7]. Competing
technologies are considered pairwise to follow Fisher and
Pry’s empirical formula, where the logarithmic function of
market share ratio is a linear function in time 𝑡 [8]. The
Peterka model can be described by the following equations.

ln
𝑓𝑖 (𝑡)
𝑓𝑗 (𝑡)

= 𝑘𝑖𝑗 − 𝑐𝑖𝑗 (𝑡 − 𝑡0) , for any 𝑖 and 𝑗,

∑
𝑖

𝑓𝑖 (𝑡) = 1,
(4)

where 𝑡0 is the starting time of the model and 𝑓𝑖(𝑡) is the
market share of the 𝑖th competing technologies in time 𝑡. Note
that Peterka assumed that no technology can start from zero
in this model [4]. A new technology must be initiated and
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established by external investment before 𝑡0. Thus, 𝑓𝑖(𝑡0) is
predetermined according to the external investment and 𝑘𝑖𝑗 =
ln(𝑓𝑖(𝑡0)/𝑓𝑗(𝑡0)) is the given ratio of initial market shares.
As a result, this model may not be suitable for successive
generations of DRAM processing technologies, where future
generation may be zero at the starting time of the model.

Norton andBass generalized the Bassmodel andmodeled
the demand growth/decline for successive generations of
memory and logic circuits [9]. They assume that the number
of successive generations is preset and each successive gener-
ation has its own market potential and market penetration.
A new generation of a product or technology always attracts
users from its potential market and the predecessor genera-
tion. The Norton-Bass model can be illustrated by a product
of three successive generations.

𝑆1 (𝑡) = 𝐹1 (𝑡)𝑚1 [1 − 𝐹2 (𝑡 − 𝜏2)] ,

𝑆2 (𝑡) = 𝐹2 (𝑡 − 𝜏2) [𝑚2 + 𝐹1 (𝑡)𝑚1] [1 − 𝐹3 (𝑡 − 𝜏3)] ,

𝑆3 (𝑡) = 𝐹3 (𝑡 − 𝜏2) {𝑚3 + 𝐹2 (𝑡 − 𝜏2) [𝑚2 + 𝐹1 (𝑡)𝑚1]} ,

(5)

where the 𝑖th generation 𝑖 is introduced at 𝜏𝑖 and 𝜏1 =
0. Moreover, 𝑚𝑖 is the potential sales of the 𝑖th generation
and 𝑆𝑖(𝑡) is the sales of the 𝑖th generation in time period 𝑡.
Note that 𝐹𝑖(𝑡) is the cumulative distribution function of the
adoption rate of the 𝑖th generation.

The formula is

𝐹𝑖 (𝑡) =
{{
{{
{

1 − exp [− (𝑝𝑖 + 𝑞𝑖) 𝑡]
1 + (𝑝𝑖/𝑞𝑖) exp [− (𝑝𝑖 + 𝑞𝑖) 𝑡]

, for 𝑡 ≥ 𝜏𝑖
0, otherwise,

(6)

where the parameter 𝑝𝑖 is the coefficient of innovation and 𝑞𝑖
is the coefficient of imitation of the 𝑖th generation.

In these models, there are three common issues. First,
the number of technologies must be preset. Each technology
is assumed to be predictable and all newborn technologies
can go through the complete adoption cycle and competes
with earlier ones. Unfortunately, we observe that some new
technologies may come to a premature end without adoption
in DRAM industry. As a result, the total number of new
technologies may not be predetermined.

Second, the inconsecutive adoption of new technologies
is not allowed. When adopting the new generation of DRAM
processing technologies, customers may intend to bypass
the immediate successor and adopt the later one due to the
consideration of market potential and transcendence. As a
result, some generations of DRAM processing technologies
may not go through the complete adoption cycle and compete
with earlier ones.

Third, the number of fitting parameters grows quickly
with the number of technologies andmore data is required for
prediction accuracy. For multiple competing technologies,
the existing forecasting models are designed to mimic the
diffusion and substitution by equations among all technolo-
gies. Thus, the number of fitting parameters grows quickly
with the number of technologies. However, it is natural that
mature technologies have plenty of data andnew technologies
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Figure 2: DRAM revenue changes for new and old process tech-
nologies. Data sources: DRAMeXchange, IHS iSuppli, and Morgan
Stanley Research (2014). Data collation: Industrial Technology
Research Institute of Taiwan and Taiwan Institute of Economic
Research.

have little data collectable in initial stages. As a result, mature
technologies dominate the model and errors are cumulated
to new technologies. In the worst case, some models may not
be applied due to the insufficient data for parameters fitting.

3. Model

Wenowpropose themodified Lotka–Volterramodel for fore-
casting the diffusion and substitution of DRAM processing
technologies.

3.1. Market Share Data. In this study, we focus on the substi-
tution between old and new DRAM processing technologies.
At a given point in time, there usually coexist different
generations of processing technology on the DRAM market.
For example, 60-, 70-, 80-, 90-, 100–120-, and 130–140-
nanometer processing technologies coexisted on the DRAM
market in 2007 Q3 (see Figure 1). We first divide DRAM
processing technologies into two groups, old and new. 90
nanometers are used as the dividing line between the two.
Hence, DRAM processing technologies of less than 90
nanometers are classified as new technologies, and those of
90 nanometers and more than 90 nanometers are classified
as old technologies.

Data on shipments and/or product revenues are typically
used to forecast technological substitution. However, these
datamay be affected bymarket fluctuations that have nothing
to do with substitution. Such factors include industry long-
term trends, economic cycles, and other confounding factors.
To illustrate, Figure 2 shows quarterly DRAM revenue data
from 2005 Q1 to 2013 Q4. Unstable fluctuations in DRAM
revenue are apparent.

Market shares measure the percentages of market sales
accounted for by competitive products or technologies.
Changes in market shares reflect substitution, not long-
term trends, economic cycles, and other confounding factors.
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Figure 3: DRAM market share changes for new and old process
technologies. Data sources: DRAMeXchange, IHS iSuppli, andMor-
gan Stanley Research (2014). Data collation: Industrial Technology
Research Institute of Taiwan and Taiwan Institute of Economic
Research.

Figure 3 shows that market shares fluctuate less than does
revenue. Hence, our model is to use market share data for
forecasting.

3.2.Model Formulation. Usingmarket share data, one natural
restriction is that market shares must sum to 100%. By setting
𝑀 = 1 and 𝑦(𝑡) as the cumulative market share of new
processing technologies at time 𝑡, the Bass model given by (1)
can be rewritten as follows:

𝑑𝑦 (𝑡)
𝑑𝑡 = (𝑝 + 𝑞𝑦 (𝑡)) (1 − 𝑦 (𝑡))

= 𝐶1 + 𝐵1𝑦 (𝑡) + 𝐴1𝑦 (𝑡)2,
(7)

where 𝐶1 = 𝑝, 𝐵1 = 𝑞 − 𝑝, and 𝐴1 = − 𝑞.
When applying market share data to the Lotka–Volterra

model, we let 𝑥(𝑡) and 𝑦(𝑡) be the market shares of old and
new DRAM processing technologies at time 𝑡, respectively.
Given a total market share of 100%, we have

𝑥 (𝑡) + 𝑦 (𝑡) = 1. (8)

From (8), (2) can be rewritten as

𝑑𝑥 (𝑡)
𝑑𝑡 = (𝑎1 + 𝑏1𝑥 (𝑡) + 𝑐1𝑦 (𝑡)) 𝑥 (𝑡)

= ((𝑎1 + 𝑐1) + (𝑏1 − 𝑐1) 𝑥 (𝑡)) 𝑥 (𝑡)

=𝐵2𝑥 (𝑡) + 𝐴2𝑥 (𝑡)2,

(9)

where 𝐵2 = 𝑎1 + 𝑐1 and 𝐴2 = 𝑏1 − 𝑐1.
Equations (7) and (9) show that the Bass and

Lotka–Volterra models of market shares degenerate to
our model because total market shares must be 100%. This
modified Lotka–Volterra model is formulated as follows:

𝑑𝑥 (𝑡)
𝑑𝑡 = 𝐶 + 𝐵𝑥 (𝑡) + 𝐴𝑥 (𝑡)2

𝑦 (𝑡) = 1 − 𝑥 (𝑡) .
(10)

3.3. Prediction Evaluation. Traditionally, both the mean
absolute percentage error (MAPE) and the mean squared
error (MSE) are used to evaluate prediction accuracy. How-
ever, depending on the data and models used, the MAPE
and MSE are not necessarily the best measures of prediction
accuracy.Therefore, we use theMAE to evaluate the accuracy
of our market share predictions.

Given a number of forecast periods of 𝑛 and letting 𝑦(𝑡)
and 𝑦(𝑡) denote the actual and forecast values for time 𝑡,
respectively, the MAPE, MSE, and MAE are defined as

MAPE = 1
𝑛
𝑛

∑
𝑡=1


𝑦 (𝑡) − 𝑦 (𝑡)

𝑦 (𝑡)

,

MSE =
𝑛

∑
𝑡=1

(𝑦 (𝑡) − 𝑦 (𝑡))2
𝑛 ,

MAE = 1
𝑛
𝑛

∑
𝑡=1

(𝑦 (𝑡) − 𝑦 (𝑡))
 .

(11)

The MAPE conveys the percentage difference between
the actual values and forecast values. Small 𝑦(𝑡) values can
generate large MAPE values. Actual values close to zero can
generate infinitely large MAPEs. Therefore, the MAPE is
not suitable for prediction evaluation when actual values are
small. Given that market shares are, by definition, between 0
and 1, the MAPE is not suited to our purposes.

The MSE is the mean squared difference between the
actual and forecast values. Although it is not troubled by small
actual values, because the MSE is dependent on the units of
measurement of𝑦(𝑡), it cannot be used for comparisons based
on different types of data.Thus, theMSE is not suitable for our
study, because we want to compare the prediction accuracy of
both revenue and market share forecasts.

The MAE conveys the absolute difference between the
actual and forecast values. It is untroubled by small actual
values. Moreover, when applied to market share data, the
MAE records the average absolute error as a percentage.Thus,
to ensure the comparability of our prediction evaluations,
we compare the MAEs for market share predictions with the
MAPEs for revenue predictions.

4. Data Collection and Empirical Study

In this section, our model is implemented to forecast the
diffusion and substitution of DRAMprocessing technologies.
Other benchmark forecasting models are used for com-
parison. These benchmark forecasting models include the
standard Bass and Lotka–Volterra models.

Data on revenue and market share have different charac-
teristics and influences.We collect global revenue andmarket
share data on different DRAM processing technologies and
use them to evaluate prediction accuracy. Our data sources
include DRAMeXchange, iSuppli, and the industry analysis
reports published by Taiwan’s ITRI. In total, 36 pairs of
records from 2005 Q1 to 2013 Q4 were collected.

4.1. Numerical Study. To distinguish between old and new
processing technologies, we use three dividing lines: 90, 80,
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Table 1: Revenues and market share for old and new processing technologies from 2005 Q1 to 2013 Q4.

Quarter
Revenue (millions USD) Market share

90 nm 80 nm 70 nm 90 nm 80 nm 70 nm
Old New Old New Old New Old New Old New Old New

05Q1 6574 <1 6574 <1 6574 <1 1 <0.01 1 <0.01 1 <0.01
05Q2 5715 <1 5715 <1 5715 <1 1 <0.01 1 <0.01 1 <0.01
05Q3 6394 <1 6394 <1 6394 <1 1 <0.01 1 <0.01 1 <0.01
05Q4 6372 <1 6372 <1 6372 <1 1 <0.01 1 <0.01 1 <0.01
06Q1 6422 131 6553 <1 6553 <1 0.98 0.02 1 <0.01 1 <0.01
06Q2 7158 457 7615 <1 7615 <1 0.94 0.06 1 <0.01 1 <0.01
06Q3 8455 636 9091 <1 9091 <1 0.93 0.07 1 <0.01 1 <0.01
06Q4 8897 1695 10592 <1 10592 <1 0.84 0.16 1 <0.01 1 <0.01
07Q1 6961 2707 9475 193 9668 <1 0.72 0.28 0.98 0.02 1 <0.01
07Q2 4380 2920 6716 584 7154 146 0.6 0.4 0.92 0.08 0.98 0.02
07Q3 3584 4380 6929 1035 7645 319 0.45 0.55 0.87 0.13 0.96 0.04
07Q4 2055 4173 4484 1744 5294 934 0.33 0.67 0.72 0.28 0.85 0.15
08Q1 1408 4459 3462 2405 4457 1408 0.24 0.76 0.59 0.41 0.76 0.24
08Q2 1042 5470 2800 3712 4298 2214 0.16 0.84 0.43 0.57 0.66 0.34
08Q3 758 6134 2205 4687 3791 3101 0.11 0.89 0.32 0.68 0.55 0.45
08Q4 286 3793 816 3263 1713 2366 0.07 0.93 0.2 0.8 0.42 0.58
09Q1 95 3073 222 2946 919 2249 0.03 0.97 0.07 0.93 0.29 0.71
09Q2 81 3984 203 3862 772 3293 0.02 0.98 0.05 0.95 0.19 0.81
09Q3 122 5991 245 5868 856 5257 0.02 0.98 0.04 0.96 0.14 0.86
09Q4 87 8595 174 8508 955 7721 0.01 0.99 0.02 0.98 0.11 0.89
10Q1 93 9195 186 9102 836 8452 0.01 0.99 0.02 0.98 0.09 0.91
10Q2 104 10317 208 10213 834 9587 0.01 0.99 0.02 0.98 0.08 0.92
10Q3 108 10671 216 10563 647 10132 0.01 0.99 0.02 0.98 0.06 0.94
10Q4 86 8558 173 8471 346 8298 0.01 0.99 0.02 0.98 0.04 0.96
11Q1 83 8220 166 8137 332 7971 0.01 0.99 0.02 0.98 0.04 0.96
11Q2 <1 8147 <1 8147 163 7984 <0.01 1 <0.01 1 0.02 0.98
11Q3 <1 6565 <1 6565 66 6499 <0.01 1 <0.01 1 0.01 0.99
11Q4 <1 6453 <1 6453 <1 6453 <0.01 1 <0.01 1 <0.01 1
12Q1 <1 6271 <1 6271 <1 6271 <0.01 1 <0.01 1 <0.01 1
12Q2 <1 7023 <1 7023 <1 7023 <0.01 1 <0.01 1 <0.01 1
12Q3 <1 6429 <1 6429 <1 6429 <0.01 1 <0.01 1 <0.01 1
12Q4 <1 6864 <1 6864 <1 6864 <0.01 1 <0.01 1 <0.01 1
13Q1 <1 6870 <1 6870 <1 6870 <0.01 1 <0.01 1 <0.01 1
13Q2 <1 8531 <1 8531 <1 8531 <0.01 1 <0.01 1 <0.01 1
13Q3 <1 9300 <1 9300 <1 9300 <0.01 1 <0.01 1 <0.01 1
13Q4 <1 9748 <1 9748 <1 9748 <0.01 1 <0.01 1 <0.01 1
Data sources: DRAMeXchange, IHS iSuppli, & Morgan Stanley Research (2014).
Data collation: Industrial Technology Research Institute of Taiwan & Taiwan Institute of Economic Research.

and 70 nanometers as examples. The raw data for each are
given in Table 1.

We are also interested in prediction accuracy at different
stages of diffusion. The 99%, 95%, 90%, 80%, 70%, 60%,
and 50% market shares for new processing technologies are
earmarked as seven stages of diffusion. In each stage, records
pertaining to the time before the new processing technologies
surpassed the earmarkedmarket shares were used as training
data to fit the model parameters.The remaining records were
used as testing data to evaluate prediction accuracy.

For example, at the dividing line of 90 nanometers, new
processing technologies are those using 90 nanometers or
less. Table 1 shows that these new processing technologies
reached a 99% market share in 2009 Q4. Thus, in Stage 1,
19 pairs of revenue records for the old and new processing
technologies from 2005 Q1 to 2009 Q3 were used as training
data to fit the Bass and Lotka–Volterra models by using
ordinary least squares. The remaining 17 pairs of revenue
records were used as testing data to individually evaluate the
MAPEs for the old and new processing technologies.
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Similarly, 19 market share records from 2005 Q1 to 2009
Q3 were used as training data to fit the Bass, Lotka–Volterra,
and modified Lotka–Volterra models by using ordinary least
squares in Stage 1. The remaining 17 market share records
were used as testing data to individually evaluate the MAEs
for the old andnewprocessing technologies.The results for all
seven stages are reported in Table 2. Tables 3 and 4 report the
results of our numerical studies for the 80- and 70-nanometer
dividing lines, respectively.

4.2. Analysis of Data Selection. The results reported in the
previous subsection indicate that the lower the number of
records used as training data, the higher the prediction errors.
Moreover, the market share predictions are significantly
better than the revenue predictions from both the Bass and
Lotka–Volterra models. Consider the 90-nanometer dividing
line as an example (see Table 2). When using revenue data
on the Bass model, the prediction errors range from 9.07% to
infinity for the seven stages. When using market share data
on the Bass model, the prediction errors are much smaller:
between 0.56% and 17.11% for the seven stages. Similarly,
for the Lotka–Volterra model, using revenue data generates
prediction errors of from 9.52% to infinity, whereas using
market share data gives prediction errors of between 0.14%
and 91.90%. Results based on the other diving lines are similar
(see Tables 3 and 4).

Arguably, revenue data are not suitable for forecasting the
diffusion and substitution of technologies. This is because
revenue data reflect market fluctuations caused by factors
other than substitution, including industry long-term trends,
economic cycles, and other confounding factors.

For example, global DRAM industry revenue has exhib-
ited a prolonged growth trend, particularly in terms of
demand for computers and mobile communications prod-
ucts. In 2007, the DRAM industry invested huge amounts
of capital to expand production capacity for upgrading to
a new PC operating system, Windows Vista. However, sales
of Windows Vista fell far short of market expectations. This
led to an oversupply of DRAM products, which caused spot
prices and revenue to crash in 2007. In 2008, global DRAM
revenue continued to decline because of the global financial
tsunami. The consequent unexpected fall in global DRAM
revenue from 2006 Q4 to 2009 Q1 greatly affected prediction
accuracy.

Market share data are more suitable than revenue data
for forecasting the diffusion and substitution of DRAM
processing technologies. This is because the market share
data record percentages and because the total market share
is fixed at 100%. Because market share data are unaffected
by seasonal factors and economic cycles, they reflect mainly
technological substitution. Consequently, using market share
data generates more accurate predictions and is appropriate
for analyzing technological substitution.

4.3. Analysis of Model Selection. Having shown that using
market share data increases prediction accuracy for all
forecasting models, in this subsection, we use market share
data to compare the Bass, Lotka–Volterra, and modified
Lotka–Volterra models.

First, note the symmetry of the modified Lotka–Volterra
model based on market share data. In each stage, the
prediction errors for the old and new processing technologies
are the same. This is because the market shares are forced to
sum to 100% in (10) of the modified Lotka–Volterra model.
As a result, the forecast values for the old and new processing
technologies sum to 100% and must have the same MAEs.
Similarly, for the Bass model based on market share data, the
prediction errors for the old and new processing technologies
are highly symmetrical. Again, this arises because of the
characteristics of the market share data.

By contrast, the Lotka–Volterra model based on market
share data does not generate symmetric prediction errors for
the old and new processing technologies. This is because the
market shares of old and new processing technologies are
treated as two species and there is no total population limit
for the two species in the Lotka–Volterra model. The forecast
market shares are not constrained to sum to 100%. This is
why the prediction errors from the Lotka–Volterra model are
relatively high.

Let us compare the accuracy of the models based on
market share data. In Stages 1 to 7 of Table 2 (which reports
results for the 90-nanometer dividing line), the Bass model
generates prediction errors of between 0.56% and 17.11%, the
Lotka–Volterramodel generates prediction errors of between
0.14% and 91.90%, and the modified Lotka–Volterra model
generates prediction errors of between 0.16% and 0.50%
(Tables 3 and 4 show that the other dividing lines generate
similar results.) Therefore, when forecasting market shares,
themodified Lotka–Volterramodel outperforms the Bass and
Lotka–Volterra models.

5. Conclusions and Future Research

In this study, we propose a modified Lotka–Volterra model
to forecast the diffusion and substitution of DRAM pro-
cessing technologies. Multiple generations of DRAM pro-
cessing technologies are partitioned into old and new gen-
erations and the quarterly data from 2005 Q1 to 2013 Q4
is used for empirical studies. In our model, there are four
features.

First, the type of data affects the prediction accuracy of the
technological substitution trends. Although shipment and/or
revenue data have been widely used in existing research, they
may be contaminated by confounding factors that reduce
prediction accuracy. This can be avoided by using market
share data, which are purged of such factors as long-term
trends and business cycles. Consequently, using market share
data can generate more accurate forecasts of technological
substitution.

Second, existing models for multiple competing tech-
nologies require predetermined number of technologies and
each technology is assumed to go through the complete adop-
tion cycle. However, both are not obvious in DRAM indus-
try. Focusing on these issues, our modified Lotka–Volterra
model allows undetermined number of multigeneration
technologies and inconsecutive adoption of new technolo-
gies.
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Third, the number of fitting parameters in our model is
fixed and relatively small. This increases not only the predic-
tion accuracy, but also the applicability of our model with
little data. Moreover, the forecasting of a single generation of
technology can be computed by the difference between two
our models with consecutive dividing lines.

Fourth, MAE is suitable for evaluating the prediction
accuracy of different forecasting models based on market
share data. There are limitations to adopt MAPE and MSE
for evaluating prediction accuracy. The MAPE may generate
misleading measures of prediction accuracy for small actual
values, and the MSE is not suitable for evaluating forecasting
models that use different types of data. Therefore, we used
the MAE to evaluate the accuracy of our market share
predictions.

In the future, we intend to apply our model to other
industries and confirm our findings related to forecasting
performance and prediction accuracy. This is important
because different industries have different characteristics. We
are interested in studying these characteristics andmodifying
ourmodel to fit individual industries. For example, integrated
device manufacturers and IC industries are highly capital
intensive and their demands are highly influenced by seasonal
factors and business cycles. Another example is the display
industry, in which old and new technologies are in fierce
competition. However, alliances also exist among enterprises
for technology support.These interesting and special charac-
teristics can be expected to reduce signal-to-noise ratios and
to increase prediction accuracy. We aim to investigate these
issues and develop new procedures for improving prediction
accuracy further.
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