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ABSTRACT

The primary aim of this paper is to select an appropriate power trans-
formation when we use ARMA models for a given time series. We propose
a Bayesian procedure for estimating the power transformation as well as
other parameters in time series models. The posterior distributions of
interest are obtained utilizing the Gibbs sampler, a Markov Chain Monte
Carlo (MCMC) method. The proposed methodology is illustrated with two
real data sets. The performance of the proposed procedure is compared
with other competing procedures. # 1997 John Wiley & Sons, Ltd.
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INTRODUCTION

Many biological and economic data sets encountered in practice appear to be non-normal or
heteroscedastic in variance of error terms. Using power transformation to achieve normality and
stable variance has no doubt occurred to data analysts from time to time. The applicability of
statistical models can be enhanced through the use of power transformations, and time-series
models are no exception. Box and Jenkins (1976) suggested using a power transformation to
obtain an adequate autoregressive moving average (ARMA) model for the time series at hand. In
particular, they advocate the use of power transformations introduced by Box and Cox (1964).
The power transformations are given by

T� yt� �
� yt � n�l ÿ 1

l
if l 6� 0

log� yt � n� if l � 0

8><>: �1�
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where fytg is an observed time series with a known constant n such that yt � n > 0 for all t, l is the
index of the transformation and log stands for natural logarithm. Rather than the Box±Cox
transformation, the following family of transformations is employed in practice:

y
�l�
t � � yt � n�l if l 6� 0

log� yt � n� if l � 0

�
�2�

The transformation in equation (2) and Box±Cox transformation di�er only in the scale and
origin of the transformed data. The general analysis of the data is una�ected (Draper and Smith,
1981). However, it is important to select an adequate transformation as was suggested by several
discussants of the paper by Chat®eld and Prothero (1973), and Hopwood et al. (1984). Nelson
and Granger (1979) reported that experience with using the Box±Cox transformation when
forecasting economic time series shows that it does not consistently produce superior forecasts.
Once a model has been constructed in a transformed scale, the forecasts obtained in that metric
may need to be retransformed. The problem is that this retransformation procedure introduces
bias in the forecasts. Guerrero (1993) proposed a procedure for selecting a variance-stabilizing
transformation by which N observations of a time series are grouped into H subseries, so that a
local estimate of mean and variance within each subseries can be obtained. The power trans-
formation l is then estimated by least squares. However the procedure, which is based on ®tting a
linear regression in logarithms, is sensitive to the size of subseries.
The Box±Cox transformation has been considered for transforming a times series before

®tting an ARMA model (see Box and Jenkins, 1976). However, l is the index of the power
transformation which can be taken as a parameter to be estimated from the observed series. The
primary goal of this paper is to select a power transformation of the form given in equation (2)
when incorporating an instantaneous power transformation of the data into the time-series
analysis. We propose a Bayesian procedure for estimating the index of the power transformation
as well as other parameters in time-series models. The posterior distributions of interest are
obtained utilizing the Gibbs sampler, a Markov Chain Monte Carlo (MCMC) method. Previous
work on Bayesian selection of transformations in linear models include Pericchi (1981) and
Sweeting (1984).

This paper is organized as follows. The next section sets forth the posterior density for the
ARMA model. The third section brie¯y reviews the Gibbs sampler. The fourth section illustrates
the methodology using some real data sets. We give conclusions in the ®fth section.

MODEL AND DISTRIBUTION

A time series fy�l�t g in equation (2) is generated by an ARMA ( p; q) process if

y
�l�
t � f0 �

Xp
i�1

fiy
�l�
tÿ i � et ÿ

Xq
j�1

yjetÿ j �3�

where p and q are integers and fetg are independently and identically distributed (i.i.d.) N�0; s2�.
We assume that the ®rst p observations of Y � � y1; y2; . . . ; yn� are ®xed. By conditioning on the
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®rst p observations, one can write the likelihood function similar to Broemeling and Shaarawy
(1988):

L��; s; l jY; ê� / sÿ�nÿp�exp ÿ 1

2s2
�Y �l� ÿ Z

�l�
��0�Y�l� ÿ Z

�l�
��

� �
� flnÿpI�l 6� 0� � I�l � 0�g

Yn
i�p�1

y
lÿ1
i

�4�

where � � �f0;f1; . . . ;fp; y1; . . . ; yq�0, ê � �ê1; ê2; . . . ; ên�, Y�l� � � y�l�p�1, y�l�p�2; . . . ; y�l�n ) and

Zl � �Z�l�p�1, Z�l�p�2; . . . ;Z�l�n �0 with Z
�l�
t � �1; y

�l�
tÿ1; . . . ; y�l�tÿp, ÿ êtÿ1; . . . ; ÿ êtÿq�0 and êt � y

�l�
t ÿ

f̂0 ÿ
Pp

i�1 f̂iy
�l�
tÿ i �

P q
j�1 ŷj êtÿ j.

We now turn to a Bayesian treatment. We assume that � follows N��0;V
ÿ1) and s2 follows

IG�v=2; vZ=2), where IG denotes the inverse gamma distribution and the hyperparameters are
assumed to be known. Moreover, we assume that a prior p�l� over L. p�l� could be a discrete
uniform distribution.

Our interest lies in the marginal posterior distributions of �, s2, and l. Denoting the
conditional probability density of w given D by p�w jD), and using some standard Bayesian
techniques (e.g. DeGroot, 1970; Box and Tiao, 1973), we obtain the following results:

(1) The conditional posterior distribution of � is

P�� jY; ê; s2; l� � N���;V�ÿ1� �5�
where

�� � Z�l�
0
Z�l�

s2
� V

 !ÿ1
Z�l�

0
Z�l�

s2
�̂ � V�0

 !

and

V� � Z�l�
0
Z�l�

s2
� V

 !

with �̂ � �Z�l�0Z�l��ÿ1Z�l�0Y �l�.
(2) The conditional posterior distribution of s2 is

P�s2 jY; ê;�; l� � IG
v � n ÿ p

2
;
vZ � �n ÿ p�s2

2

� �
�6�

i.e.

vZ � �n ÿ p�s2
s2

� w2v�nÿp

where s2 � �Y �l� ÿ Z�l���0�Y �l� ÿ Z�l���=�n ÿ p�.
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(3) The conditional posterior probability function of l is

P�l jY; ê;�; s2� / exp ÿ 1

2s2
�Y�l� ÿ Z�l���0�Y�l� ÿ Z�l���

� �
� flnÿpI�l 6� 0� � I�l � 0�g

Yn
i�p�1

ylÿ1i p�l�

Suppose a prior for l is ¯at on the set L � fa1; a2; . . . ; akg. Given prior probabilities
pj � P�l � aj) such that Sk

j�1 pj � 1, the conditional posterior probability function of l is a
multinomial distribution with probability

P�l � aj jY; ê;�; s2� � P�Y; ê;�; s2; l � aj�Xk
i�1

P�Y; ê;�; s2; l � ai�
�7�

where

P�Y; ê;�; s2; l � ai� � f �Y; ê j�; s2; l � ai�P��; s2 j l � ai�pi
In many application, we are also interested in forecasting the `future observations'. As in

equation (4), the predictive distribution of y
�l�
n�1 is

P� y�l�n�1 jY; ê; s2; l� � N��0Z�l�n�1; s2� �8�

where Z
�l�
n�1 is as de®ned before.

All conditional densities are available, and we will implement the Gibbs sampler which is
discussed in the next section.

GIBBS SAMPLER

The Gibbs sampler is a Markov Chain Monte Carlo method for estimating desired posterior
distributions from conditional distributions. A great advantage of the Gibbs sampler is its ease in
implementation which makes use of the modern computational capabilities to draw inference
using simulation techniques. The sampler is especially useful in extracting marginal distributions
from fully conditional distributions when the joint distribution is not easily obtained. Geman and
Geman (1984) showed that under mild conditions the Gibbs sampler provides a consistent
estimate of the marginal distribution of interest.
In recent years, due to the work of Gelfand and Smith (1990) and Gelfand et al. (1990), the

Gibbs sampler has been shown to be a useful tool for applied Bayesian inference in a wide variety
of statistical problems. Moreover, Carlin and Chib (1995) employed MCMC method on
Bayesian model choice. In time-series analysis, the Gibbs sampler has already been successfully
employed in handling random level-shift models, additive outliers, missing values, and random
variance-shift models in a autoregression (e.g. McCulloch and Tsay, 1993, 1994a; Tiao and Tsay,
1991). Chen (1992) and Chen and Lee (1995) applied the sampler to analyse bilinear models and
threshold autoregressive models, respectively. More recently, Chen, McCulloch and Tsay (1997)
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proposed a uni®ed approach to estimating and modelling univariate time series via a Gibbs
sampler. The sampler has also been employed by Albert and Chib (1993) and McCulloch and
Tsay (1994b) for modelling Markov switching econometric models. It is impossible to review all
the recent work in this fast-growing area.

To review the method, we consider the case (�; s2; l). Denote the conditional distributions by
f 1�� j s2; l;Y; ê), f 2�s2 j�; l;Y; ê), and f 3�l j�; s2;Y; ê). The Gibbs sampler employed in this
paper proceeds as follows:

(1) Given an arbitrary value l�0�, ®t a long AR model for fy�l�t g in order to obtain the estimation
of fetg, t � p � 1; . . . ; n. Generate fetg, t � 1; . . . ; p, from N�0; s2�0��, where s2�0� is the
residual variance of the long AR model.

(2) Use s2�0� as the starting value for s2.
(3) Draw ��1� from f 1�� j s2�0�, l�0�;Y; ê), then draw s2�1� from f 2�s2 j��1�; l�0�;Y; ê�, and we

complete the ®rst iteration by drawing l�1� from f 3�l j��1�; s2�1�;Y; ê).
(4) Use the ith realization (��i�; s2�i�; l�i�) in step 3 to re®ne the series ê.

After the chain has converged, say at the sth iteration, we can obtain (��i�; s2�i�; l�i�),
i � s � 1; . . . ; s � N as a set of samples from the desired posterior marginals. However, the
sample could be highly dependent, each realization being generated from the previous one. To
monitor and reduce this dependence, we compute the sample autocorrelations of this chain and
select a lag l such that the sample autocorrections at lag i5 l are very small. Then we collect
(��i�; s2�i�; l�i��; i � s � l; . . . ; s � Nl, as a random sample. We now employ the parallel chain
strategy recommended by Gelman and Rubin (1992), instead of a single string. We runM parallel
Markov chains and collect the samples from each chain after convergence has been achieved, in
which case we would getMN=l independently and identically distributed observations. The main
idea of the recommended strategy is to use independent sequences based on the overdispersion
criterion. We monitor convergence of the iterative simulation by estimating the factor by which
the scale of the current distribution might be reduced if the simulations were continued in the
limit N !1. The potential scale reduction is estimated by �R̂�1=2, where R̂ is the ratio of the
current variance estimate to the within-sequence variance, with a factor to account for the extra
variance of the Student t-distribution. If the potential scale reduction is high, then we have reason
to believe that proceeding with further simulations may improve our inference about the target
distribution. Once R̂ is near 1 for all scalar estimands of interest, it is typically desirable to
summarize the target distribution by a set of simulations.

ILLUSTRATIVE EXAMPLES

In this section we illustrate the proposed methodology with two real data sets, focusing on
inferences about �; s2, and l. The convergence of the Gibbs samplers are monitored by
examining the Gelman and Rubin (1992) statistics based onM � 6 independent parallel Markov
chains.

Example 1
We consider the well-known Nicholson (1950) blow¯y data. A ®xed number of adult blow¯ies
with balanced sex ratios were kept inside a cage and given a ®xed amount of food daily. The
blow¯y population was then counted every other day for approximately two years, giving a total
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of 364 observations. Tong (1990) ®tted a threshold autoregressive model for the period from 20
to 145 after taking a log10 transformation. Wei (1990) used the series from 218 to 299 in his
analysis. For comparison, we are interested in analyzing the series from 218 to 299 which consist
of 82 observations as shown in Figure 1. Wei (1990) calculated the following preliminary residual
sum of squares:

S�l� �
Xn
t�1
� y�l�t ÿ m̂�2

for l � fÿ1:0; ÿ0:5; 0:0; 0:5; 1:0g, where m̂ is the corresponding sample mean of the transformed
series. These calculations suggest that a square root or a logarithmic transformation is needed.
The maximum likelihood estimates of AR(1) parameters with l � 0:5 was given by Wei (1990).
We are interested in making inferences about l as well as other parameters in the AR(1) model.
The hyperparameters used are �0 � o, V � 0:1I2, vi � 3, and Z � ~s2=3, where I2 denotes the

2� 2 identity matrix and ~s2 is the residual mean squared error of ®tting an AR(2) model to
the data. The prior on l is uniform L1 � fÿ2; ÿ1:75; ÿ1:5; . . . ; 2g. The Gibbs sampler is run
for 2000 iterations. We record every ®fth value in the sequence of the last 800 in order to have
more clearly independent contributions. The point estimates and estimates of the standard
deviations for each parameters are given in Table I(a). The result suggests that the square root

Figure 1. Time plot of blow¯y data. The x-axis is day

Table I. The parameter estimates of blow¯y data

Par. f0 f1 s2 l

(a) Mean 4.737 0.923 49.763 0.499
l on L1 � fÿ2; ÿ1:75; . . . ; 2g s.e. 0.091 0.002 0.287 0.0004

Median 4.714 0.925 49.687 0.500
Mode 4.989 0.924 49.644 0.500

(b) Mean 4.565 0.829 7.161 0.390
l on L2 � f0:30; 0:31; . . . ; 0:5g s.e. 0.079 0.003 0.165 0.001

Median 4.527 0.822 5.673 0.39
Mode 4.508 0.865 8.353 0.38
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transformation should be adopted rather than the logarithmic transformation. We also employ
extended sample autocorrelation function (EACF) proposed by Tsay and Tiao (1984) to the
series by taking the square root and the logarithmic transformations separately. The choice of
ARMA orders for two transformed data are all AR(1). Under the AR(1) model, our proposed
procedure which is uniform over L1 strongly favours the square root transformation. It is worth
mentioning that l � 0:5 for almost all realizations. The reason is that the probability of l � 0:5
in equation (7) is approximately 1.0 and the probability of other values of l is approximately 0.0.
Moreover, if we partition the interval more ®nely on L, from ÿ2 to �2 with increment 0.1, then
the suggested transformation is l̂ � 0:4. Due to limited space, the detailed results are omitted.
We re-analysed further with l on L2 � f0:30; 0:31; . . . ; 0:50g, a much ®ner partition on 0.3 to 0.5.
The results are given in Table I(b). When we adopt a uniform prior over L2 for l, the estimate of l
turns out to be 0.39.

The estimates of l are 0.5 and 0.39 with uniform priors on L1 and L2, respectively. Figures 2
and 3 show the respective frequency distributions of l for the two selected priors. We would like
to evaluate these estimates of l with respect to the performance of one-step-ahead forecasts.
Using the post-sample data reserved for the purpose, 10 one-step-ahead forecasts done
sequentially with l̂ � 0:5 and l̂ � 0:39 are produced and compared. We apply the Gibbs sampler
using the three conditional distributions in equations (5), (6), and (8) for 2000 iterations, where
N � 800 and l � 5. The estimated posterior medians are collected. An inverse transformation is
required in order to produce equivalent forecasts. Table II lists RMSE (root mean square errors),
MAE (mean absolute errors), MPE (mean percentage errors), and MAPE (mean absolute
percentage errors). The results in Table II show that when l̂ � 0:39 its RMSE, MAE, MPE,
MAPE are smaller. Better forecasts are obtained with l̂ � 0:39 than with the square root trans-
formed data.

Figure 2. Frequency distributions of l with uniform prior over L1 � fÿ2; ÿ1:75; ÿ1:5; . . . ; 2g in
Example 1
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We compare our results to a variance-stabilizing power transformation suggested by Guerrero
(1993). The method is brie¯y described as follows:

log�Sh� � log�a� � �1 ÿ l�log� �yh� � eh; h � 1; . . . ;H

with

�yh �
XR
r�1

y�hÿ1�R�r=R and Sh �
XR
r�1
� y�hÿ1�R�r ÿ �yh�2=�R ÿ 1�

" #1=2

where a > 0 and the eh's are a random sample of errors uncorrelated with log� �yh�, whose mean is
zero and variance s2e . Guerrero (1993) suggested taking R � 2 when no seasonality is present.
The resulting least squares estimates of l are presented in Table III.
We clearly see that the procedure suggested by Guerrero (1993) based on ®tting a linear

regression in logarithms is sensitive to the size of subseries, R. The interval of l̂ is (ÿ1; 1.1) which
is heavily dependent on the choice of the subseries size. Moreover, the estimate of l withR � 2 as
suggested by Guerrero (1993) is di�erent from our result as well as Wei's.

Figure 3. Frequency distributions with l with uniform prior over L2 � f0:30; 0:31; . . . ; 0:50g in Example 1

Table II. Comparison of the one-step-ahead prediction errors

Estimate of l RMSE MAE MPE MAPE

l̂ � 0:39 830.138 738.338 0.993% 18.568%
l̂ � 0:5 992.055 884.535 5.276% 21.377%
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Example 2
In this example we would like to study the yearly number of lynx pelts sold by the Hudson's Bay
Company in Canada between 1857 and 1911. Wei (1990) ®tted an ARMA(2,1) as well as AR(3)
for the logged Canadian lynx data. The series is plotted in Figure 4. A related series that has been
extensively analysed in the literature is the number of Canadian lynx trapped between the years
1821 to 1934. Various linear and non-linear models have been proposed for this data set after
taking logarithmic transformation. In general, for this series it seems that di�erent data spans
would suggest di�erent models.

We entertain a model ARMA(2,1) in our analysis. We employ the residuals of AR(6) of y
�l�
t

with l � 0 as an initial estimation of e and use hyperparameters:

�0 �
0
0
0
0

2664
3775 V �

0:1 0:04 0:04 0:04
0:04 0:1 0:04 0:04
0:04 0:04 0:1 0:04
0:04 0:04 0:04 0:1

2664
3775

vi � 3, Z � ~s2=3, where ~s is the residual standard error of the AR(2) model. We choose a prior on
l which is uniform over L � fx : x � ÿ1 � kd; r; d � 0:1; k � 0; . . . ; 2=dg. Table IV lists the
point estimates and estimates of the standard error by the Gibbs sampler with 2200 iterations
which are recorded at every ®fth value in the sequence of the last 800. Figure 5 plots the
frequency distribution of l. The result in Table IV indicates that taking a transformation with
l � 0:1 is required which is slightly di�erent from l � 0:0 as is usually given in the literature.
However, we would probably use logarithmic transformation in practice. Note that the choice of
hyperparameters is not sensitive. We also use V � 0:1I4 as a hyperparameter which produces a
similar result and hence is omitted.

Table III. Selection of l for di�erent subseries sizes for blow¯y data suggested by Guerrero (1993)

Size of the subseries (R) 2 3 4 5 7 8 10

l̂ 1.078 0.398 0.514 0.053 0.323 ÿ0:994 ÿ0:094

Figure 4. The yearly number of lynx pelts sold in Canada between 1857 and 1911
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Selection of l for di�erent choices of subseries size suggested by Guerrero (1993) is given in
Table V. Again, the procedure suggested by Guerrero (1993) based on ®tting a linear regression in
logarithms is somewhat sensitive to the size of subseries, R.

CONCLUSIONS

Many biological and economic time series are non-stationary in the variance. To overcome this
problem, we need a proper variance stabilizing transformation. To stabilize the variance, we can

Table IV. The parameter estimates of Canadian lynx data from 1857 to 1911

Par. f0 f1 f2 y1 s2 l

Mean 0.984 1.580 ÿ0:946 0.591 0.014 0.100
s.e. 0.011 0.008 0.007 0.013 0.0004 0.000
Median 1.009 1.540 ÿ0:909 0.601 0.013 0.100
Mode 1.002 1.439 ÿ0:852 0.600 0.011 0.100

Figure 5. Frequency distributions of l with uniform prior L � fx : x � ÿ1 � kd; r; d � 0:1;
k � 0; . . . ; 2=dg in Example 2

Table V. Selection of l for di�erent subseries sizes for Canadian lynx data suggested by Guerrero (1993)

Size of the subseries (R) 2 3 4 5 6

l̂ ÿ0:1215 ÿ0:1488 0.1773 0.1434 ÿ0:1694
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use power transformation. Frequently, the transformation not only stabilizes the variance but
also improves the approximation to normality.

In this work we have developed a practical Bayesian approach on selecting a power trans-
formation in time-series analysis. From the illustrative examples, we ®nd that the estimates of l
almost mass on some certain points. The reason is that the conditional posterior probability
function of l is a multinomial distribution. The numerator in the computed posterior probability
for a given value of l induces a large di�erence for each probability. It is worth mentioning that
the choice of l depends on the chosen prior space L. The chosen l might just represent the best
out of several poor choices of the model. Hence, it is advisable to select an appropriate prior for
l, e.g., the range of a uniform prior from ÿ2 to �2 with increment 0.1. The estimates of lmay be
slightly di�erent if the prior space of the power transformation were discretized more ®nely.
However, the minor di�erence is often overlooked in practice.
The results obtained in the illustrative examples show that the Gibbs sampler indeed o�ers an

attractive alternative to the other methods. Based on this work, it should be possible to analyse
other models, for example the transfer function model and bilinear time-series models.
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