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ABSTRACT

Bayesian inference via Gibbs sampling is studied for forecasting techno-
logical substitutions. The Box±Cox transformation is applied to the time
series AR(1) data to enhance the linear model ®t. We compute Bayes point
and interval estimates for each of the parameters from the Gibbs sampler.
The unknown parameters are the regression coe�cients, the power in the
Box±Cox transformation, the serial correlation coe�cient, and the vari-
ance of the disturbance terms. In addition, we forecast the future techno-
logical substitution rate and its interval. Model validation and model
choice issues are also addressed. Two numerical examples with real data
sets are given.

KEY WORDS AR(1); Box±Cox transformation; Metropolis-within-Gibbs
sampling; model choice; prediction

INTRODUCTION

As technology advances, new products replace the old ones. For example, colour televisions
replace black-and-white televisions, digital telephone switching systems replace analog switching
systems, etc. The rate of change, called technology penetration, is de®ned as the ratio of the
number of new products to the combined total of new and old products. A typical growth curve
such as Gompertz, logistic, normal, or Weibull is not quite adequate in ®tting and forecasting the
penetration data. For example, let Ft be the technology penetration at time t. Then under a
logistic growth curve assumption, we expect to see a linear growth function for log Ft=�1ÿ Ft�.
However, when dealing with real data, Lee and Lu (1987, 1989) and Keramidas and Lee (1990)
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found that a more ¯exible transformation of yt � Ft=�1ÿ Ft� gave much superior predictive
accuracies. This is primarily due to the violations of the linearity assumption for the growth
function and of the independence assumption for the disturbance terms. Lee and Lu found that
the residuals of a Box±Cox (1964) transformation of yt ®tted with a linear growth function
exhibit strong positive ®rst order autoregressive dependence (AR(1) dependence). They
incorporate the Box±Cox transformation in their frequentist's analysis to enhance the linearity
of the growth function and to model the proper dependence structure among the observations. In
this paper, we pursue a Bayesian analysis along the same line. For a penetration data set with
colour television, we show our forecast improves upon the predictor given in Lee and Lu.

A family of data-based transformed models for forecasting technological substitutions has
been empirically shown in Lee and Lu (1987, 1989) to be quite useful for short-term forecasts.
These models are more general than the four well-known S-shaped growth curve models: logistic,
normal, Weibull, and Gompertz. Basically, we ®rst select a transformation from the following
choices:

�M1� yt � Ft=�1ÿ Ft�
�M2� yt � expfFÿ1�Ft�g;
�M3� yt � ÿ log�1ÿ Ft�; and

�M4� yt � ÿ 1=log Ft

�1�

Then, we apply the widely used Box±Cox transformation to the AR(1)-dependent data. More
speci®cally, let y1 , . . . , yn be a set of ®rst-stage transformed n observations. The second-stage
transformation is de®ned by

y
�l�
t � �� yt � n�l ÿ 1�=l when l 6� 0

log� yt � n� when l � 0

�
�2�

where n is a known constant such that yt � n > 0 for all t. In practice n is set to 0 if all yt's are
positive. Furthermore, the y

�l�
t ; t � 1; . . . ; n, are assumed to be normally distributed with the

mean linear in the regression parameters and with the covariance matrix s2S, where
S � �1ÿ r2�ÿ1V;V � �cab�; cab � rj aÿb j, for a; b � 1; . . . ; n, and ÿ1 < r < 1. In other words,

y�l� � �y�l�1 ; . . . ; y�l�n �0 � xbb� a �3�

where xbb is the growth function, bb � �a; b�0, and x is the design matrix with 1's in the ®rst column
and t1 to tn or log(t1) to log(tn) in the second column, depending on the growth curve model being
considered (see Lee and Lu, 1987). The vector of disturbance terms a is assumed to be distributed
as a multivariate normal with mean vector 0 and covariance matrix s2S. In case a higher degree
polynomial is assumed for the growth function, the dimensions of x and bb can be adjusted easily.
For example, if a second-degree polynomial in time is assumed for the growth function, then the
third column of x is t21 to t2n or [log(t1)]

2 to [log(tn)]
2.

The above families of transformations include the four commonly used link functions: the
logit, the probit, the complementary log±log and log±log functions as de®ned in McCullagh and
Nelder (1989, p. 108). These four link functions are obtained by applying the transformations in
equations (1) and (2) with l � 0.

Lee and Lu (1987, 1989) derive the maximum likelihood estimates of the model in equation (3).
This paper studies the problem from a Bayesian point of view. In addition to Bayesian inference
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on the parameters, we address prediction for future technology penetrations and predictive
intervals. Instead of the plug-in method given in Lee and Lu, we obtain a Bayesian predictive
distribution. A Gibbs sampler is used to approximate this predictive distribution and its
functionals. This is a Markov chain Monte Carlo algorithm that simulates variates idealistically
from the posterior distribution of bb; r; l, and s given the data. The transitional matrix of the
Markov chain is written as a product of full conditional densities. The stationary distribution of
this Markov chain is the desired posterior density. In addition to Bayesian inference and
prediction, we address the issue of model adequacy and model selection using prequential
predictive densities. Model selection addresses the question of which of the four ®rst stage
transformations together with the Box±Cox transformation is the best. Model adequacy checks
whether any of the models are appropriate in forecasting.

We re-analyse two real data sets. One is the technology penetration data for colour televisions
provided by Nielson (1985). The other is the penetration data for electronic telephone switching
systems of a telephone company. The ®rst data set has been analysed by Lee and Lu (1987, 1989).
We show our Bayes solutions to all four models in equation (1) together with the Box±Cox
transformation are adequate in ®tting the data. Moreover, we show our forecast intervals
improve upon the frequentist's ones given in Lee and Lu with better accuracy and shorter
lengths.

We seek non-informative priors, so the analysis is more focused on the likelihood. The
parameters bb; r; l, and s are assumed to have independent prior distributions. The prior on bb is
assumed to be a bivariate normal with mean �ma; mb�0 and covariance matrix

Sp � s2a 0
0 s2b

� �
�4�

The prior on l and r can be quite arbitrary, because the Metropolis (1953) algorithm is used to
generate these variates. In fact, we have chosen the prior on r uniform on �ÿ1; 1�, and the prior
on l to be ¯at (improper) on �ÿ1;1�. We have also explored the proper prior on l that is
uniform over �ÿ4; 4�, and found no appreciable di�erence. The prior density on s is chosen from
a conjugate family

p�s� / 1

sg�1
eÿZ=2s

2

g > 0; Z > 0

We will denote this modi®ed inverse gamma density by IG0�g; Z�. Note this prior is equivalent to
choosing s2 with the inverse gamma density IG�g=2; 2=Z� as de®ned by Berger (1985, p. 561). If
the non-informative prior p�s� � 1=s is desired, we can let g! 0 and Z! 0. When sa!1 and
sb!1 as being done in our numerical examples, then our prior on bb; s; and r is equivalent to
the one given by Zellner and Tiao (1964), where Bayesian analysis of the model without the Box±
Cox transformation was studied.
When n is small, the parameters are hard to estimate. However, with several independent

concurrent short series sharing a common AR(1) covariance structure, we will then have a
general growth curve model with AR(1) covariance structure. Keramidas and Lee (1990) apply
the maximum likelihood method. Lee and Liu (1996) extend the algorithm here to Bayesian
predictive inference for the general growth curve model with AR(1) dependence.

Gibbs sampling has been applied extensively to various problems. We mention only the related
work in time series: Albert and Chib (1993); Carlin, Polson, and Sto�er (1992); Chib (1993); Chib
and Greenberg (1994); Marriott et al. (1995); and McCulloch and Tsay (1994).
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The next section develops the conditional densities used in the Gibbs sampler. A detailed
discussion of the Gibbs sampler and the Metropolis algorithm is given in Appendix 2. Then we
develop the predictive distribution and the one-step forecast. We discuss model adequacy and
model selection. Finally, two numerical examples based on real penetration data are given.

MODEL AND ALGORITHM

In this section, we describe the general model and specify the conditional densities used in the
Gibbs sampler. Let us ®rst transform Ft to yt via equation (1). Then we transform yt to y

�l�
t by

applying the Box±Cox transformation (2). Let us note that because of the special structure for S,
its inverse is

Sÿ1 �

1 ÿr 0 � � � 0 0
ÿr 1� r2 ÿr � � � 0 0
0 ÿr 1� r2 � � � 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � ÿr 1

0BBBBB@

1CCCCCA
Given the model y

�l�
t � a� bt� at; where at follows the AR(1) model described in the

Introduction, we can write our likelihood (cf. Ljung and Box, 1980; Lee and Lu, 1987) as

L�bb; s; r; l; y� / sÿn�1ÿ r2�1=2 exp ÿ 1

2s2
S�y; bb; r; l�

� �Yn
i�1

ylÿ1i �5�

where

S�y; bb; r; l� � �y�l� ÿ xbb�0Sÿ1�y�l� ÿ xbb�
with

x � 1 1 1 � � � 1
1 2 3 � � � n

� �0
� �1 t�:

It is worth noting that the above models with l � 0 in the Box±Cox transformation reduce to
the four existing growth curve models used in technology substitution data. They are: (1) Logistic
(Fisher and Pry, 1971): log�Ft=�1ÿ Ft�� � a� bt� at; (2) Normal (Stapleton, 1976): Fÿ1�Ft� �
a� bt� at; (3) Weibull (Sharif and Islam, 1980): log�ÿlog�1ÿ Ft�� � a� b log t� at; and (4)
Gompertz (1825): ÿlog�ÿlog Ft� � a� bt� at. For the Weibull model, log t is used for t in
de®ning x. We can also write the likelihood in equation (5) equivalently in terms of
F � �F1; . . . ;Fn�0 by a change of variable technique. Then we obtain four expressions corres-
ponding to the four transformations in equation (1) respectively. We can pursue inference and
prediction using either the likelihood in y or the likelihood in F. Most of the subsequent
developments are derived from equation (5) mostly because it explains the AR(1) process more
directly.

Combining the likelihood function (5) with the prior p�bb; s; r; l� discussed in the Introduction,
we obtain the posterior density

p�bb; s; r; l j y� / L�bb; s; r; l; y�p�bb; s; r; l�:
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Then the Gibbs algorithm proceeds as follows:

(1) Generate a given b; r; l; s; y from the normal distribution

N
mas

2 � bs2a
s2 � as2a

;
s2s2a

s2 � as2a

� �
;

where

a � 10Sÿ11 and b � 10Sÿ1�y�l� ÿ bt�:
Consequently, if sa!1 in the prior, we generate a from the conditional distribution
N�b=a; s2=a�.

(2) Generate b given a; r; l; s; y from the normal distribution:

N
mbs

2 � ds2b
s2 � cs2b

;
s2s2b

s2 � cs2b

 !
;

where

c � t0Sÿ1t and d � t0Sÿ1�y�l� ÿ a1�:

Consequently, if sb !1 in the prior, we generate b from the conditional distribution
N�d=c; s2=c�.

(3) Generate r given a; b; l; s; y using the Metropolis (1953) method, where

f �r� / �1ÿ r2�1=2 eÿ�1=2s
2�S�y;bb;r;l�p�r�:

(4) Generate l given a; b; r; s; y using the Metropolis method, where

f �l� / eÿ�1=2s
2�S�y;bb;r;l�Yn

i�1
ylÿ1i

( )
p�l�:

(5) Generate s given a; b; r; l; y from the modi®ed inverse gamma distribution

IG0�g� n; Z� S�y; bb; r; l��:
The Metropolis algorithm used in steps (3) and (4) is described in Appendix 2. An alternative

blocking algorithm that combines steps (1) and (2) into one step should be more e�cient
especially when a and b are highly correlated. Let S� � x0Sÿ1x=s2 � Sÿ1p . That is, we generate
the vector bb given s; r; l from the following bivariate normal density:

a
b

� �
� N S�ÿ1

x0Sÿ1y�l�

s2
� Sÿ1p

ma
mb

� �� �
;S�ÿ1

� �
instead of generating a conditioning on b and the rest of the parameters and similarly for b in two
steps. We implemented the latter without blocking because the correlation coe�cient between a
and b is not high in our numerical examples.
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FORECAST

Having obtained the posterior distribution of the parameters, we can use it to predict the future
values of y. We will illustrate this by the one-step forecast. Generalization to forecast the lth
future period is straightforward and discussed at the end of this section. Suppose we are at the
nth period. LetDn denote the data set fy1; . . . ; yng. Let xi � �1; i �. We suppress x1; . . . ; xn; xn�1 in
the notation for convenience, because they are the known covariates. Let yy denote the
parameters �bb; r; l; s�. Let yy�k;s� denote the variate of yy drawn in the kth iteration and sth
replication of the Gibbs sampler given the data set Dn . The same superscript notation will be
applied to subsets of yy and their functionals. We usually take k su�ciently large. Prediction for
the �n� 1�th period follows from the predictive density

f �Yn�1 jDn� �
Z

f �Yn�1 jDn; yy�p�yy jDn� dyy

where Yn�1 denotes the random future observation at period n� 1. This density can be
approximated by Monte Carlo integration from the Gibbs sample:

f̂ �Yn�1 jDn� � 1

r

Xr
s�1

f �Yn�1 jDn; yy
�k;s�� �6�

This predictive density can be obtained by simply drawing y
�s�
n�1 for s � 1; . . . ; r from

f �Yn�1 jDn; yy
�k;s�� for each yy�k;s� in the replications. The mean of this predictive distribution is

computed from

E�Yn�1 jDn� � E�E�Yn�1 jDn; yy� jDn� �7�
To evaluate the inner expectation, let us consider two cases. We assume n � 0 in equation (2) for
simplicity.

Case (1): l 6� 0.
It follows from equation (2) that

yn�1 � �y�l�n�1l� 1�1=l �8�
where

y
�l�
n�1 � xn�1bb� an�1

and

an�1 � ran � en�1:

Note

an � y�l�n ÿ xnbb � yl
n ÿ 1

l
ÿ xnbb:

Therefore,

y
�l�
n�1 � xn�1bb� r

yln ÿ 1

l
ÿ xnbb

� �
� en�1:
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Therefore, from equation (8), we have

yn�1 � xn�1bb� r
yln ÿ 1

l
ÿ xnbb

� �
� en�1

� �
l� 1

� �1=l

: �9�

Case (2): l � 0.
We can derive the following equation by a similar method:

yn�1 � exp�xn�1bb� r�log yn ÿ xnbb� � en�1�: �10�
Let y

�k;s�
n�1 denote the functional (9) evaluated at the kth iteration and sth replication of the

sampler, i.e.

y
�k;s�
n�1 � xn�1bb�k;s� � r�k;s�

yl�k;s�n ÿ 1

l�k;s�
ÿ xnbb�k;s�

� �
� e�k;s�n�1

� �
l�k;s� � 1

� �1=l�k;s�

�11�

Note that e�k;s�n�1 is generated from the N�0; �s�k;s��2� distribution in the kth iteration and sth
replication of the Gibbs sampler.

Therefore, combining equations (7), (9), and (6), when l 6� 0, we predict Yn�1 by

ŷn�1 � 1

r

Xr
s�1

y
�k;s�
n�1: �12�

Alternatively, we can predict Yn�1 using the median of the Gibbs sample,

~yn�1 � median y
�k;s�
n�1

n or
s�1

� �
: �13�

Prediction intervals and quantiles of the functional Yn�1 can be computed similarly from the
sample y

�k;s�
n�1; s � 1; . . . ; r.

Similarly, when l � 0, we can use the following variates to predict Yn�1:

y
�k;s�
n�1 � exp�xn�1bb�k;s� � r�k;s��log yn ÿ xnbb

�k;s�� � e�k;s�n�1�: �14�

Then we use the mean or the median of the sample to predict yn�1 and construct predictive
intervals from the Gibbs sample (14).

Theoretically, the posterior probability of the case l � 0 is 0 when the prior on l is a
continuous measure. However, we had to program the two cases �l � 0 and l 6� 0� of the forecast
rule separately to avoid an over¯ow problem.

Having obtained ŷn�1, we apply the inverse transformations of equation (1) to predict Fn�1,
i.e. (1) F̂n�1 � ŷn�1=� ŷn�1 � 1�; (2) F̂n�1 � F�log ŷn�1�; (3) F̂n�1 � 1ÿ exp�ÿŷn�1�; and (4)
F̂n�1 � expfÿ1=ŷn�1g. The Bayesian predictive intervals for Fn�1 are calculated from the Gibbs
sample of yn�1 in equations (11), (14), and the above transformations.

In addition to the naive inverse transformation, we can add a bias-corrected term which
involves only the second derivative of the inverse transformation in the Taylor series expansion.
However, as noted in Keramidas and Lee (1990, p. 628), the bias-correction does not guarantee
to produce better forecasts as the ®rst derivative vanishes. Granger and Newbold (1976) studied
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other forecast rules for the transformed variables using Hermite polynomials. We have chosen
only the naive inverse transformation in this paper for his simplicity. Moreover, the naive ones
have demonstrated desirable forecast performance as in the section of numerical examples.

Now we brie¯y discuss how we generalize the above one-step prediction rule to multi-step
prediction. Let Yf � �Yn�1; . . . ;Yn� l� denote the vector of future observations. Then the joint
density of Yf given Dn can be written as

f �Yf jDn� � f �Yn�1 jDn; yy�f �Yn�2 jYn�1;Dn; yy� � � � f �Yn� l jYn�1; . . . ;Yn� lÿ1;Dn; yy�

Therefore, the samples from the joint future density can be drawn sequentially with each step
similar to the single step in equation (6); a generated new future observation in each step is
incorporated as data into the next step of the sequential procedure.

MODEL VALIDATION AND MODEL CHOICE

Both model adequacy and model selection issues are discussed in this section. Model adequacy is
checked by comparing the observed yn�1 to its 95% predictive interval developed in the previous
section for each n in a series. A model is judged to be adequate if about 95% of the intervals
contain the observed future values.

For model selection, we consider three criteria: mean squared error (MSE), mean absolute
relative deviation (MARD), and the prequential pseudo-Bayes factor (PPBF).

To de®ne the PPBF, let us de®ne the prequential conditional predictive ordinate (PCPO),
which is the predictive density of Yn�1 evaluated at the future observed value yn�1. Therefore, we
have from equation (6),

dn�1 � f̂ �yn�1 jDn�

� 1

r

Xr
s�1

1������
2p
p

s�k;s�
exp ÿ

yl
�k;s�ÿ1
n�1
l�k;s�

ÿ xn�1bb�k;s� ÿ r�k;s�a �k;s�n

 !2

2�s�k;s��2

8>>>>><>>>>>:

9>>>>>=>>>>>;
yl
�k;s�ÿ1
n�1 �15�

where

a�k;s�n � y�l
�k;s��

n ÿ xbb�k;s�:

Consequently, the PCPO for Fn�1 is computed by

cn�1 � f̂ �Fn�1 jDn� � f̂ �yn�1 jDn� dy
dF

���� ����
y�yn�1

�16�

where dy/dF is computed from equation (1).
Let N denote the total number of periods in the data set. We would like to monitor data for a

reasonable time period, say for t � 1; . . . ; I , before considering model selection. Then we
evaluate the following three prediction measurements for each of the models for the periods I � 1
to N. All the prediction rules are computed prequentially as described in the previous section, i.e.
F̂t � E�Ft jDtÿ1�. Instead of the mean, we can also consider the median. For each of the models
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in equation (1) together with the AR(1) model for the Box±Cox transformation, we can evaluate
the following three measurements:

MSE � 1

N ÿ I

XN
t� I �1

�F̂t ÿ Ft�2 �17�

MARD � 1

N ÿ I

XN
t� I �1

j F̂t ÿ Ft j
Ft

�18�

PPBF �
YN

t� I �1
ct �19�

The best model is the one with smallest MSE, smallest MARD, or the largest PPBF.
Note the PPBF is di�erent from the pseudo Bayes factor in Geisser and Eddy (1979) where the

cross-validation idea is used. In fact, the PPBF evaluates the conditional joint predictive density
of the data yI �1; . . . ; yN given y1; . . . ; yI .

To compute the PPBF in equation (19), we need to run each of the N ÿ I Gibbs samplers from
scratch for each prequential conditional predictive ordinate. The sequential imputation
algorithm developed by Kong, Liu, and Wong (1994) and Liu and Chen (1995) can be modi®ed
to suit for this situation. The sequential imputation algorithm provides a desirable alternative
approach to this problem. With the new data yI �1; . . . ; yN coming in sequentially, the algorithm
sequentially impute the unknown parameters using the importance sampling weights based on
the same old data batch y1; . . . ; yI . As long as the new data are not wildly di�erent from the old
batch, the importance sampling weights should be well behaved.

NUMERICAL EXAMPLES

Analysis based on two real-life data sets is summarized here. The ®rst data set, listed in Table I,
initially provided by Nielson Inc., is the penetration data for colour television for the period
1956±85. The second data set, listed in Table IV, is the penetrations of electronic telephone
switching systems for the years from 1967 to 1984 for a telephone company. The numbers Ft

listed are the fractions of the total number of new technology users (users of colour television,
electronic switching systems, etc.) divided by the total number of new and old technology users
(users of colour and black and white televisions, subscribers for electronic (new) and electro-
mechanical (old) switching systems).
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Table I. Technology penetration data for colour TV

Year Penetrations Year Penetrations Year Penetrations

1956 0.00052 1966 0.09694 1976 0.73606
1957 0.00219 1967 0.16325 1977 0.77065
1958 0.00394 1968 0.24175 1978 0.77984
1959 0.00569 1969 0.32034 1979 0.80926
1960 0.00743 1970 0.35744 1980 0.83028
1961 0.00943 1971 0.41015 1981 0.82916
1962 0.01208 1972 0.48631 1982 0.87595
1963 0.01889 1973 0.55355 1983 0.88703
1964 0.03120 1974 0.62251 1984 0.90465
1965 0.05332 1975 0.68394 1985 0.91519



Di�use priors on the parameters are chosen for both data sets. The parameters in equation (4)
are chosen such that sa !1 and sb !1. Given this limiting case, our posterior does not
depend on ma or mb. The prior on r is uniform �ÿ1; 1� to re¯ect the equal likelihood of r. The
prior on l is chosen to be the improper ¯at prior, i.e. p�l� � 1 for all l. The prior on s is also
improper, namely, p�s� � 1=s.

Table II lists the point estimates, estimates of the standard deviations, and the percentiles for
each of the parameters for the complete colour television data set (1956 to 1985) and the model
with the reciprocal link transformation (M4). The Bayes estimates for the parameters are not
signi®cantly di�erent among the four link transformations; therefore we omit the results for the
other link transformations. Initially, the Bayes estimates are computed from the Gibbs sampler
with 53 iterations and 500 replications and with 50 loops in each Metropolis algorithm to
generate r and l for each iteration and replication of the Gibbs sampler. The starting points for
the replications for each parameter are chosen from random perturbations around the maximum
likelihood estimates. The convergence of the Gibbs sampler is monitored by examining their
empirical quantiles. This leads us to iterate the above Gibbs sampler ten more times to yield the
results in Tables II and III. The Bayesian predictive intervals can easily be obtained from
Table II. For example, the 95% intervals are read from the 2.5% and 97.5% columns.

For the ®rst data set, we produce the one-step-ahead prediction rule for the year 1966 using
both the mean and the median of the Gibbs sample based on the data set for the year 1956 to
1965. Then we predict the subsequent years prequentially, i.e. using the data from 1956 to 1966 to
predict the penetration for 1967, etc. In Figure 1, the one-step forecasts for the years 1966 to 1985
using the medians predictors are plotted for each of the four link transformations. They are also
compared with the actually observed data. This ®gure shows that the logistic transformation
(M1) produces the best forecasts except for the years 1974±1976 and 1982.

Figure 2 provides model adequacy checks in which the 95% Bayesian credible intervals are
plotted pointwise for each of the one-step-ahead prediction rules. The ®gure shows that all four
models are adequate because the future observed values are always contained in the intervals.
The con®dence bands become narrower as time increases as expected because more data are
available. It can be observed that the four models di�er less on the left tails of the distributions
than on the right tails.

The 90% and 95% frequentist's predictive intervals can be computed from a Student-t
distribution. Let ŷ� denote the frequentist's forecast of yn given in the Appendix 1. Then
ŷ
��l�+ ta=2�nÿ2�ŝ will yield a 100�1ÿ a�% predictive interval for the time t � n, where ŝ is com-

puted similarly to equations (A15) and (A17) of Lee and Lu (1987, p. 76). Hence approximately
100�1ÿ a�% predictive intervals for yn can be obtained from � ŷ�l̂ ÿ l̂ta=2�nÿ2�ŝ�1=l̂ < yn <
� ŷ�l̂ � l̂ta=2�nÿ2�ŝ�1=l̂: The frequentist's predictive rules are transformed back to obtain the
predictive rules F̂ . In Figure 3, these frequentist's 95% intervals are plotted against the Bayesian
intervals for the years 1966 to 1985, both with the logistic link. It can be seen that the Bayesian
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Table II. Gibbs approximation to the estimates for colour TV data

Mean S.D. 2.5% 5% 25% 50% 75% 95% 97.5%

â ÿ2:38 0.30 ÿ2:94 ÿ2:79 ÿ2:54 ÿ2:38 ÿ2:25 ÿ1:88 ÿ1:76
b̂ 0.15 0.01 0.13 0.14 0.15 0.16 0.16 0.17 0.17

r̂ 0.90 0.07 0.75 0.77 0.87 0.92 0.96 0.99 0.99
l̂ ÿ0:08 0.06 ÿ0:20 ÿ0:18 ÿ0:12 ÿ0:08 ÿ0:04 0.02 0.04
ŝ 0.08 0.01 0.06 0.06 0.07 0.08 0.09 0.10 0.10
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Figure 1. Plot of the Bayesian one-step forecasts for each of the four links versus years

Figure 2. Plot of 95% Bayesian one-step-ahead predictive intervals for each of the four links versus years



predicting intervals are not only shorter in length than the frequentist's ones but also more
accurate in prediction.

Table III addresses the model selection question. The three criteria MSE, MARD, and PPBF
are computed for the last 20 periods, i.e. 1966 to 1985. The three measurements are denoted by
MSE(B), MARD(B), and PPBF. Furthermore, MSE and MARD are also computed using the
frequentist's one-step prediction rule. They are denoted by MSE(F) and MARD(F). The table
shows that the Bayesian predictor produces smaller MSE and MARD than the frequentist's
predictor. Table III also shows that the logistic transformation (M1) yields the smallest MSE and
MARD, Bayesian or frequentist's, among the four transformations. This is con®rmed by
Figure 2. On the other hand, the reciprocal log transformation (M4) yields the largest PPBF.
This is con®rmed by Figure 4, where the prequential CPOs for the years 1966 to 1985 are plotted
for each of the link functions. It is not entirely surprising that we select di�erent models due to
di�erent criteria. The skewedness of the predictive density revealed in Figure 2 manifests this
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Figure 3. Plot of 95% Bayesian and frequentist's one-step-ahead predictive intervals and for the logistic
link versus years

Table III. Model selection for the colour TV data

MSE(B) MARD(B) PPBF(log) MSE(F) MARD(F)

M1 0.00034 0.047 37.39 0.00038 0.052
M2 0.00040 0.051 46.74 0.00052 0.058
M3 0.00070 0.063 40.99 0.00054 0.064
M4 0.00040 0.051 46.84 0.00045 0.059



phenomenon. Figure 4 further shows that models 2 and 4 are quite comparable and the logistic
(M1) model ®ts well for the earlier periods up to 1972.

Table V lists the Bayes estimates for the various parameters and its credible intervals based on
the telephone switching data set. Note that the estimates for b are positive for both data sets. This
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Figure 4. Plot of the prequential conditional predictive ordinates (PCPO) for each of the four links versus
years

Table IV. Penetrations of electronic telephone switching systems

Year Penetrations Year Penetrations Year Penetrations

1967 0.00071 1973 0.11259 1979 0.30486
1968 0.00386 1974 0.14553 1980 0.32404
1969 0.00447 1975 0.16736 1981 0.35516
1970 0.02003 1976 0.19083 1982 0.37708
1971 0.02961 1977 0.20130 1983 0.41134
1972 0.05974 1978 0.26299 1984 0.43709

Table V. Gibbs approximation to the estimates for the telephone data set

Mean S.D. 2.5% 5% 25% 50% 75% 95% 97.5%

â ÿ2:23 0.30 ÿ2:83 ÿ2:64 ÿ2:36 ÿ2:21 ÿ2:08 ÿ1:85 ÿ1:79
b̂ 0.11 0.01 0.08 0.09 0.10 0.11 0.12 0.14 0.14
r̂ 0.70 0.20 0.30 0.34 0.55 0.73 0.87 0.97 0.98

l̂ 0.46 0.05 0.35 0.38 0.43 0.46 0.50 0.55 0.57
ŝ 0.06 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.10



is reasonable because we would expect substitutions to increase with time. The estimate for l for
the TV data is much smaller than that of the telephone data indicating that the dependence for
the latter is much stronger. Table VI lists the model selection measures for the last eight periods,
i.e. 1977 to 1984. It reveals that the logistic transformation (M1) is preferred by the prequential
pseudo-Bayes factor. The probit transformation (M2) is preferred by the Bayesian MSE and
MARD criteria. The Bayesian prediction rules are better than the frequentist's ones in
prediction. Moreover, our ®gures show that the Bayesian prediction rules have shorter intervals
than the frequentist's ones and more accurate; all four link transformations, with the Box±Cox
transformation and AR(1) models, are adequate. These ®gures are omitted.

APPENDIX 1: FREQUENTIST'S PREDICTION RULE

The frequentist's prediction rule is given here. Let y� � �yn�1; . . . ; yn�l�0 be an l-dimensional
vector of future observations to be predicted on the basis of the past observations
y � �y1; . . . ; yn� 0. Let x� denote the design matrix corresponding to the future observations.
Furthermore, let Cov�y�l�0 ; y��l�

0 �0 � �s2=�1ÿ r2���cab�, where cab � rj aÿb j; a; b � 1; . . . ; n� l:
When the unknown parameters are replaced by their maximum likelihood estimates from
equation (A3), the forecasts of y� can be written as

ŷ
�
�l�1� � f1� l̂�x�b̂b� r̂r� y�l̂�n ÿ xnb̂b��g1=l̂ ÿ n when l̂ 6� 0

exp�x�b̂b� r̂r� y�l̂�n ÿ xnb̂b�� ÿ n when l̂ � 0

(
�A1�

where b̂b � �x0V̂ÿ1x�ÿ1x0V̂ÿ1y�l̂�; r̂r � � r̂; r̂2; . . . ; r̂l �0, 1 � �1; . . . ; 1�0, V̂ � �ĉab�; ĉab � r̂j aÿb j, xn
and y

�l̂�
n are the nth row of x and y�l̂� respectively, and l̂ and r̂ are the MLEs of l and r,

respectively. For the one-step-ahead forecast, we set l � 1 in the above discussion and let ŷ
�

denote the ®rst row of ŷ
�
�l�1�. We assume n is 0 in the two examples.

APPENDIX 2: GIBBS SAMPLING

We describe brie¯y the Gibbs sampling procedure. Suppose we desire to estimate
f �U1;U2; . . . ;Up jDn�, the posterior joint density of �U1;U2; . . . ;Up�, given the data Dn . The
algorithm assumes that we can generate variates from the conditional densities f �Ui j fUjgj 6� i;Dn�.
The algorithm proceeds as follows. Let us start with initial values, U

�0�
1 ;U

�0�
2 ; . . . ;U �0�p . Generate

a value U
�1�
1 from the conditional density f �U1 jU �0�2 ; . . . ;U �0�p ;Dn�. Similarly, generate a value

U
�1�
2 from the conditional density f �U2 jU �1�1 ;U �0�3 ; . . . ;U �0�p ;Dn�, and continue until the value

U �1�p is generated from the conditional density f �Up jU �1�1 ; . . . ;U �1�pÿ1;Dn�. With this new
realization of the values U �1� � �U �1�1 ; . . . ;U �1�p � replacing the old values, we can continue to
iterate until the kth realization. Under very mild regularity conditions, this Markov chain
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Table VI. Model selection for the telephone data set

MSE(B) MARD(B) PPBF(log) MSE(F) MARD(F)

M1 0.00028 0.047 25.72 0.00058 0.061
M2 0.00021 0.038 20.92 0.00141 0.106
M3 0.00049 0.059 17.88 0.00317 0.173
M4 0.00024 0.040 22.37 0.00080 0.072



converges to a stationary distribution for large k. The vector �U �k�1 ; . . . ;U �k�p � has a distribution
that is approximately equal to f �U; . . . ;Up jDn�. By starting independent initial choices, we can
also replicate the above iterations r times. Let U �i;s� � �U �i;s�1 ; . . . ;U �i;s�p � denote the realization
of U for the ith iteration and sth replication. The posterior moments, functionals, and
credible sets can be computed from the empirical measure assigning weight 1/r to each
�U �k;s�1 ; . . . ;U �k;s�p �; s � 1; . . . ; r, to compute posterior features.

For the issue of convergence and the issue of pragmatic choices of k and r, consult Geman and
Geman (1984), Tanner and Wong (1987), Gelfand and Smith (1990), Gelfand et al. (1990),
Gelman and Rubin (1992), and Tierney (1994).

When the conditional densities are not easily identi®ed, such as in cases without conjugate
priors, the Metropolis (1953) algorithm or importance sampling methods can be employed. We
describe the Metropolis algorithm brie¯y. Suppose we desire to sample a variate from the
following generic density:

f �U1 jU2; . . . ;Up;Dn� � f �Dn jU1; . . . ;Up�p �U1;U2; . . . ;Up�R1
ÿ1 f �Dn jU1; . . . ;Up�p �U1;U2; . . . ;Up� dU1

�A2�

Let f (U1) denote the conditional density in equation (A2), suppressing the conditioning
variables for brevity. Let us de®ne a transition kernel q(U1 , X ), which maps U1 to X. If U1 is a
real variable with range in �ÿ1;1�, we can construct q such that X � U1 � s0Z with Z being
the standard normal random variate and s02 re¯ecting the conditional variance of U1 in equation
(A2). Then the Metropolis algorithm proceeds as follows:

Step 1: start with any point U
�0�
1 , and stage indicator j � 0.

Step 2: generate a point X according to the transition kernel q�U � j �1 ;X �:
Step 3: update U

� j �
1 to U

� j�1�
1 � X with probability p � minf1; f �X�=f �U � j �1 �g, stay at U � j �1 with

probability 1ÿ p.

Step 4: repeat steps 2 and 3 by increasing the stage indicator until the process reaches a
stationary distribution.

Chapter 9 of Hammersley and Handscomb (1964) provides a discussion of why this algorithm
works. Note that this algorithm is de®ned by using the ratio of two values of equation (A2).
Therefore, all we need is to know the functional form of the likelihood and prior. This spares us
the task of evaluating the normalizing constant.

IfU1 is a bounded variable with range in (a, b), we can use a distribution with support on (a, b)
(for example, uniform over (a, b) distribution) to generate X. In this case, the transition kernel
q(U1 , X ) does not depend on U1 . Alternatively, we can apply the transformation, such as
U 0 � log��U1 ÿ a�=�bÿU1��, to map (a, b) into �ÿ1;1�, then use the normal transition kernel
described earlier to generate X using the density of U 0. We implemented the latter procedure in
our numerical examples because the normal transitional kernel seems to yield a more e�cient
algorithm than the uniform transitional kernel. On using the normal kernel, we ®rst transform r
to r0 2 �ÿ1;1� by r0 � log��1� r�=�1ÿ r��. Then we apply the Metropolis algorithm to the
function

f �r0� / e3r
0=2

�1� er
0 �3 e

ÿ�1=2s2�S0�y;bb;r0;l�

where S 0�y; bb; r0; l� is obtained from S�y; bb; r; l� with r replaced by �er 0 ÿ 1�=�er 0 � 1�. We also
need to specify sr0 (denoted by s0 in the above Metropolis algorithm). The quantity sr0 is usually
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chosen to re¯ect the conditional standard deviation of r0 given bb; l; s; y. We propose three
methods to estimate the variance s2r 0 :

(1) Start with an arbitrary guess of sr 0 ; use the Gibbs sampler of the r0s to estimate empirically
its variance.

(2) Obtain estimates for the mean and variance of r, denoted by mr and s2r, from the SAS
AUTOREG procedure given a ®xed l. Apply the delta method to obtain an estimate of the
variance of r0, i.e. s2r0 � s2r�2=�1ÿ m2r��2.

(3) Derive the pro®le likelihood of r and l as in Lee and Lu (1987),

l�r; l; y� � ÿ n

2
log ŝ2�r; l� � �lÿ 1�

Xn
t�1

log yt � 1

2
log�1ÿ r2� �A3�

where

ŝ2�r; l� � 1

n
�y �l� ÿ xb̂b�0Sÿ1�y �l� ÿ xb̂b�

with

b̂b � �x0Sÿ1x�ÿ1x0Sÿ1y �l�

Then, invert the sample information matrix at the maximum likelihood estimates of
equation (A3) to obtain the preliminary variance estimates of r and l respectively. This
method is adopted in our analysis, because it has the advantage of obtaining both
variances. Then we apply the delta method to obtain the variance estimates for r and l.
These variance estimates are further re®ned by empirical evaluations of the variance
estimates from the Gibbs sampler because the conditional variances are required in the
Metropolis algorithm. Having obtained r0 from the Metropolis algorithm, we transform
the r0 back to r by r � �er 0 ÿ 1�=�er 0 � 1�.

An operation like that applied to r can also be applied to the variate l, except that the above
method (3) of using the SAS AUTOREG is not applicable for l.

Conditioning on l, our model is a special case of the models that are discussed by Albert and
Chib (1993), Chib (1993) and Chib and Greenberg (1994). Therefore, the generation of r can be
done more e�ciently using the idea in Chib and Greenberg. That is the full conditional
distribution of r for the uniform prior can be written as

r j data; bb; s2 / C�r� �N�r̂;oÿ1�I �ÿ1;1�
where C�r� is the density of the initial observation and

o �
Xnÿ1
i�1
� y �l�i ÿ aÿ bi �2

and

r̂ � oÿ1
Xnÿ1
i�1
� y �l�i ÿ aÿ bi �� y �l�i�1 ÿ aÿ b�i � 1��:
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Then theMetropolis step can be done by drawing a r (say, r�) fromN�r̂;oÿ1�. The chain stays at
the current value if r� does not satisfy stationarity; otherwise it moves to r� with probability
given by

min
C�r��
C�r� ; 1

� �
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