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Abstract—A locking model adopting a multi-granularity approach is proposed for concurrency control in object-oriented database
systems. The model is motivated by a desire to provide high concurrency and low locking overhead in accessing objects. Locking in
schemas and locking in instances are developed separately and then are integrated. Schema changes and composite objects are
also taken into account. A dual queue scheme for efficient scheduling of lock requests is developed. The model! consists of a rich
set of lock modes, a compatibility matrix, and a locking protocol. Characteristic query examples on single class, class lattice, and
composite objects are used to illustrate the comparison batween the ORION model and the proposed model. It is shown that our
locking mode! has indeed made some improvements and is sitable for concurrency control in object-oriented databases.
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1 INTRODUCTION

RECENTLY, there has been much interest in object-
oriented database systems (OODB), which appears
to be driven mainly by data-intensive application de-

‘mands such as CAD/CAM, office information systems

and software development environments. With its flexi-
ble data model and object-oriented programming para-
digm, it is believed that OODB has great potential to be
applied widely.

The problems of concurrency control in conventional da-
tabases, such as the lost update problem and the uncommit-
ted dependency problem [3], [7], remain in OODB. Fur-
thermore, due to the complexity of the object-oriented data
model, the problems become more complicated. One of the
main techniques used to control concurrency is based on
the concept of locks. The object-oriented data model also
complicates the lock requiremients [13], {12], [4]. The locking
model implemented in ORION still has the following un-
desirable features:

1) The degree of concurrency is low on locking compos-
ite objects. By the locking model, if one transaction
updates any component object of a composite object,
the composite object is locked in its entirety. No other
transactions can directly access any component object
of the composite object via the component classes. The
degree of concurrency, therefore, is not satisfactory for
applications with long transactions.
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2) The model does not support schema locks. The model
always locks schemas and instances at the same time.
Actually, schema reading can be independent of in-
stance accessing for different requests. Concurrency
can be increased if individual lock modes for schema
accessing are provided.

The ferm “granularity” refers to the size of the objects
that can be locked. The advantage of a coarse granularity is
that there are fewer locks and hence less overhead in test-
ing, setting and maintaining those locks. The disadvantage,
of course, is that there will be less concurrency. Since differ-
ent transactions obiously have different characteristics and
requirements, it is desirable that the DBMS provides a
range of locking granularities (Indeed, many DBMSs do).

The objective of this paper is to develop a feasible lock~
ing model for an object-oriénted database system which
overcomes the shortcomings while retaining the advantages
of other locking models. Our model is based mainly on the
concept of multi-granularity locking. It contains a rich set of
lock modes with different lockable granules, a compatibility
matrix, and a complete protocol. Locking for composite
objects and schema evolution are presented. We also discuss
how the locking requests are scheduled and granted. A dual
queue scheduling scheme is proposed to enhance concur-
rency. These features make our model suitable for OODB.

2 BACKGROUND

Although there is some common consensus [1], [2], [22],
[23], [24], [25], [26], [27] on what object-oriention means and
what an object-oriented database is, each object-oriented
database system has its own data model. We will first in-
troduce a basic object-oriented data model. Then, some
specific features relevant to our proposed locking model are
reviewed.
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2.1 Fundamentals of Object-Oriented Data Model

Though it is not clear how to define a formal model that
includes all object-oriented concepts, but some essential
concepts are common and are described as follows:

o Object: In object-oriented systems, any real-world en-
tity of interest is uniformly modelled as an object. An
object can represent not only a simple integer or string
but also a complicated vehicle, or an electrical device.

o Attribute: Users can define a set of attributes to cap-
ture the state of an object. The value for an attribute of
an object is itself an object in its own right.

o Method: O-O system also provides the ability for the
user to define a set of operations, called methods, to
capture the behavior of an object. Methods consist of
program codes that manipulate or return the state of
an object.

® Message: State and behavior are encapsulated in an
object. Methods as well as attributes are invisible from
outside of the object. Objects communicate and per-
form all operations via message passing. Methods are
fo procedures or functions what messages are to
function calls.

o Class and Instance: A class is specified as means of
grouping of all the objects that share the same set of
attributes and methods. Objects that belong to a class
are called instances of that class. A class is similar to
an abstract data type. A primitive class is one which
has no attributes, such as integer, string, and Boolean.

 Class Hierarchy and Inheritance: Users can derive a new
class from an existing class. The new class, called a
subclass of the existing class, inherits all the attributes
and methods of the existing class. The existing class is
a superclass of the new class. Classes therefore are ar-
ranged in a class hierarchy from the most general to
the most specific, in which an edge represents the
IS-A relationship.

o Multiple Inheritance: A class may inherit attributes and
methods from more than one superclasses. The class
hierarchy is relaxed to a directed acyclic graph (DAG),
or a class lattice.

2.2 Schema Evolution

" Schema evolution allows users to dynamically make a wide
variety of changes to the database definitions. Existing da-
tabases allow only few types of schema changes. For ex-
ample, SQL/DB allows only dynamic creation and deletion
of relations and addition of new columns [20]. The applica-
tions supported are record-oriented and do not require a
rich set of schema change operations.

The database schema for an object-oriented database has
two dimensions. One dimension (vertical) is the class hier-
archy which captures the generalization relationship be-
tween a class and its subclasses. Another dimension
(horizontal) is the class composition hierarchy which repre-
sents the aggregation relationship between a class and its
attributes and the domains of the attributes.

Two types of changes to the database schema are often
necessary [11}, [18]. Changes to the class definitions and
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changes to the structure of a class lattice. Changes to the
class definitions include adding and deleting attributes and
methods. Changes to the structure include creation and
deletion of a class, and alteration of the IS-A relationship
between classes. A formal framework for the schema evo-
lution of ORION was presented in [11]. The semantics of
class hierarchy is what complicates schema changes and
locking requirements. For example, when a class is
dropped, all its subclasses will lose the attributes and
methods that they had inherited from the class.

2.3 Composite Objects

There are two major relationships among objects in an ob-
ject-oriented system. IS-A relationship supports the class
inheritance. The IS-PART-OF relationship captures the no-
tion of composition that an object is a part of another object.
Many applications require the capability to define, store
and retrieve a collection of related objects as a single logical
object for the purpose of semantic integrity, and efficient
storage and retrieval [10]. For example, an aircraft com-
posed of a fuselage, wings, engines and a landing gear can
be viewed as a composite object.

A composite object has a special object, called the com-
posite root object. The root of a composite object contains a
number of component objects (or dependent objects). Each
component object can be a simple object (with no compo-
nent objects) or it may contain its own component objects.
In a composite object, no component object can be refer-
enced more than once. Thus a composite object is a hierar-
chy of objects. The classes to which the objects of a compos-
ite object belong are also organized in a hierarchy, called a
composite object schema. _

Fig. 1 depicts a composite object schema and two in-
stances of the composite object hierarchy. The set of classes
Vehicle, AutoBody, AutoDrivetrain, forms-a composite ob-
ject schema. The set of instances V1, Bl, and D1 forms a
composite object hierarchy and V1 is the root object. The set
of instances V2, B2, and D2 forms another composite object
hierarchy and V2 is the root object.

—» component class of

@ 01ass
instance

— — _— instance of

— = component object of

Fig. 1. Composite object hierarchy.
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2.4 Extended Composite Objects

Although the feature of composite objects has been found
quite useful, the model presented in the previous subsec-
tion suffers from a number of serious shortcomings.

1) The model restricts a composite object to a strict hier-
archy of exclusive component objects. That is the
component object can only be the part of single one
composite object. This restriction is not suitable in
many applications. For example, an identical chapter
may be contained in two different books.

2) The model forces a top-down creation of a composite
object; that is, before a component object may be cre-
ated its parent object must already exist. This prevents
a bottom-up creation of objects by assembling already
existing objects.

3) The model requires that the existence of a component
object depends on the existence of the parent object. If
a composite object is deleted, all its component objects
are also deleted. This dependence impedes the reuse
of part objects in a complex design environment.

In order to eliminate these shortcomings while retaining
the advantages of the previous model, semantic extensions
are necessary. Kim, Bertino, and Garza [15] describes sig-
nificant semantic extensions to the model by extending the
dependent exclusive composite reference to four references.
The semantics of a composite reference is refined on the
basis of whether an object is a part of only one object
(exclusive) or more than one object (shared). Another re-
finement is based on whether the existence of an object de-
pends on the existence of its parent object, i.e., a composite
reference may be dependent or independent. The extension
reveals the following four types of composite reference:

1) dependent exclusive composite reference
2) independent exclusive composite reference
3) dependent shared composite reference

4) independent shared composite reference

We may change the reference type of Body attribute in
Fig. 1 from dependent exclusive type to dependent shared
type. Then, there may be another instance V3 of vehicle
that has shared reference to the same component object,
say B2, with V2. The composite object hierarchy is relaxed
to alattice.

3 ConCURRENCY CONTROL IN OODB

3.1 Conflict Problems in OODB

In conventional database systems, the general concurrency
problems include the lost update problem, the uncommit-
ted dependency problem, and the inconsistency problem
[7]. One of the main techniques used to control concurrency
is based on locking. These concurrency control problems
may exist on schemas and instances in OODB. We classify

* the access conflicts into three kinds:

1) instance-instance conflick: An instance-instance conflict
occurs when more than one transaction accesses the
same instance concurrently. An instance in OODB
may be a primitive object or a composite object. For

two fransactions accessing two different composite
objects with some common, shared component ob-

jects, conflicts may occur on these component objects. |

This kind of conflict will not be detected until the
IS-PART-OF relationship between objects is verified.
Concurrency control involving compos1te objects
needs special handling.

instance-schema conflict: An instance-schema conflict

occurs if some transaction is accessing instances while

another is accessing the schema of the instances.

Schemas keep the definitions of instances. The incon-

sistency problem is likely to occur when the schemas

of the accessed instances are modified. Concurrency
control in OODB that allows schema evolution should
take instance-schema conflicts into account.

3) schema-schema conflict: A schema-schema conflict oc-
curs if more than one transaction is accessing
“associated” schemas concurrently. Schemas are as-
sociated by the inheritance mechanism in the class hi-
erarchy. Any change in a superclass schema is inher-
ited by all its subclasses. Concurrency control there-
fore becomes difficult due to the mherltance mecha-
nism of schemas.

2

~

3.2 Locking Model in ORION

Not much systematic and in depth discussion on concur-
rency conirol problems in OODB can be found in the lit-
erature except in ORION system [10], [4], [12],{19]. In the
following, we will describe and use the ORION model for
illustration and comparison [13], [14], [15]. The locking
model in ORION is based on Gray’s hierarchy locking
model 8], [9]. A two-level hierarchy as depicted in Fig. 2
is used to model the lockable granules in OODB. The
coarse granule is the class level and the fine granule is the
instance level.

Vehicle

Vehicle_ID
Manufacturer
MaxLoad

Class Level

Instance Level

Fig. 2. Two-level lock hierarchy.

Instance objects in ORION system are locked only in S or
X mode. Class objects can be locked in S, X, IS, IX, or SIX
mode. The semantics of these modes are stated as follows:

1) Instance Objects:

S$: A shared lock on an instance means that the in-
stance can be read. ‘

X:  An exclusive lock on an instance means that the
instance can be read or updated.
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2) Class Objects:

S: A shared lock on a class means that the class
definition is to be locked in S mode, and all
instances of the class are implicitly locked in
S mode.

X:  An exclusive lock on a class means that the
class definition is to be locked in X mode, and
all instances of the class are implicitly locked in
X mode.

IS: An intention shared lock on a class means that
the instances of the class are to be explicitly
locked in S mode as required.

IX: An intention exclusive lock on a class means that

the instances of the class are to be explicitly

locked in S or X mode as necessary.

A shared intention exclusive lock on a class

mgans that the class definition is locked in S

mode, and all instances of the class are implicitly

locked in S mode. Also the instances to be up-
dated will be explicitly locked in X mode.

SIX:

Fig. 2 shows the lock hierarchy of Vehicle class with
some instances. The following query examples on Vehicle
class illustrate the use of the lock modes and the locking
protocol.

1) Select all Vehicle instances that are manufactured
by Ford.

a) lock Vehicle class in IS mode
b) lock the selected Vehicle instances in S mode

2) Update instances of Vehicle that have maxload of 2 tons.

a) lock Vehicle class in IX mode
b) lock the selected Vehicle instances in X mode

In order to recognize a composite object as a single lock-
able granule three new lock modes ISO, IXO, SIXO are
added corresponding to the IS, IX, SIX modes, respectively
[13]. To lock a composite object, the root class is locked in IS,
IX, S, SIX, or X mode as before. Each of the component
classes in the composite object schema is locked in ISO,
IXO, S, SIXO, X mode, respectively. The three lock modes
added are dedicated to component classes and can prevent
a transaction from accessing the component objects of a
composite object O while another transaction is accessing
the entire composite object O.

The following query examples on the composite class
Vehicle illustrate the use of the lock modes and the locking
protocol for accessing composite objects.

1) Select instances of Vehicle that ...
a) lock Vehicle class in IS mode

b) lock selected Vehicle instances in S mode
¢) lock the component classes in ISO mode

2) Update instances of Vehicle that ...

a) lock Vehicle class in IX mode
b) lock selected Vehicle instances in X mode
) lock the component classes in IXO mode

The locking model described above, which is based on
object data model of [12], is applicable to composite objects

consisting of exclusive composite references only. It is again
extended for the shared composite references.

A component class of exclusive reference is locked as be-
fore. However, three new lock modes are introduced for the
component class of shared references: ISOS (intention
shared object-shared), IXOS (intention exclusive object-
shared), SIXOS (shared intention exclusive object-shared),
which correspond to the ISO, IXO, and SIXO, respectively.
Table 1 shows the compatibility matrix inciuding the ex-
tended set of lock modes [15].

.TABLE 1
COMPATIBILITY MATRIX FOR GRANULARITY LOCKING AND
SHARED/EXCLUSIVE COMPOSITE OBJECT LOCKING [15]

Current Requested Mode
Mode
1S [ IX § 8] SIX | X {ISO [ IXO | SIXO [ ISOS | IXOS | SIX08

1S Y{Y|Y] Y [N]JY N N Y N N
1X YIYIN] N ININJN N N N N
S YIN[Y] N [N]J YN N Y N N
SIX YINJN] N INJ N]N N N N N
X NININI N |[NJNIN N N N N
1SO YINJY[ N N[ Y Y Y Y Y Y
1XO NJNINJ] N INJ Y Y N Y Y N
SiIXo NININI N INJ Y N N Y N N
1SOS YINJY] NIN]JY Y Y Y N N
IXOS NINJN| N INJ Y Y N N N N
SIXOS [NfN(Nj N [N] Y N N N N N

Let us consider the composite objects in Fig. 3. Compo-
nent objects Instance[c] and Instance[c’] belong to class C.
Instance[w] and Instance{w’] belong to class W. Instanceli],
Instancefj], Instancefk] belong to classes I, J, K, respectively.
Instancefj] and Instance[k] have shared references to In-
stance[c’]. The following examples illustrate the extended
locking protocol.

1) Update the composite object rooted at Instanceli]

a) lock class I in IX mode
b) lock composite object Instance]i} in X mode
¢) lock class C in IXO mode

2) Update the composite object rooted at Instancefj]

a) lock class J in IX mode

b) lock composite object Instance[j] in X mode
¢) lock class C in IXOS mode

d) lock class W in IXO mode

Instancefj] Instance(k]

/NN

Instancelc] Instance[w] Instance[c’] Instance[w']

Instancefi]

Fig. 3. Composite objects with shared references [15].

4 MuLTI-GRANULARITY LOCKING APPROACH

Objects in object-oriented databases may be related by se-
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mantic relationships such as IS-A, IS-PART-OF, or by ver-
sion derivation relationships: Sometimes we intend to lock
a single instance (simple object), in other times we may in-
tend to lock a group of related objects. Transactions may
last in varying duration and may have different character-
istics and requirements. Since the targets to be locked may
vary depending on the applications in OODSB, it is desirable
and advantageous to provide a range of different lock
granules [5], [6], [8], [16], [17]. The aim is to achieve high
degree of concurrency and low overhead. This paper pres-
ents a multi-granularity locking model (MGL)[21] which
consists of three components:

s aset of lock modes on different granules

¢ a compatibility matrix to indicate whether two lock
modes are compatible

e a complete protocol to guide how lock requests are
issued.

The MGL model for OODB is quite different from the
locking model for conventional databases. It has to take
some features of OODB such as class hierarchy, composite
object hierarchy and schema evolution into account. In
MGL model, schema locking and instance locking are de-
veloped and then are integrated. For instance locking, com-~
posite objects are distinguished from primitive objects and
some lock modes that treat the composite objects as logical
lockable granules are provided. The detailed proof of the
protocols that guide the correct issuing of locking requests
can be found in [21]. In.the proof, we suppose all transac-
tions obey the MGL protocol with respect to a given class
hierarchy (lattice). If a transaction owns an explicit or im-
plicit lock on an instance which belongs to some class in the
hierarchy, then no other transaction can own a conflicting
explicit or implicit lock on that instance.

4.1 Locking in Schemas

The classes in OODB are organized as a specializa-
tion/generalization hierarchy. A class inherits all attributes
and methods from each of its superclasses. The schema of a
class C is composed of the inherited schema and the local
defined schema. To read the schema of a class C, the schema
of all superclasses of class C are also read, and has nothing
to do with the subclasses of class C. That is, to read the
schema of class C, class C as well as all the superclasses of
class C are locked in shared mode. No locks should be set
on any subclasses of class C.

Any change in the definition of class C also needs to read
the definitions of all superclasses of class C. Because these
changes on class C will be inherited by all subclasses of
class C, the schema in all subclasses of class C are also
changed. To write schema of class C, all superclasses of C
have to be locked in shared mode. Class C and all its sub-
classes are locked in exclusive mode.

From the discussion above, two schema locks, RS and
W6 modes, are proposed to satisfy these requirements on
locking schemas.

¢ An RS ]ock on class C means the schema (definition) of
class C is locked in shared mode. Other transactions can
read the schema or read /write instances of class C.

e A WSlock on class C means the schema (definition) of

class C is locked in exclusive mode explicitly. Defini-
tions of subclasses of class C are locked in exclusive

mode implicitly. No other transactions are allowed to .

access either schemas or instances of the lattice rooted
at class C.

The compatibility matrix for schema locking is shown in
Table 2. The protocol for locking schema is as follows:

Schema Locking Protocol A:

a) Before requesting an RS or WS lock on a class, one
should request at least one of its superclasses in
RS lock.

b) If a class which has more than one superclass is
locked in WS mode implicitly, change the implicit WS
lock to explicit WS lock.

¢) Before changing an edge (the relationship between
two classes), the classes connected by the edge must
be set WS Jock implicitly or explicitly.  °

d) Set all locks in root-to-leaf order. !

e) Locks should be released either at the end of a trans-
action (in any order) or in leaf-to-root order before the
end of a transaction. '

TABLE 2

COMPATIBILITY MATRIX FOR SCHEMA LOCKING
Requested Mode

RS

Current Mode RS Y

WS N

WS
N
N

In Protocol A, (a) shows that RS mode serves as an inten-
tion mode because WS mode implies implicit locking on the
schema of the subclasses of a class. (b) is required for detect-

ing conflicts on classes with multiple inheritance. The class

lattice may be changed by modifying edges. (c) insures that
these changes are correct. To prevent deadlock, all lock re-

releasing locks are defined in (d) and (e).

4.2 Locking in lnstanqes

The fundamental motivation of the multiple granularity
locking protocol is to minimize the number of locks to be
set in accessing the database [20], [9]. We follow this ap-
proach on locking instances. First of all, we identify the
lockable granules.

The arrangement of instances in OODB systems resem-
bles a hierarchical structure with similar objects grouped
into a class and similar classes generalized into a superclass.
A locking graph for OODB is as shown in Fig. 4. Three lat-
tices are shown, class lattice, class-instance hierarchy and
composite object lattice. A simple object is a special case of a
composite object.

. For the class-instance hierarchy, only two lockable
granules are allowed, class granule and instance granule.
If most of the instances of a class are to be accessed, it
makes sense to set one lock on the class granule, rather
than one lock for each instance. Thus a lock on a class will
imply a lock on each instance of the class. The locking
overhead is low. When few instances of a class need to be
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accessed, it is better to lock the instances individually to
improve concurrency.

Class-Instance
hierarchy

Composite object
hierarchy

Vehicle

+{ Land
Vehicle
. Road Rail )fOcean ) ( River
Helicopter Vessel ) \ Craft

Class Lattice

Fig. 4. Three hierarchies of data in OODB.

For the class-instance hierarchy, five modes which are
similar to the single-class locking model of the ORION sys-
tem are provided. Their semantic meanings are as follows:

S: A shared lock on a class means that all instances
of the class are implicitly locked in S mode.

X: An exclusive lock on a class means that all
instances of the class are implicitly locked in
X mode.

IS: An intention shared lock on a class means that
instances of the class are to be explicitly locked
in S mode as necessary.

IX: An intention exclusive lock on a class means that

instances of the class are to be explicitly locked

in S or X mode as necessary.

A shared intention exclusive Lock on a class

means that all instances of the class are implicitly

locked in S mode and can be explicitly locked in

X mode as necessary.

SIX:

Locking on a class lattice is appropriate for a query
against a class when the class or the domains of the attrib-
utes of the class are close to the root of a deep class lattice.
When most of the instances of a class lattice are to be ac-
cessed, it makes sense to set one lock on the class lattice in
its entirety, rather than one lock for each class in the lattice.
Thus, a lock on a class lattice will imply a lock on each class
of the lattice. The locking overhead is low. When few sub-
classes of a class lattice need to be accessed, it is better to
lock the subclass individually to improve concurrency.

Five class-lattice lock modes by making extensions to the
lock modes for class-instance hierarchy are proposed. The
semantic meanings of the “lattice version” lock modes are
listed below.

S* A shared star lock on a class C means that all
classes and instances of the class lattice rooted
at class C are implicitly locked in S mode.

X*  An exclusive star lock on a class C means

that all classes and instances of the class lat-

tice rooted at class C are implicitly locked in

X mode.

An intention shared star lock on a class C means

that all classes of the class lattice rooted at class

C are implicitly locked in IS mode. Thus all in-

stances of the lattice are to be explicitly locked

in S mode as necessary.

An intention exclusive star lock on a class C

means that the classes of the class lattice rooted

at class C are implicitly locked in IX mode. Thus
all instances of the lattice are to be explicitly
locked in X, or S mode as necessary.

SIX*: A shared intention exclusive star lock on a class
C means that all classes of the class lattice
rooted at class C are implicitly locked in SIX
mode. Thus all instances of the lattice are im-
plicitly locked in S mode and will be explicitly
locked in X mode as necessary.

Is*:

IX*:

Because the class-lattice locking modes cause implicit
locking on each subclass of a class, as depicted in Fig. 5 we
need to lock the superclasses of the class in intention
modes. Four intention modes: IR, IW, IRI, and IWI are
needed. These intention modes are used to tag all super-
classes of a class to be locked and prevent other incompati-
ble locks on the superclasses. Their semantic meanings are
as follows:

IR: An intention read lock on a class C means that
the subclasses of class C are to be locked in S, or
S* mode as necessary.

An intention write lock on a class C means that
the subclasses of class C are to be locked in X, X*,
SIX, or SIX* mode as necessary.

An intention read instance lock on a class C
means that the subclasses of class C are to be
locked in IS, or IS* mode as necessary.

: An intention write instance lock on a class C
means that the subclasses of class C are to be
locked in IX, or IX* mode as necessary.

W:

IRI:

OO0 0000

implicit S lock

Fig. 5. The semantics of class-lattice locking.
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Locking on simple instances and composite objects are
quite different. For simple instances two lock modes, S and
X modes are enough. For locking on composite objects, the
semantic information has to be taken into account. A com-
posite object contains a group of component objects which
are also organized as a hierarchy or a lattice. For large com-
posite objects, if most component objects are accessed, set-
ting one lock on the “owner” object rather than setting
locks for each component object works better. If only few
component objects are accessed, setting locks for accessed
component objects can gain more concurrency. Gray’s [9]
proposed granularity locking can be applied to composite
objects. Five modes S, X, IS, IX, SIX are provided in [13] for
composite object locking and are described as follows:

S: A shared lock on an instance means that the in-
stance can be read. A shared lock on a composite
instance means that the instance is locked in S
mode explicitly and all of its component in-
stances are locked in S mode implicitly.

X:  An exclusive lock on an instance means that the
instance can be read or updated. An exclusive
lock on a composite instance means that the in-
stance is locked in X mode explicitly and all of
its component instances are locked in X mode
implicitly.

IS:  An intention shared lock on a composite instance
means that the component instances of the in-
stance are to be explicitly locked in S mode as
necessary.

IX: An intention exclusive lock on a composite in-

stance means that the component instances of

the instance are to be explicitly locked in X or S

mode as necessary.

A shared intention exclusive Lock on a com-

posite instance means that all component in-

stances of the instance are implicitly locked in

S mode and can be explicitly locked in X

mode as necessary.

SIX:

The shortcoming of Gray’s [9] locking protocol is that it
does not recognize a composite object as a single lockable
granule. Our protocol modifies Gray’s protocol to
“understand” composite objects. The protocols for locking
on class granules and instance granules are different. The
locking protocol for instances are given as follows:

Instance Locking Protocol B:

a) To read an instance, the instance must be held in S or
X mode explicitly or implicitly. To write an instance,
the instance must be held in X mode explicitly or
implicitly.

b) Before requesting an S lock on an instance of class C,
class C must be held in IS (IS*) mode or some super-
class of class C must be held in IS* mode.

¢) Before requesting an X lock on an instance of class C,
class C must be held in IX (IX*, SIX, SIX*) mode or one
of its superclasses held in IX* (SIX*) mode.

d) Before requesting an 5, or IS lock on a composite ob-
ject, at least one of its parent instance must be held in
IS mode. As a consequence, none of its parents along
some path to root object can be granted to other in-

compatible transactions. ‘

e) Before requesting an X, IX or SIX lock on a composite
object, at least one of its parent instances must be held
in IX mode. As a consequence, no parent instances
can be held in a mode incompatible with IX.

f) For composite instances, set all locks in parent-to-
child order in the composite hierarchy.

g) For composite instances, locks should be released ei-
ther at the end of the transaction in any order or in
child-to-parent order before the end of the transaction.

h) Before requesting X or S on a composite object, the
component objects which are shared referenced must
be set X or 5 lock explicitly.

In Protocol B, (a) enforces that a proper lock must be -

requested before accessing an' instance. (b)(c) tell that a
proper lock on classes must be requested in advance be-
fore locking instances. How composite objects are locked
is defined in (d)(e)(f). For the composite objects with

shared references, (h) is needed to check the conflicts on

the shared component objects. Our model is also applica-
ble to the ORION's extended composite object data model
[15]. To prevent deadlock, all lock requests must follow
some order. The order of requesting and releasing locks
are defined in (f) and (g).

Before accessing instances, the above protocol requires
that classes must hold proper locks to prevent conflicts. The
locking protocol on class granules is as follows:

Class Locking Protocol C:

a) Before requesting an S, 5%, or IR lock on a class C, at
least one superclass of class C must be held in IR or
S* mode.

b) Before requesting an X, X*, SIX, SIX*, or IW lock ona
class C, at least one superclass of class C must be held
in IW, X*, or SIX mode.

¢) Before requesting an IS, IS*, or IRI lock on a class C, at
least one superclass of class C must be held in IRI or
IS* mode.

d) Before requesting an IX, IX*, or IWI lock on a class C,
at least one superclass of class C must be held in IWI
or IX* mode. ‘

e) If a class C, which has multiple superclasses, is locked
in S, X, IS, IX, SIX mode implicitly, then lock S%, X¥,
15%, IX*, SEX* is set explicitly on class C, respectively.

f) To request S(5*), X(X*), IS(IS*), IX(IX*), or SIX(SIX*)
mode on a composite class, all its component classes
in the composite object schema should be locked in S%,
X#, IS*, IX*, SIX* mode, respectively.

g) Set all locks in root-to-leaf order.

h) Locks should be released either at the end of the
transaction in any order or in leaf-to-root before the
end of the transaction.

In Protocol C, (a)(b)(c)(d) tell how intention locks are re-
quested. (e) prevents conflicts occurring on subclasses with
multiple inheritance. (f) can recognize a composite object as
a single lockable granule. The order of requesting and re-
leasing locks are ruled by (g)(h).

Fourteen lock modes are provided on locking instances.
There will be 14*14 elements in the compatibility matrix.
Each element indicates whether the two corresponding
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TABLE 3
COMPATIBILITY MATRIX FOR INSTANGE LOCKING
Current R
uested Mode
Mode : ed
IS | X | 'S | SIX{ X | Is*| IX* | S* | SIX* LIR IW | IRI | IWI
S|Y | Y |!Y|Y |N}|Y Y Y Y N ) Y| Y Y
X! Y] Y |N N |N|Y Y N N N ‘ Y|Y|Y Y
S Y | N|Y N|NJ]Y N Y N NIY|]Y,}|Y Y
SX| Y| N|N|] N |NjY N |N| N N |Y|Y|Y Y
X | N|{N|N|N|N|N N | N|N NI|Y|Y]|Y Y
s | Y[Y (Y |y |N|Y|Y Y|y | N|[Y|N|Y|¥Y
X+ | Y{Y|{N|N|N|Y Y N | N N | N|[N|Y Y
s* | Y | N|Y NIN]Y N |Y N N|]Y | N}Y N
SIX*| Y | N | N N |[{NJY N N N N | N|[N|Y N
X* N|N|N|N|N|N N N | N NIN|]N)N|N
IR Y| Y |Y Y [ Y Y N Y N NI|J Y| Y| Y !|Y
w || Y| Y|[Y|]Y|Y|N N N | N N{Y|Y]|Y Y
IRT|Y | Y |Y Y | Y |Y Y Y Y l N|Y|Y|Y Y
WL Y | Y Y Y |Y|Y Y N N J N|]Y|Y|Y Y
locks can be set on the same object concurrently. Let us take b) lock AirVehicle class in IX mode
a look at these lock modes again. Each of the lock modes c) lock the selected AirVehicle instances in X mode
captures two.semantic meanings: access mode and effective 3) Update instances B2 of class AutoBody (Fig. 1).
scope of locking. For example, in “set X* on class C,” the a) lock superclasses of class AutoBody in IWI mode
access type of X* is write type and effective locking scope is b) lock class AutoBody in IX mode
all instances belonging to the lattice rooted at class C. Two C) lock all component classes of AutoBody in IX* mode
lock modes are compatible if their access types are concur- d) lock the parent object (V2) of instance B2 in IX mode
rently executable, e.g., two read accesses. If the access e) lock instance B2 in X mode

modes are conflicting, we may check further whether their
effective locking scopes are overlapped. If not overlapped,
concurrent execution is still possible. Based on this analysis, Vehicle
we derive a simple procedure to generate each element of
the compatibility matrix shown in Table 3.
The following query examples illustrate protocols B and

C on locking instances: Ai Land Water
Vehicl
1) Select all instances of class Vehicle and all its sub- Vehwle Vehicle o
classes that use gasoline as fuel (Fig. 6). Suppose that \ / \ / \\

. nees are si . .
all the instances are simple instances N Rail Ocean River

a) lock Vehicle class in IS* mode Plane  Lieticopter Vehlc]e Vehicle Vessel Craft
b) lock the selected instances in classes Vehicle,

LandVehicle, RoadVehicle and RailVehicle in Fig. 8. A class hierarchy: Vehicle.

S mode
2) Update instances of class AirVehicle that use propel- 4.3 Integration of Schema Locking and Instance
lers (Fig. 6). Suppose that the instances are all simple Locking
instances. Although the problem of propagating the changes of sche-

a) lock Vehicle class in IWI mode mas to instances is not defactor, concurrency among in-



stances and schemas access may exist in OODB, especially
in the design environments. The schema locking and in-
stance locking mechanism developed above must be inte-
grated to be a unified model. The three components of the
MGL model: lock modes, protocols and compatibility ma-
trices must be integrated. Although protocols A, B, C have
distinct lock modes, they follow the same procedure in lock
setting and lock releasing. Both lock modes and protocols
can be combined together without any modification.

As mentioned before, schema reading is independent of
instance access. RS mode thus is compatible with every in-
stance locking mode. Every instance lock also has to lock
associated schemas in RS mode, which is incompatible with
WS mode. This leads to the derivation that every instance
lock mode conflicts with WS mode. Table 4 shows the inte-
grated compatibility matrix. The block with dots is the
compatibility matrix in Table 3.

TABLE 4
INTEGRATED COMPATIBILITY MATRIX

Requested Mode

RS | WS | Li

RS Y N Y
Current Mode | WS N
Li Y

Li: instance lock mode

4.4 Locking Scheduling

Any lockable object in OODB can be viewed as a resource
in a computer system. The set of all requests for a particular
object is kept in a queue sorted by some fair scheduler as
indicated in Fig. 7. A fair scheduler must guarantee that no
particular transaction will be blocked indefinitely [9]. In
other words, a transaction which is forced to wait due to the
locking protocol will eventually come out of the wait state.

Server
RQ :
[
—» X¥ X | 8*|RS|IX aB :
IS*|RS| S |IS

Fig. 7. Diagram of lock requests scheduling: FCFS.

The granted requests are kept in a buffer called granted
buffer(GB). All requests in the granted buffer are mutually
compatible and are granted concurrently. The combining
mode of all the requested modes in the granted buffer is
called buffer mode(BM). Each time when a request leaves
the granted buffer due to unlocking or transaction rollback,
the buffer mode is recomputed. Requests in requesting
queue(RQ) may enter the granted buffer if they are com-
patible with the buffer mode. Each time a request enters the
granted buffer, the buffer mode is recomputed by looking
up Table 5.

A simple technique for providing starving-free guarantee
is first-come-first-service (FCFS). All lock requests for a
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given object are granted in first come first serve order. FCFS
is a simple, fair policy. For example, in Fig. 7, IS*, RS, S, IS
modes in the granted buffer are mutually compatible and
are granted concurrently. The buffer mode is S*. The request
with IX mode in the front of the requesting queue is wait-
ing, because IX is incompatible with the buffer mode S*.
Fig. 8 shows the diagram after IS*, S, IS leave the granted
buffer. Requests waiting in RQ will try to enter the granted
buffer and a new granted buffer is built as depicted in
Fig. 9. Locking requests enter the granted buffer according
to the sequence of the requests issued.

Server
RQ o ,
RS BM
— = X*|X | S¥|RS| IX 3 6B
RS
Fig. 8. After IS, S, IS* leave granted buffer.
Server
RQ St
x| X [ g# il ot

Fig. 9. Building a new scheduling state.

4.5 Dual Queue Scheduling

In some circumstances, FCFS is not good enough when
considering the degree of concurrency. For the example, in
Fig. 10, shared locks and exclusive locks are interleaved and
only one lock request is granted at any moment. There is no
concurrency at all in this case.

Server

RQ

S*|IX|IR|X [8* X+ S X [IS X

Fig. 10. Degradation caused by FCFS scheduling.

Observing the degradation that can occur with FCFS
scheduling, we realize that in certain situations the priority
of requests may be changed to increase concurrency. Yet the
new policy must be starvation-free. Based on FCFS, the
dual queue, scheduling scheme is developed. »

The dual queue scheme is similar to two-level feedback
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TABLE 5
THE COMBINING MODES FOR MGL

S X [§* X* {1IS X IS* [IX* (SIX |SIX*{IR {IW [IRI | IWI |RS {WS
S S X |§* X* |S SIX | S* |SIX* |SIX |SIX*|S X IS SIX |S WS
X X X |Xx* X* [ X X X* 1X* X X* X X [X X X WS
S |S* X* | S* X* | S* SIX*| S* [ sSIx* |SIx* | SIX* | S* [X* |s* | SIX*|S* |WS
X* | X* X* | X* X* | X* X* X* | X* X* | X* X* | X* [X* | X* |X* |WS
IS |S X |S* X* {IS X IS* |IX* |SIX |SIX*|S X JIS |IX (IS (WS
X SIX | X {SIX*| X* [IX | X IX* {IX* [SIX [SIX*{SIX |X |IX |IX X WS
Is* {S* X* | S* X* [IS* | IX* | IS* |IX* |SIX*|SIX* | S* |X* |IS* | IX* |IS* | WS
IX* [ SIX* | X* | SIX* | X* |IX* | IX* | IX* | IX* | SIX* | SIX* | SIX* | X* |IX* | IX* |IX* | WS
SIX |SIX | X §SIX*| X* [SIX | SIX | SIX*{SIX* |SIX [SIX*|SIX (X |SIX |SIX |SIX |WS
SIX* | SIX* | X* | SIX* | X* | SIX* | SIX*| SIX*|SIX* |SIX* {SIX* | SIX* | X* | SIX*| SIX* | SIX* | WS
IR (S X | S X* (S SIX { §* |SIX* |SIX [SIX* IR |IW|[IR |IW |IR |WS
w X X 1X* X* X X X* | X* X X* W |IW IW | IW [IW | WS
IRT |S X s X* (IS IX IS* | IX* |SIX {SIX* | IR [IW [IRI { IWI {IRI {WS
IWLISIX | X | SIX*| X* |IX X IX* | IX* (SIX [SIX* {IW | IW |IWI | IWI | IWI | WS
RS (S X (8§ X* 118 X IS* [ IX* SIX |SIX* 1 IR |IW (IRl { IWI | RS | WS
WS |WS | WSJWS | WSIWS | WS | WS |WS |WS |WS |WS |WSIWS | WS [WS [WS

queue scheme. The queue in the first level is the requesting
queue (RQ) and the queue in the second level is the delay-
ing queue(DQ) as shown in Fig. 11. All lock requests for
some class object are appended to the end of RQ. If the re-
quest in the front of RQ is incompatible with the buffer
mode, the request then is appended to DQ. At the begin-
ning, the system scheduler switches to RQ and the server
will serve the requests in RQ. The system scheduler will
switch to DQ periodically or when RQ is empty. Each time
when the system scheduler switches to DQ, it will not
switch back to RQ until the requests in DQ) are all served.
This guarantees that no requests will be delayed indefi-
nitely. Figs. 11 and 12 show that the scheduler is going to
empty DQ. Comparing Fig. 11 and Fig. 10, we can see that
the dual queue scheme enhances concurrency. Of course,
the size of the queue and the length of the switching period
need to be analyzed and tuned for optimal performance.

RQ Server
- BM
GB
[ S*| § 18 |IS*
X* X1 X
DQ

Fig. 11. Requests appended to the delaying queue.

4.6 Comparison of MGL with ORION Locking Model

In general, the efficiency of locking models can be com-

pared in two aspects: degree of concurrency and locking
overhead. Comparisons are made between the proposed
model(MGL) and the ORION model [13], [12], [15]. Some
characteristic query examples are used to illustrate the
comparison. These typical examples include queries on
schemas, queries on class lattices and queries on compos-
ite objects.

RQ

Server
—— (S*IIX{IR| X (—— BM
GB
XX X
DQ

Fig. 12. Emptying the delaying queue.

EXAMPLE 5.1. Add an attribute to class C in Fig. 13.

e ORION

1) Lock all superclasses of class C in shared mode. So
classes R, A, and B are locked in S mode.

2) Lock class C in X mode.

3) Lock every subclass of class C in exclusive mode.
Thus classes D, E, F, and G are locked in X mode:

¢ MGL (Protocol A)
1) Lock the superclasses of class C along one super-
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class chain in RS mode. So, classes A and R (or B
and R) are locked in RS mode.

2) Lock class C in WS mode.

3) Lock each subclass of class C with more than one
superclass in WS mode. So lock class E in WS mode.

Fig. 13. Comparison: Write schema.

- ORION introduces large overhead in locking subclasses
and superclasses. Besides, 5 and X modes lock instances as
well as schemas at the same time. The WS mode of MGL
locks the schemas only. The WS mode is well understood
and unambiguous. The MGL model propagates the inten-
tion locks IW along one superclass chain. The locking over-
head of ORION is larger than MGL in this example.

EXAMPLE 5.2. Read all the attributes of class C in Fig. 14.
e ORION

1) All superclasses of class C are read. So, classes A, B,
and R are locked in S mode.
2) Lock class C in S mode.

s MGL (Protocol A)

1) Lock the superclasses of class C along one super-
class chain in RS mode. So, classes A and R (or B
and R) are locked in RS mode.

2) Lock class C in RS mode.

ORION introduces large locking overhead in locking su-
perclasses. Due to lack of supporting lock modes for read-
ing schema, ORION uses S mode to achieve that. The S
mode not only locks the schema of class C but also locks all
instances of class C in shared mode implicitly. If there is
another query to update some instances of class C, an IX
lock on class C will be issued which is conflicting with S.
MGL supports RS mode for schema reading. From Table 4,
RS mode is compatible with all instance lock modes. Thus
MGL has higher degree of concurrency than ORION on
reading schemas.

EXAMPLE 5.3. Update all instances of class LandVehicle

}
|
\

(single class) that are of red color (Fig. 6).

e ORION

|
1) Lock class Land Vehicle in IX mode. i
2) Lock the selected instances in X mode. |

Fig. 14. Comparison: Read schema.

e MGL (Protocol B)

1) Lock the superclasses of LandVehicle along one
superclass chain in IWI mode. So class Vehicle is
locked in TWI mode.

2) Lock class LandVehicle in IX mode.

3) Lock the selected instances in X mode.

ORION is more efficient in locking for single class que-
ries. MGL introduces  some overhead in locking super-
classes for single class queries. How large the overhead is
depends on the number of superclasses.

EXAMPLE 5.4. Update all the instances of class LandVehicle
and its subclasses that are of red color (Fig. 6).

» ORION o

1) Lock class LandVehicle in IX mode.

2) Lock each subclass of class LandVehicle in IX mode.
That is, lock class RoadVehicle and RailVehicle
in IX mode.

3) Lock the selected instances in X mode.

¢ MGL (Protocol B)

1) Lock the superclasses of LandVehicle along one |
superclass chain in IW mode.

2) Lock class Land Vehicle in IX* mode.

3) Lock the selected instances in X mode.

The locking overhead of ORION mainly depends on the 1
number of subclasses. Each subclass is to be set to IX
mode. The locking overhead of MGL is mainly caused by
intention locks on superclasses. The overhead of MGL is i
lower than ORION.

EXAMPLE 5.5. Update the composite object rooted at

|
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Instancelj'] in Fig. 15. Instance[i’], Instance]j’], Instance[k’],
Instance[l'], Instance[m’], and Instance[n’] belong to classes T,
¥, K, L, M, and N, respectively. Instance(j’] and Instance[l]
have shared references on Instancefn’].

e ORION

1) Lock class J’ in IX mode.

2) Lock composite object Instance[j'] in X mode.
3) Lock the component class M’ in IXO mode.
4) Lock the component class N” in IXOS mode.

s MGL (Protocol C)

1) Lock class ]’ in IX mode.

2) Lock one of Instance[j'}'s parent instance in IX
mode. That is, set IX mode to Instance[i'].

3) Lock composite object Instancelj'] in X mode.

4) Lock component objects which are shared refer-
enced with X mode. So, lock Imstance[n’] in X
mode.

5) Lock the component class M’ in IX* mode.

6) Lock the component class N’ in IX* mode.

/ Instance[m']
Instancelj'] \

/ Instance[n']
Instanceli'] /

Instance[l]
———m exclusive referenced

Instancelk'] ——» ghared referenced

Fig. 15. Example composite objects with shared references.

The protocol of ORION locks the component class N’ in
IXOS mode and from Table 1, IXOS mode is incompatible
with IS, IX, S, SIX, X modes. The protocol of MGL, however
locks N’ also in IX mode and from Table 1, IX mode is only
incompatible with S, SIX, X modes. The degree of concur-
rency of ORION is lower than MGL again.

In general, the locking overhead is somewhat query de-
pendent. From Example 5.3, for single class query, the over-
head of ORION is lower, while for schema change in Ex-
ample 5.1, its overhead is larger. However the degree of
concurrency of ORION is never greater than MGL.

5 SUMMARY

The total number of lock modes in the proposed MGL
model is sixteen, two modes for schema locking and four-
teen modes for instance locking. The lock modes of the
MGL models are summarized in Table 6. The properties of
the multi-granularity locking model (MGL) are summa-
rized in the following:

¢ Schema locking is provided.

¢ Composite object locking is provided.

o More concurrency is gained by adopting a dual queue
scheduling scheme.

e A rich set of locking modes is provided. MGL can di-
rectly support twelve different operations which are

tabulated in Table 7.
TABLE 6
SUMMARY FOR LOCKING MODES OF MGL
Date Granule Lock Modes Intention
Allowed Lock
Schema Class Lattice WS RS
Single Class RS RS
Class Lattice S*, X*, 18, IX*, SIX* IR, IW, IRI, IW1
Instance | Object Single S, X, IS, IX, SIX_° 1R, IW, IRI, IWI
Instance | Simple S, X
Object Com- 8, X, IS, IX, SIX 18, IX
posite
TABLE 7
OPERATIONS DIRECTLY SUPPORTED BY MGL
Operations Lock Mode
Supported
read schema of class C RS
write schema of class C WS
read all instances of a single class S
write all instances of a single class X
read some instances of a single class IS
write some instances of a single class 1X
read all and write some instances of a single class SiX
read all instances of a class lattice S*
write all instances of a class lattice X*
read some instances of a class lattice 1S*
write some instances of a class lattice IX*
read all and write some instances of a class lattice SIX*

By supporting a full set of lock modes for class lattices,
MGL has low overhead on locking class lattices. It also
gains higher degree of concurrency by applying the hierar-
chy locking on composite objects and a dual queue schedul-
ing scheme. These results support that the proposed MGL is
quite an efficient locking model with higher degree of con-
currency. However, the MGL model still can be improved
and extended in some ways. Some future works are listed
as follows:

o Performance evaluation: Although from the comparison
examples, we see the proposed MGL model has better
degree of concurrency than ORION. A formal and
systemic analysis is needed. A performance evalution
experiment of the MGL model using simulation
technique will be our most important future work.

o Version: Versions are often made available in an
OODB for supporting many applications, especially in
design environments. Objects can be related by the
version-derivation relationship. Locking on version-
able objects is still an open research issue.

o More semantic concurrency control: The semantics em-
ployed in the MGL is the relationships between ob-
jects only. The semantics of transactions may be used
to enhance concurrency further.

o Nonserializability criteria: Serializability is a too restric-
tive criterion for transactions in many applications. It
prevents a transaction from seeing the intermediate re-
sults of another transaction. For the design environ-
ments, designers may need to share uncommitted re-
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sults with their co-workers. The additional semantics in
object-oriented databases may be used to express flexi-
ble correctness criteria other than serializability.

We conclude this paper with a remark that, by utilizing
the semantics in object-oriented databases, more efficient
locking can be achieved.
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