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ABSTRACT The learning ability of neural networks (NNs) enables them to solve time series prediction
problems. Off-line training can be applied to design the structure and weights of NNs when sufficient
training data are available. However, this may be inadequate for applications that operate in real time,
possess limited memory size, or require online adaptation. Furthermore, the structural design of NN (i.e., the
number of hidden neurons and connected topology) is crucial. This paper presents a novel algorithm, called
the symbiotic structure learning algorithm (SSLA), to enhance a feedforward neural-network-aided grey
model (FNAGM) for real-time prediction problems. Through symbiotic evolution, the SSLA evolves neurons
that cooperate well with each other, and constructs NNs from the neurons with hyperbolic tangent and
linear activation functions. During construction, the hidden neurons with the linear activation function can
be simplified to a few direct connections from the inputs to the output neuron, leading to a compact network
topology. The NNs share the fitness value with participating neurons, which are further evolved through
neuron crossover and mutation. The proposed SSLA was evaluated through three real-time prediction
problems. Experimental results showed that the SSLA-derived FNAGM possesses a partially connected
NN with few hidden neurons and a compact topology. The evolved FNAGM outperforms other methods in
prediction accuracy and continuously adapts the NN to the dynamic changes of the time series for real-time

applications.

INDEX TERMS Symbiotic evolution, structure learning, neural network, grey model, prediction.

I. INTRODUCTION

Time series prediction is a challenging problem when predict-
ing future values according to past observations. Neural net-
works (NNs) have been developed to cope with the time series
forecasting problems because of their learning ability [1].
NN are constructed from numerous interconnected process-
ing units (called “neurons’’) that imitate biological neural
systems. These networks are also data-driven, in that they
derive previously unknown input—output relationships from
training examples [2], [3], and they can therefore approx-
imate functions without prior knowledge if sufficient data
are available. This characteristic makes them practical for
solving various prediction problems, because acquiring time
series data is typically easier than producing reliable theo-
retical estimations about underlying functions. However, the

structural design of NNs (i.e., the number of hidden neurons
and connected topology) is crucial [4]. A NN with a complex
architecture may easily fit a training data set but yield a
poor generalization for an actual testing data set because of
overfitting. However, although a NN with a simple archi-
tecture may save computational costs and processing time,
it may have insufficient storage capability to precisely predict
time series [5]. Therefore, the ideal structure of NNs remains
debatable.

A NN consists of a set of interconnected neurons with a
fully or partially connected architecture. Researchers have
recently endeavored to investigate partially connected NNs
for prediction problems [6]-[8], and have shown that fully
connected NNs may possess unnecessary connections that
lead to a complex structure and longer training times.
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Therefore, studies have suggested reducing the number of
redundant connections and neurons to reduce the complexity
of the NN and improve their generalization ability [9]-[11].
With a growing interest in bioinspired techniques, numerous
approaches have been developed for designing the structure
of NNs along with the connection weights [12], [13]. These
techniques first evolve both the structures and weights of
NN offline, and then apply the trained NNs to prediction
problems.

The offline training of NNs has been successfully applied
to many prediction problems when sufficient training data are
available [14]. However, this may be inadequate for applica-
tions that operate in real time, possess limited memory size,
or require online adaptation [15], [16]. For example, a very
short-term load forecasting network in smart grid applications
targets a time horizon of a few minutes to an hour [17].
To overcome this problem, in a previous study, we developed
a feedforward neural-network-aided grey model (FNAGM)
for real-time prediction [18]. The FNAGM performs one-
step-ahead prediction by a first-order single variable grey
model (GM(1,1)) [19], and compensates for the prediction
error by the NN according to the complementary advan-
tages of the GM(1,1) and the NN. Furthermore, the FNAGM
adopts online batch training to continuously adapt the NN to
dynamic change.

Notably, the FNAGM employs a fully connected NN
wherein the number of hidden neurons is determined through
a trial-and-error process. The prediction ability of the
FNAGM greatly depends on its architecture. When the com-
plexity of the FNAGM increases, the online batch training
(akey technique of the FNAGM) requires longer computation
time and thus may be impractical for real-time applications.
Conversely, a FNAGM with too-small architecture might
make inaccurate predictions because of its limited ability
to process information. Therefore, a flexible and automatic
design is necessary for FNAGMs to achieve short computa-
tion times in online batch training and improve the general-
ization ability for real-time prediction applications.

Symbiotic evolution has been applied to design the
structure of partially connected NNs [9], which is an implicit
fitness-sharing algorithm adopted in immune system mod-
els [20]. In addition to NNs, many studies have applied
symbiotic evolution to develop efficient solutions for fuzzy
controllers and neurofuzzy systems [21]-[25]. These stud-
ies have demonstrated the efficiency and feasibility of sym-
biotic evolution in structure learning. In general evolution
algorithms, each individual denotes a complete solution to a
problem. By contrast, each individual in symbiotic evolution
denotes a partial solution to a problem; complete solutions
are constructed from several individuals. The partial solu-
tions can be regarded as specializations that ensure diversity
and prevent suboptimal convergence. As indicated earlier,
the fitness and performance of a neuron (partial solution)
is determined by how well it cooperates with other neurons
in the same NN (complete solution). Notably, a neuron that
cooperates well with one set of neurons may cooperate poorly
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with other sets of neurons. One previous study [9] proposed
using symbiotic adaptive neuron evolution to construct NNs
by adopting a population of neurons that were each regarded
as a partial solution for the NNs. Because the number of
hidden neurons should be assigned prior to the evolution
process, this algorithm is applicable to a NN when the number
of hidden neurons is known. To the best of our knowledge,
constructing a FNAGM, including a partially connected NN
with considerably fewer hidden neurons and connections in
order to reduce computation time for real-time applications,
remains an open research problem.

This paper presents a novel algorithm, called the symbiotic
structure learning algorithm (SSLA), for designing partially
connected NNs that can be used in a FNAGM for online
learning and real-time prediction applications. This algorithm
evolves neuron and network populations to construct the
topology of the NN through symbiotic evolution. The acti-
vation functions used in the hidden neurons can be hyper-
bolic tangent functions and linear functions. The neurons
are evolved through neuron crossover and mutation, during
which their fitness is assigned according to their fitness shar-
ing within the NN. The proposed SSLA does not develop NNs
with a fixed number of hidden neurons, but rather constructs
NN of various sizes by selecting neurons from the neuron
population. We argue that evolved, partially connected NNs
have more efficient information-processing capabilities per
connection than fully connected NNs in online prediction
problems. Moreover, the evolved NN described herein helps
the FINAGM further reduce the computation time of the online
batch training.

The remainder of this paper is organized as follows.
Section II gives an overview of the FNAGM. Section III
describes the SSLA for designing the FNAGM for predic-
tion purposes. Section IV presents the experimental results
obtained by the SSLA for three prediction problems. Finally,
Section V presents some concluding remarks.

Il. FEEDFORWARD NEURAL-NETWORK-AIDED

GREY MODEL

This section briefly describes the FNAGM [18], which
adopts a NN to reduce the prediction error of the GM(1,1)
through online batch training.! First, a discrete data sequence
{x[k—n+1],x[k—n+2],---,x[k]} of length n > 4 is
acquired. The GM(1,1) estimates the one-step-ahead predic-
tive value as X [k + 1]. The prediction error of the GM(I,1)
canbe computed as ey [k + 1] = x [k + 1]—X [k + 1] inthe
subsequent time step. Once m prediction errors are obtained,
the NN estimates the prediction error of the GM(l,1)
egM [k + 1] online, estimated as egm [k + 1], by using the
m previous prediction errors for k > n + m. Finally, a one-
step-ahead predictive value of the FNAGM, XpnacMm [k + 11,
is obtained by summing X [k + 1] and egm [k + 1], which
should be more accurate than X [k + 1]. The configuration of

1Describing the GM(1,1) in detail is beyond the scope of this paper; details
can be found in [19] and [26].
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FIGURE 1. Configuration of the FNAGM.

the FNAGM prediction is shown in Fig. 1, where 71 denotes
a time delay.

The FNAGM adopts online batch training to update the
weights of the NN. This training acquires a fixed number of
previous prediction errors online and updates the weights in
batch mode at each time step. Thus, the FNAGM can improve
the prediction error of the GM(1,1) from the limited number
of batch training patterns acquired online within a limited
computation time. The batch training pattern at time step k
consists of r training patterns and is expressed as

By ={Py_y41,Pr—ys2,...,Pi} fork>n+m (1)

where P; = {ulj],egm[jl} is the jth training pattern,
including input vector u[j] = [egmlj — mleomlj — m +
11...egmlj — 1117 and target egm[j]. Additionally, r =
min {k — (n +m), N} where N > 1. Notably, the size of the
batch training pattern By varies with the number of available
training patterns forn +m + N > k > n+ m, and is fixed at
N fork >n+m-+N.

The Levenberg—Marquardt algorithm [27] is then adopted
to update the weight vector of the NN, v[k], for k > n+m as
follows:

—1
ylk + 1] = v[k] — [GT [k1Glk] + /L[k]I] G” [k] & [k]
@)

where e[k] is an error vector of the NN, G[k] is the Jaco-
bian matrix, and u[k] is a positive scalar parameter. The jth
component of e[k] is computed as ¢;[k] = egmlj] — f(v[k],
ulj),j=k—-—r+1,k—r+2,...,k, with respect to P;,
where f represents an input—output relationship of the NN.
The Jacobian matrix is determined as

_ de [k]
Gkl = av [k]
[ Oek—ry1lk]  Oer—ry1lk] Oex—r+1lk] ]
ovik] ovalk] Bvq[k]
0ek—ri2lk]  Oer—ryalk] 0ek—r12lk]
= ovilk] ovalk] dvylk]
Dy [K] dex[k] Dy [K]
| o[k v, [k] dvglkl |
(3)
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The online batch training analyzes the previous and current
errors, €j[k—1] and ¢;[k], respectively, which are computed
using the same training pattern P;; subsequently, w[k] is
adjusted as follows:

wlk +1]
) k—1 k—1
ulkl/B, if Z’}f'ﬁ’s e7lk] < Z{(:k]ﬁ eflk — 1]
kI g i 30 gkl =) gtk =11
“)

where 8 > 1,s =min{N — 1,k—n—m—1},andk > n+
m + 2. As the current error improves, t[k] becomes lower;
otherwise, w[k] increases. Consequently, the FNAGM can not
only predict signals but also continuously learn to improve
the prediction error through online batch training. A stepwise
procedure of the FNAGM is described in [18].

i i SSLA

! | Initialization phase | 1 (Off-line)

- | Evaluation phase | H

: | Reproduction phase | :

1 1

"""" ——¥ " FNAGM
| Initialization phase | (On-line)

| GM(1,1) prediction phase |

FNAGM prediction phase
(On-line batch training)

FIGURE 2. Architecture of the proposed forecasting system.

Ill. SYMBIOTIC STRUCTURE LEARNING ALGORITHM

This section presents the novel forecasting system com-
posed of structure learning and online parameter learning,
as shown in Fig. 2. The proposed system first evolves the
structure of the NN of the FNAGM by applying the SSLA,
and then performs online batch training on the evolved NN.
The SSLA determines the number of hidden neurons and
the connected topology of the NN based on a small time
series data set acquired for offline structure learning. Once the
structure learning is completed, time series data are continu-
ously acquired for online prediction and parameter learning.
In other words, the evolved FNAGM not only predicts the
time series but continuously adapts itself to dynamic changes
in the time series by performing online batch training. The
SSLA consists of three phases, namely initialization, evalua-
tion, and reproduction, which are described in the following
sections.
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A. INITIALIZATION PHASE

1) CODING

The initial step in the SSLA is the coding of a neuron and
a NN. Two populations are used in the SSLA: the neuron
population and the network population. In the neuron popula-
tion, each individual represents a neuron that denotes a partial
solution to a NN. Each individual consists of numerous genes
that represent the weights and activation function. Consider
an example prediction problem with four inputs. As shown
in Fig. 3, each individual consists of seven genes: w,, a, wpp,
Wnl, Wh2, W3, and wpq, which represent the output weight,
activation function type, weight connected to the bias, and
weights connected to four inputs, respectively. The activation
function type indicates which activation function the neuron
uses (1 = hyperbolic tangent function; 0 = linear function).
Notably, some neuron weights in Fig. 3 are zero, which means
that the weights are not connected to the neurons and the
neurons are only partially connected. Fig. 4 depicts the three
example neurons of Fig. 3.

Neuron | Wo | Whh | Whi | Wi2 | Wn3 | Wha |

Q

NewonA [ 15[ 1 [oo]13]21]02]01]

lo7]o]o]o]o]2s5]02]

(=]

Neuron B

NewronC  [0.3] 0 [-04] 0 [0 [ o] o]

FIGURE 3. Coding of a neuron in the neuron population and three
examples.

Neuron j& Neuron B % Neuron y)
« OO OO0O0O0
b uy uy uz uy b wy uy uy wuy Uy

b w uy uy

FIGURE 4. Graphical representation of three example neurons in the
neuron population.

In the network population, each individual represents a
NN, which is constructed from the neurons in the neuron
population. An example NN with three hidden neurons is
shown in Fig. 5a. The output of the NN is obtained by sum-
ming the outputs of the three hidden neurons. As illustrated,
the NN has a partially connected topology and consists of
various activation functions. Because the output of the neuron
with the linear activation function is the linear combination
of the inputs, the NN in Fig. 5a can be simplified as the
equivalent NN shown in Fig. 5b, where the hidden neurons
with the linear activation function are transformed into only
a few weights directly connected to the output neuron. For
example, Neuron C in Fig. 4 can be simplified as the output
bias and Neuron B allows u3 and u4 to directly connect to the
output neuron. Therefore, the SSLA can result in an arbitrary
feedforward NN.
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FIGURE 5. (a) NN constructed with three neurons. (b) Equivalent NN
model.

2) CREATING NEURON AND NETWORK POPULATIONS

The SSLA first creates a neuron population by randomly
generating N, neurons with the weights and activation func-
tion type randomly assigned. Some of these weights are also
randomly selected to be disconnected. The SSLA then creates
a network population by using the following steps:

Step 1) P groups are constructed in the network population,
where each group consists of d empty spaces. Thus,
the network population consists of P x d empty
spaces, where each empty space could store a NN.
The NNs have the same number of hidden neurons
in each group. For example, the NNs in Group 1
have one neuron and those in Group P have P neu-

rons.
Step 2) Group p is randomly selected from P groups where
p=12,...,P.

Step 3) One empty space in Group p is selected, and a NN is
built by randomly selecting p distinct neurons from
the neuron population.

Step 4) The NN is trained with a backpropagation (BP)
algorithm [28] for ¢ epochs.

Step 5) The selected p neurons are replaced in the neuron
population with the trained p neurons of the NN.
The process then returns to Step 2, and Steps 2-5 are
repeated until the network population has no empty
spaces.

In short, the SSLA evolves neurons and constructs NNs
repeatedly and alternatively, creating a network population by
selecting neurons from a neuron population that can solve a
prediction problem. Because each neuron represents a partial
solution, each newly added neuron focuses on an unsolved
part of the problem that the other neurons have not yet
solved. The final NN is expected to learn all the training data
using various neurons that exhibit separate functionalities
and cooperate with each other. Therefore, each neuron in the
neuron population can be selected, at most, only one time in
Step 3; this ensures that the NN is constructed from distinct
neurons. Moreover, all of the neurons should be selected at
least once for the construction of the NNs in one generation,
which facilitates an evaluation of the performance of all
the neurons. Notably, however, this mechanism cannot be
guaranteed because of the random selection in Step 3, and
some neurons in a particular generation might not be selected.
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Nevertheless, this phenomenon does not harm the evolution,
as indicated by the experimental results of the present study.
By creating the network population, the SSLA generates
numerous NNs with varying numbers of hidden neurons and
connection topologies so that a NN with the most appropriate
structure can be evolved.

To accelerate the learning process, the NN in the network
population is trained by a BP algorithm for ¢ epochs, where
¢ is a user-specified parameter (notably, this algorithm is
only applied to the connected weights, not the disconnected
weights). Next, the trained neurons of the NN individually
replace the neurons in the neuron population. For example,
Neurons A and B are selected to construct a NN, and then
are trained by the BP algorithm. After ¢ epochs, two trained
neurons, Neurons A* and B¥, respectively replace Neurons A
and B in the neuron population. The mechanism in Step 3 not
only allows individual replacements in Step 5, but prevents
multiple trained neurons from replacing one neuron when
a single neuron is repeatedly selected when constructing
the NN. Additionally, the replaced neurons can be further
selected to construct another NN, where the initial weights of
the neurons are the trained weights. Thus, newly constructed
NNs can have superior functionality if its neurons have been
trained several times when participating in previously con-
structed NNs. Therefore, later-constructed NNs may have
better fitness than earlier-constructed ones. For example, if
the NNs of group 1 are trained earlier than those of Group P,
then the NNs of Group P will probably have better fitness
than those of group 1. This may guide the evolution toward a
solution with a large number of hidden neurons, which is not
the purpose of the SSLA. To achieve a reasonable evolution
of the neuron population and network population, Step 2
introduces randomness into the group selection, to randomly
select one group and construct a NN within it.

B. EVALUATION PHASE

The root-mean-square-error (RMSE) of a NN is also calcu-
lated while it is being constructed and trained by the BP algo-
rithm. The inverse of the RMSE is regarded as the fitness
of the NN, and therefore a smaller RMSE represents better
fitness. The basic idea of symbiotic evolution is to assign
fitness values to the partial solutions (i.e., the neurons in the
neuron population), with the overall fitness of a NN shared
by each participating neuron. In other words, the fitness of a
neuron is determined by summing the shared fitness values
from the NNs in which the neuron has participated, and then
dividing this sum by the number of times the neuron has
been selected. Consequently, elitism is adopted to ensure
that the NN with the best fitness among all generations is
archived. Once the maximum generation is achieved, the
SSLA is terminated; otherwise, the reproduction phase is
entered.

C. REPRODUCTION PHASE
This section describes neuron crossover, neuron mutation,
and survival selection. Specifically, the reproduction phase
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evolves a new neuron population for the next generation, and
then guides the evolution to achieve a near-optimal solution
(i.e., the most appropriate structure and weights for a partic-
ular NN).

1) NEURON CROSSOVER

The structure and weights of the neurons are exchanged
simultaneously through three steps. First, two parents are
selected according to binary tournament selection [29]. Sec-
ond, the crossover point is randomly selected, as shown in
Fig. 6. Third, the components are exchanged starting from
the crossover point to the end of the parents. Finally, two
offspring (Neurons A" and B’) are generated.

Crossover point

Parents

Y
NewonA [15] 1 [09[13[21]02]0.1]
NewronB  [07] 0 [0 [ o] o ]2s5]-02]

Offspring ﬂ

Neuron A’

[15] 1 Joo] o] o [25]02]

NewronB* [07] 0 | 0 [13]21]02]0.1]

FIGURE 6. Neuron crossover.

Mutation point

NewronC  [03] 0 [-04] 0 [ o[ o] o]
NewronC* (03] 1 [0 [20] 0] 0] 0]

FIGURE 7. Neuron mutation.

2) NEURON MUTATION

Neuron mutation is performed on the connectivity and acti-
vation function type of a neuron excepted for the output
connection. The frequency of applying the neuron mutation
operator is controlled by a mutation probability p,,, which is
a user-specified parameter. For each gene, a random number
r with a uniform distribution between 0 and 1 is generated.
If r < pp, then the neuron mutation is performed on the
gene. Three types of neuron mutations are presented in Fig. 7:
the first shows the activation function type being modified
from O (linear function) to 1 (hyperbolic tangent function),
the second shows the connected weight being modified from
—0.4 (connected) to 0 (disconnected), and the third shows the
disconnected weight being modified from O (disconnected)
to 2.9 (connected). Notably, the value of 2.9 is randomly
assigned through normal distribution with a zero mean and
unit variance after the weight is connected.
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Parents Offspring
Fitness Neuron 19 Neuron 19
Neuron 12 Neuron 12
N,/2 ] . - Copy N,/2 best
: : neurons
Neuron 5 : Neuron 5
Neuron 7 Neuron 7°
Neuron 2 Neuron 2’ B
'y neuron
. . ~ crossover and
v i . neuron mutation

FIGURE 8. Neuron reproduction.
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Step 13) Generational replacememl | Step 3) Construct an NN I..l_
| Step 4) Train the NN |

—

Step 12) Neuron mutation |

Evaluation
phase

Step 11) Neuron crossover | | Step 6) Calculate fitness of NN |

1 H
H H
1 H
I i
i |
H | Step 7) Assign fitness to neuron | i
'

: |
: :
: :
H I

Step 10) Copy the best N,/2 parentsl | Step 8) Preserve the best NN |

FIGURE 9. SSLA flowchart.

3) SURVIVAL SELECTION
In the reproduction phase, offspring are generated through
three steps, as shown in Fig. 8. The first step is to rearrange
the parents in descending order of fitness, the second step is to
copy the best N,,/2 parents as the offspring, and the third step
is to generate the remaining N,/2 offspring through neuron
crossover and mutation based on all of the parents. In the
SSLA, generational replacement is adopted as the survival
selection method; thus, the offspring replace all of the parents
and then become parents themselves in the next generation.
For example, Neuron 7' in Fig. 8 represents the offspring
neuron that replaces Neuron 7 (although Neuron 7’ is not
generated from Neuron 7) and which is stored in the same
memory as Neuron 7.

The major steps of the SSLA are outlined in Fig. 9, and can
be summarized as follows:
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Initialization phase:

Step 1) Create a neuron population consisting of N, neu-
rons.

Step 2) Create a network population consisting of P groups
with d empty spaces.

Step 3) Randomly select one group, Group p, to construct a
NN in an empty space based on randomly selected
p neurons from the neuron population.

Step 4) Train the NN by using the BP algorithm for ¢
epochs.

Step 5) Replace the selected p neurons in the neuron pop-
ulation with the trained p neurons. Return to Step 3
and repeat Steps 3—5 until each group in the network
population has d NNs.

Evaluation phase:

Step 6) Calculate the fitness of the NN.

Step 7) Assign fitness values to the neurons in the neuron
population through fitness sharing.

Step 8) Preserve the NN with the best fitness.

Step 9) If maximum generation is achieved, then terminate
the algorithm; otherwise, continue to Step 10.

Reproduction phase:

Step 10) Copy the best N,/2 parents as the offspring.

Step 11) Generate the remaining N,/2 offspring through
neuron crossover based on the whole neuron popu-
lation.

Step 12) Perform neuron mutation on the N,/2 offspring
from Step 11.

Step 13) Perform the generational replacement and return to
Step 2.

IV. EXPERIMENTAL RESULTS

This section provides three examples that verify the per-
formance of the SSLA-derived FNAGM, called the
FNAGM-SSLA, in real-time prediction applications.The
first example predicts the chaotic time series. The second
example predicts the object trajectory acquired from a vision-
based robot. The third example predicts the lower limb
motion for a rehabilitation system. The experiments were
executed with an Intel Pentium CPU at 1.5 GHz with 512
MB RAM.

A. EXAMPLE 1: CHAOTIC TIME SERIES PREDICTION

The Mackey—Glass system [30] is a benchmark system of
time series prediction research, as shown in Fig. 10a. It gen-
erates an irregular time series from the following delay dif-
ferential equation:

dx(t)  02x(t — 1)
. 14+x191 —1)
where T = 25 and x(0) = 1.2 in the simulation. The
objective involves using [x(t — 3)x(t — 2)x(t — 1)x(¢)] to
predict x(¢ + 1). Thus, the input of the NN in the FNAGM

is [eam(t — 3)egm(t — 2)egm(t — 1)egm(?)] and the output
is egm(t + 1). The first 250 input—output data pairs are used

—0.1x(t) 5)
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as the training data for the structure learning of the FNAGM
by the SSLA. The initial values of u and 8 are set at 0.001
and 4/3, respectively, in the FNAGM. The parameters of the
SSLA are established as follows: probability of mutation
(pm) = 0.1, neuron population size (N,) = 50, number of
groups (P) = 5, number of group members (d) = 3, and
maximum number of generations (Gpax) = 250.

To compare the performance of the FNAGM-SSLA with
other methods, the GM(1,1) [19], advanced GM(1,1) [31]
and FNAGM [18] were implemented, where the advanced
GM(1,1) adopted the Lagrange polynomial to further
improve the GM(1,1), and the FNAGM was designed without
the SSLA. Furthermore, a NN applied to forecasting time
series [32] was implemented to identify the strengths and
weaknesses of the FNAGM-SSLA. The NN adopted the first
250 input—output data pairs to train the weights offline, and
then predicted the subsequent 750 input—output data pairs
online. The number of hidden neurons of the FNAGM and
NN were selected using a preliminary test, in which the
performance of both was evaluated with 1-20 hidden neu-
rons. The evaluation results showed that the FNAGM with
four hidden neurons and the NN with seven hidden neurons
exhibited the optimal performance; both the FNAGM and NN
in this scenario possessed a fully connected topology.

w00 500 600
Time Step

(@ (b)

00 200 90 40 S0 @0 700 0 @0 1000
Time Step

© d

am w0 @0 7m0 @0 G
Time Ste

FIGURE 10. (a) Mackey-Glass time series in Example 1 and the
corresponding absolute prediction errors of (b) GM(1,1); (c) advanced
GM(1,1); (d) NN; (e) FNAGM; (f) FNAGM-SSLA.

Fig. 10b—f show the absolute prediction errors of these
methods. The FNAGM outperformed the GM(1,1), advanced
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GM(1,1), and NN, whereas the FNAGM-SSLA further
improved the FNAGM and had a smaller prediction error.
Although the FNAGM-SSLA had a larger prediction error
in the early time steps, it continually learned to predict and
improve the prediction error.

TABLE 1. Comparison of prediction results for example 1.

Advanced

GM(1,1) GM(1,1) NN FNAGM FNAGM—SSLA

RMSE" 1.09x107 1.10x10° 1.41x10° 9.39x10* 6.92x107*
N, 7 4 29
N. 43 25 13.6
T, 4.08x10™* 4.15x10* 1.81x10*  4.80x107° 1.90x10°°

# for k> 250

To more clearly illustrate the efficiency of the proposed
FNAGM-SSLA, Table 1 summarizes a comparison of the
RMSE, number of hidden neurons (), number of connec-
tions (N.), and computation time of each prediction step
(T, in seconds) for all of the methods. The computation time
was measured from reading new time series data until the one-
step-ahead predictive value was determined. All results of the
NN, FNAGM, and FNAGM-SSLA are the average of ten
independent runs. In particular, the FNAGM—-SSLA exhibited
a smaller RMSE (6.92 x 10~%) than did the other methods.
It also had a more compact structure than the FNAGM and
NN in terms of N and N, because of the use of the SSLA.
This implies that more connections do not necessarily lead
to superior prediction performance; the key to improving
prediction ability is the appropriateness of the connected
topology, rather than the number of connections. Because
the FNAGM-SSLA had fewer connections (13.6 on aver-
age) than the FNAGM (25) and NN (43), it required less
computation time (1.90 x 1073 s on average) than did the
FNAGM (4.80 x 103 s) for both prediction and online
batch training. Although the FNAGM-SSLA required more
computation time than did the NN (1.81 x 10~ s) for online
batch training, it can be employed for real-time prediction
applications where the sampling time is longer than 2 ms.

b u uy uy uy

FIGURE 11. Evolved NN of the FNAGM-SSLA for Example 1.

Fig. 11 shows the evolved NN of the FNAGM, with the
blue lines representing weights with positive values and the
red lines representing weights with negative values. Notably,
the width of the lines is proportional to the relative strength
of the weight. The inputs uy, u>, u3, and uq represent egm(?),
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egMm(t — 1), egm(t — 2), and egm(? — 3), respectively. Addi-
tionally, the evolved NN consists of two hidden neurons with
a hyperbolic tangent activation function and ten connections
(of note, the bias does not connect to either hidden neuron).
Furthermore, u3 connects to the right neuron while uy, us,
and u4 do not. This indicates that the evolved NN originally
consisted of a few hidden neurons with a linear activation
function. According to the concept described in Section III-A,
the evolved NN can be further simplified to an equivalent NN
by transforming the hidden neurons with a linear activation
function into weights connected between the inputs and the
output neuron. Therefore, 1] —u4 directly connect to the output
neuron because of simplification. The SSLA’s emphasis on
evolving neurons with linear and hyperbolic tangent acti-
vation functions in the reproduction phase can reduce not
only the network complexity but also the computation time;
thus, the evolved NN is clearly a partially connected feedfor-
ward NN.

B. EXAMPLE 2: OBJECT TRAJECTORY PREDICTION
A low sampling rate and high latency are inherent problems
in most vision systems [33]. Thus, a robot must predict object
trajectories in order to make adequate decisions for real-time
human-robot interactions. To demonstrate the ability to solve
a real problem, the FNAGM-SSLA was adopted to predict
the object trajectory for a vision-based robot (described in
detail in [34]). The movement of the object was generated
according to an arbitrary pattern with varying velocity and a
set level of noise. The movement was captured by the camera
of the robot (30 frames per second) in an indoor environment
and is shown in Fig. 12a. This experiment was designed to
predict movement during one sampling interval (3.3 x 1072 s
in this case), and the input—output data pair was obtained in
the same format as that in Example 1 (which adopted the four
most recent data points as the input data and
the one-step-ahead value as the output data). The setup of the
FNAGM-SSLA was identical to that in Example 1, and the
input—output data were normalized within the range [—1, 1].
To evaluate the effectiveness of the proposed
FNAGM-SSLA, the GM(1,1), advanced GM(1,1), FNAGM,
and NN were implemented, and the number of hidden neu-
rons in the FNAGM and NN were selected following the same
procedure used in Example 1. Consequently, the FNAGM
with five hidden neurons and NN with four hidden neurons
exhibited the optimal performance; notably, both possessed
a fully connected topology. The training procedure of the
NN was also identical to that for Example 1, and Fig. 12b—f
show the absolute prediction errors of these methods.
Notably, the GM(1,1) outperformed the advanced GM(1,1)
and NN in this example, whereas the advanced GM(1,1) and
NN outperformed the GM(1,1) in Example 1. Because the
movement pattern was inconsistent over time, the GM(1,1)
adjusted its parameters to handle the movement variations
when online, whereas the NN did not. However, the FNAGM
outperformed the GM(1,1) because of the application of
the online batch training, and the FNAGM-SSLA further
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FIGURE 12. (a) Object trajectory in Example 2 and the corresponding
absolute prediction errors of (b) GM(1,1); (c) advanced GM(1,1); (d) NN;
(e) FNAGM; (f) FNAGM-SSLA.
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TABLE 2. Comparison of prediction results for example 2.

Advanced
GM(LD) ‘G (L) NN FNAGM FNAGM-SSLA
RMSE*  6.6491 29.5957  7.9706 6.0348 5.3806
N, 4 5 13
N, 25 31 8.7
T, 4.08x10* 4.15x10% 1.71x10*  8.00x10° 1.80x107
# for k> 250

improved the prediction error of the FNAGM because of the
evolved partially connected NN.

Table 2 compares all of the methods in terms of their
RMSE, Nj, N, and T, results, which are the average of ten
independent runs. In particular, the FNAGM-SSLA achieved
asmaller RMSE (5.3806) than did the other methods. Further-
more, the FNAGM-SSLA exhibited fewer hidden neurons
(1.3) and connections (8.7) than did the NN and FNAGM.
The SSLA was demonstrably more efficient at exploring the
structure search space than was observed in the preliminary
test, resulting in the construction of a partially connected
NN with high prediction accuracy. Owing to its compact
structure, the FNAGM-SSLA required less computation time
(1.80 x 1073 ) than did the FNAGM for both prediction and
online batch training. The experiments showed that partially
connected NNs have greater storage capacity per connection
than fully connected NNs in online prediction applications.
Furthermore, it was confirmed that the FNAGM-SSLA can
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b u uy uz uy

FIGURE 13. Evolved NN of the FNAGM-SSLA for Example 2.

continuously adapt the NN to dynamic changes in movement
for a real-time robot vision system.

Fig. 13 shows the evolved NN of the FNAGM-SSLA. This
evolved NN consisted of one hidden neuron with a hyperbolic
tangent activation function and eight connections. Notably,
neither the bias nor the uy were connected to the hidden neu-
ron; however, the bias and four inputs were directly connected
to the output neuron. The direct connection from the inputs to
the output neuron is similar to that shown in Example 1. The
evolved partially connected NN demonstrates that the appli-
cation of the linear activation function in the reproduction
phase is a crucial factor of the SSLA for evolving a compact
topology.

IMU sensors

FIGURE 14. IMU package for Example 3.

C. EXAMPLE 3: ANGULAR RATE PREDICTION

Acquisition of lower limb movement is key in many reha-
bilitation systems. Relatedly, prediction of the lower limb
movement is necessary when a wireless protocol is adopted
to transmit the data of the lower limb movement, which
may lead to a slow response and inaccurate decisions due
to the low sampling rate. Fig. 14 shows an inertial measure-
ment unit (IMU) package that includes inertial sensors and a
wireless unit attached to a subject’s lower limb, which mea-
sures the movement for a real-time rehabilitation application.
Because the lower limb motion (i.e., gait pattern) is a periodic
but irregular pattern, as shown in Fig. 15(a), an online adapta-
tion of the prediction model is required to deal with the time
variant gait patterns. For this experiment, the FNAGM-SSLA
was adopted to predict the lower limb motion (i.e., angular
rate) for a rehabilitation system. The IMU package was devel-
oped in the Mechanical System Control Laboratory at the

9386

salute Preciction E

Angular Rate

by

0 200 0 40 S0 G0 700 800 90 i
Time Step

Time Step

) (b)

=

]

]

B

5

Absolute Prediction Error
Absolute Precicton Error

0

..

0 0 200 00 40 500 B0 700 600 900 1000 800 1000
Time Step

© (d)

me S

Absolute Prediction Error
Absolute Prediction Ertor

h‘md Jmtmmh MM JLLJ“J

FILLL Y, L y L,
0 100 200 300 400 500 B0 700 800 %00 1000
Time Step

LA PHRMEMARA AL ALAN
P o w6

(e) ®
FIGURE 15. (a) Angular rate in Example 3 and the corresponding absolute

prediction errors of (b) GM(1,1); (c) advanced GM(1,1); (d) NN;
(e) FNAGM; (f) FNAGM-SSLA.

TABLE 3. Comparison of prediction results for example 3.

Advanced
GM(LD) " (L1 NN FNAGM FNAGM-SSLA
RMSE* 4.5049 27.0412 43128 4.0682 3.6797
N, 6 6 3.8
N, 37 37 25.8
T. 4.08x107*4.15x10* 1.76x10*  8.19x107 3.85x107
# for k> 250

University of California (Berkeley), where the sampling rate
is 20 Hz. The four most recent data points were adopted as the
input data and the one-step-ahead value was adopted as the
output data. The setup of the FNAGM-SSLA was identical
to that in Example 1.

Fig. 15b—f show the absolute prediction errors of all meth-
ods. First, the FNAGM outperformed both the GM(1,1) and
advanced GM(1,1). Notably, the NN performed better in the
first 250 time steps (training data) than it did in the remaining
750 time steps (testing data). A slight difference between the
training and testing data was observed, and was attributed
to the irregular nature of subject’s gait patterns. However,
although the FNAGM had a larger prediction error in the
early time steps than did the NN, it was able to conduct
continuous adaptation so that its prediction performance in
the remaining 750 time steps was more accurate than the NN.
The FNAGM-SSLA further improved the FNAGM, and it
had an even smaller prediction error than did the FNAGM.
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Table 3 compares all of the methods in terms of their
RMSE, Nj, N¢, and T, results, which are the average of
ten independent runs. Notably, the FNAGM-SSLA achieved
a smaller RMSE (3.6797) than did the other methods; this
method also exhibited fewer hidden neurons (3.8) and con-
nections (25.8) than did the NN and FNAGM. These results
were attributed to the SSLA, which could obtain a FNAGM
with a partially connected NN and thus ensure a higher
prediction accuracy performance than that of a FNAGM
with a fully connected NN. Furthermore, the FNAGM-SSLA
required less computation time (3.85 x 1073 s) than did the
FNAGM due to its compact structure. Although the com-
putation time of the FNAGM-SSLA was longer than the
GM(1,1), advanced GM(1,1), and NN, it was sufficient for
the real-time application that had a sampling time of 0.05 s.
Similar to the first two examples, this experiment showed that
the FNAGM-SSLA can continuously adapt the NN to time
variant gait patterns for a real-time rehabilitation system.

FIGURE 16. Evolved NN of the FNAGM-SSLA for Example 3.

Fig. 16 shows the evolved NN of the FNAGM-SSLA,
which consists of four hidden neurons with hyperbolic tan-
gent activation function and 19 connections. The u; did
not connect to the hidden neurons, whereas the bias and
four inputs were directly connected to the output neuron.
This direct connection from the inputs to the output neuron
was conducted by using the linear activation function of
the SSLA, which facilitates a compact topology and short
computation time.

V. CONCLUSIONS

This paper presented a novel forecasting system, the
FNAGM-SSLA, which first facilitates the structure learning
of an FNAGM by using the SSLA when offline and then
achieves prediction and online batch training by applying
the evolved FNAGM. The primary concepts underlying the
SSLA are to evolve a set of neurons that cooperate well with
each other, and to construct a partially connected NN from
the neurons through symbiotic evolution. The SSLA shares
the fitness of the NNs with the participating neurons and
evolves the neurons through neuron crossover and mutation
processes. Additionally, the SSLA emphasizes evolving neu-
rons with linear and hyperbolic tangent activation functions
in the reproduction phase, resulting in a compact network
topology. Experiments were conducted to assess the perfor-
mance of the FNAGM-SSLA in three real-time prediction
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problems, relative to that of other methods. For all three
problems, the FNAGM-SSLA was found to be the superior
prediction model. The experimental results also demonstrated
that applying the linear activation function triggers the evo-
lution of direct connections from the inputs to the output
neuron, thus reducing network complexity. Moreover, the
FNAGM-SSLA has a more compact topology and smaller
prediction error than does the FNAGM, which has an empir-
ical design. In other words, the partially connected NNs
possess more efficient information-processing capabilities
per connection than fully connected NNs. This implies that
an appropriately connected topology is the key to improv-
ing prediction accuracy. Finally, the experiments revealed
that the FNAGM-SSLA can continuously adapt NNs to the
dynamic variation of time series by using online batch train-
ing. Although the FNAGM-SSLA requires longer compu-
tation time than the other methods (because of the online
batch training), it remains feasible for real-time prediction
applications.

REFERENCES

[1] E. M. Azoff, Neural Network Time Series Forecasting of Financial Mar-
kets. Hoboken, NJ, USA: Wiley, 1994.

[2] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Sys-
tems Approach to Machine Intelligence. Upper Saddle River, NJ, USA:
Prentice-Hall, 1992.

[3] P-Y. Chou, J.-T. Tsai, and J.-H. Chou, “Modeling and optimizing tensile
strength and yield point on a steel bar using an artificial neural network
with Taguchi particle swarm optimizer,” IEEE Access, vol. 4, pp. 585-593,
2016.

[4] C. M. Bishop, Neural Networks for Pattern Recognition. London, U.K.:
Oxford Univ. Press, 1995.

[5] M. M. Islam, M. A. Sattar, M. F. Amin, X. Yao, and K. Murase, “A new
adaptive merging and growing algorithm for designing artificial neural
networks,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 3,
pp. 705-722, Jun. 2009.

[6] S.-H. Yang and Y.-P. Chen, “An evolutionary constructive and pruning
algorithm for artificial neural networks and its prediction applications,”
Neurocomputing, vol. 86, pp. 140-149, Jun. 2012.

[7] M. M. Kordmahalleh, M. G. Sefidmazgi, and A. Homaifar, “A bilevel
parameter tuning strategy of partially connected ANNS,” in Proc. [EEE
14th Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2015, pp. 793-798.

[8] J.-T. Tsai, J.-H. Chou, and T.-K. Liu, “Tuning the structure and parameters
of a neural network by using hybrid Taguchi-genetic algorithm,” IEEE
Trans. Neural Netw., vol. 17, no. 1, pp. 69-80, Jan. 2006.

[9] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning
through symbiotic evolution,” Mach. Learn., vol. 22, no. 1, pp. 11-32,
1996.

[10] A. Canning and E. Gardner, ‘““Partially connected models of neural net-
works,” J. Phys. A, Math. Gen., vol. 21, no. 15, p. 3275, 1988.

[11] S. Kang and C. Isik, “Partially connected feedforward neural networks
structured by input types,” IEEE Trans. Neural Netw., vol. 16, no. 1,
pp. 175-184, Jan. 2005.

[12] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99-127, 2002.

[13] D. Floreano, P. Diirr, and C. Mattiussi, ‘“Neuroevolution: From architec-
tures to learning,” Evol. Intell., vol. 1, no. 1, pp. 47-62, Mar. 2008.

[14] D. C. Park, M. A. El-Sharkawi, R. J. Marks, II, L. E. Atlas, and
M. J. Damborg, “Electric load forecasting using an artificial neural net-
work,” IEEE Trans. Power Syst., vol. 6, no. 2, pp. 442-449, May 1991.

[15] D.Saad, On-Line Learning in Neural Networks, vol. 17. Cambridge, U.K.:
Cambridge Univ. Press, 2009.

[16] C.-F.Juang and K.-J. Juang, “Circuit implementation of data-driven TSK-
type interval type-2 neural fuzzy system with online parameter tuning
ability,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 4266-4275,
May 2017.

9387



IEEE Access

S.-H. Yang et al.: SSLA for FNAGM and Prediction Applications

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]
[33]

[34]

li

e

Y.-H. Hsiao, “Household electricity demand forecast based on context
information and user daily schedule analysis from meter data,” IEEE
Trans. Ind. Informat., vol. 11, no. 1, pp. 33—43, Feb. 2015.

S.-H. Yang and Y.-P. Chen, “Intelligent forecasting system using Grey
model combined with neural network,” Int. J. Fuzzy Syst., vol. 13, no. 1,
pp. 8-15,2011.

J. L. Deng, “Introduction to grey system theory,” J. Grey Syst., vol. 1,no. 1,
pp. 1-24, 1989.

R. E. Smith, S. Forrest, and A. S. Perelson, ‘““Searching for diverse, coop-
erative populations with genetic algorithms,” Evol. Comput., vol. 1, no. 2,
pp. 127-149, 1993.

C.-F. Juang, J.-Y. Lin, and C.-T. Lin, “Genetic reinforcement learning
through symbiotic evolution for fuzzy controller design,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 290-302, Apr. 2000.
C.-J. Lin and Y.-J. Xu, “A self-adaptive neural fuzzy network with group-
based symbiotic evolution and its prediction applications,” Fuzzy Sets
Syst., vol. 157, no. 8, pp. 1036-1056, 2006.

C.J. Lin, C. H. Chen, and C. T. Lin, “Efficient self-evolving evolutionary
learning for neurofuzzy inference systems,” IEEE Trans. Fuzzy Syst.,
vol. 16, no. 6, pp. 1476-1490, Dec. 2008.

Y.-C. Hsu and S.-F. Lin, “Reinforcement group cooperation-based symbi-
otic evolution for recurrent wavelet-based neuro-fuzzy systems,” Neuro-
computing, vol. 72, pp. 2418-2432, Jun. 2009.

Y.-C. Hsu, S.-F. Lin, and Y.-C. Cheng, “Multi groups cooperation based
symbiotic evolution for TSK-type neuro-fuzzy systems design,” Expert
Syst. Appl., vol. 37, no. 7, pp. 5320-5330, 2010.

Y.-P. Lin et al., “A battery-less, implantable neuro-electronic interface for
studying the mechanisms of deep brain stimulation in rat models,” IEEE
Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp. 98-112, Feb. 2016.

M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6,
pp. 989-993, Nov. 1994.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533-536,
Oct. 1986.

A. Brindle, “Genetic algorithms for function optimization,” Doctoral the-
sis, Univ. Alberta, Edmonton, AB, Canada, 1980.

M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, no. 4300, pp. 287-289, 1977.

H.-C. Ting, J.-L. Chang, C.-H. Yeh, and Y.-P. Chen, ““Discrete time sliding-
mode control design with grey predictor,” Int. J. Fuzzy Syst., vol. 9, no. 3,
p- 179, 2007.

M. Adya and F. Collopy, ‘“How effective are neural networks at forecasting
and prediction?” J. Forecasting, vol. 17, pp. 481-495, Sep./Nov. 1998.

P. I. Corke, “Dynamic issues in robot visual-servo systems,” in Robotics
Research. London, U.K.: Springer, 1996, pp. 488—498.

S.-H. Yang, C.-Y. Ho, and Y.-P. Chen, “Neural network based stereo
matching algorithm utilizing vertical disparity,” in Proc. 36th Annu. Conf.
IEEE Ind. Electron. Soc. (IECON), Nov. 2010, pp. 1155-1160.

SHIH-HUNG YANG received the B.S. degree in
mechanical engineering, the M.S. degree in electri-
cal and control engineering, and the Ph.D. degree
h g in electrical and control engineering from National

) _'j} Chiao Tung University, Taiwan, in 2002, 2004, and
—— 2011, respectively. Prior to joining the faculty, he

: ! was a Visiting Researcher with the University of
\V California at Berkeley, Berkeley, USA, in 2012,

and a Post-Doctoral Researcher with Academia
Sinica, Taiwan, in 2013, where he developed fall

prediction system. He is currently an Assistant Professor with the Depart-

ment

of Mechanical and Computer Aided Engineering, Feng Chia Univer-

sity, Taiwan. His researches include neural networks and brain—machine
interface.

9388

WUN-JHU HUANG received the B.S. degree
from the Department of Mechanical and Computer
Aided Engineering, Feng Chia University, Taiwan,
in 2013, where he is currently pursuing the M.S.
degree. He is currently involved in developing neu-
ral networks.

JIAN-FENG TSAI received the B.S. and M.S.
degrees from National Tsing Hua University,
Taiwan, and the Ph.D. degree in electrical and
control engineering from Chiao Tung Univer-
sity, Taiwan. He is currently an Assistant Pro-
fessor with the Department of Electrical Engi-
neering, National Formosa University, Taiwan.
His researches include control theories, switching
power converters, and motor drive.

YON-PING CHEN received the B.S. degree in
electrical engineering from National Taiwan Uni-
versity, Taiwan, in 1981, and the M.S. and Ph.D.
degrees in electrical engineering from the Uni-
versity of Texas at Arlington, USA, in 1986 and
1989, respectively. He is currently a Distinguished
Professor with the Department of Electrical Engi-
neering, National Chiao Tung University, Taiwan.
His researches include control, image signal pro-
cessing, and intelligent system design.

VOLUME 5, 2017



