
2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

1

Abstract—Cloud resource management research and
techniques have received relevant attention in the last years. In
particular, recently numerous studies have focused on
determining the relationship between server-side system
information and performance experience for reducing resource
wastage. However, the genuine experiences of clients cannot be
readily understood only by using the collected server-side
information. In this paper, a cloud resource management
framework with two novel turnaround time driven auto-scaling
mechanisms is proposed for ensuring the stability of service
performance. In the first mechanism, turnaround time monitors
are deployed in the client-side instead of the more traditional
server-side, and the information collected outside the server is
used for driving a dynamic auto-scaling operation. In the second
mechanism, a schedule-based auto scaling pre-configuration
maker is designed to test and identify the amount of resources
required in the cloud. The reported experimental results
demonstrate that using our original framework for cloud
resource management, stable service quality can be ensured and,
moreover, a certain amount of quality variation can be handled
in order to allow the stability of the service performance to be
increased.

Index Terms—Network, resource management, big data,
turnaround time, service management

I. INTRODUCTION
HE introduction of Software as a service (SaaS) [1] has
significantly changed the scenario of IT resource usage.

Customers use information services directly through the
Internet and no longer have to deploy, manage, and monitor
the selected software by themselves. Services are chosen
based on considering not only functionality, but also
performance, stability, security, and quality. Currently, a
service benefits from being provided accompanied by a
Service Level Agreement (SLA) [2], which is a contract that
addresses factors that customers care about, such as a
guaranteed quality level and the specific description of a
provided service. In addition, service providers are not
required to build their own IT infrastructure in the age of
cloud computing [3]; they can allocate the demanded
resources rapidly using cloudified and virtualized
infrastructures. Application programming interfaces, such as

those provided by Amazon Web Service (AWS) or Google
Compute Engine (GCE), can be utilized by service providers
to create, destroy, and configure, for example, Virtual
Machines (VMs), storage, and load balancers [4]. It is widely
known and accepted that this approach allows service
providers to save substantially on cost when compared with
building and maintaining their own computing, storage, and
networking resources.

Auto scaling [5] is a key technique used for ensuring that
the quality of a service fits the negotiated SLA and for
reducing resource wastage. It can be used for automatically
increasing or reducing resources according to distinct
situations. Auto scaling can be further classified into dynamic
auto scaling and schedule-based auto scaling mechanisms [6].
On the one hand, dynamic auto scaling [7], [8], known also as
rule-based auto scaling, can be used for scaling out or scaling
up service resources based on the rules that managers
predefine. The auto-scaling application monitors certain
metrics of service measured under genuine workloads and
adjusts the system deployment. This is a simple scheme,
generally used for assuring a favorable user experience when
workloads are unpredictable, although it is likely to increase
latencies until real allocation of additional resources. On the
other hand, in schedule-based auto scaling [9], the amount of
resources required for specific periods are pre-assigned based
on historical workload patterns. In this kind of mechanism, the
adverse effects of reaction latency on service performance and
stability are avoided. However, the genuine workload patterns
of the service must be predictable and regular, and additional
methods are required for developing a schedule based on
workload history and predictions. These two mechanisms are
not mutually exclusive and they can be combined under
various scenarios.

Currently, several cloud resource management frameworks
are available, such as AWS CloudWatch [10], RightScale [11],
and Scalr [12], which supply basic auto-scaling functionality.
The mechanisms used in most products involve monitoring
system information on the server side in order to trigger
system adjustment under certain conditions. The available
metrics include CPU Utilization, Disk Read IN/OUT, Network
IN/OUT, and other additional custom metrics. Service
providers can assign any metric that is currently accessible

Xiaolong Liu1, Shyan-Ming Yuan2, Guo-Heng Luo2, Hao-Yu Huang2, Paolo Bellavista3

 1Institute of the Cloud Computing and Big Data for Smart Agriculture, College of Computer and
Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
 3Department of Computer Science and Engineering, University of Bologna, Italy

Corresponding author: Shyan-Ming Yuan (smyuan@cs.nctu.edu.tw)

Cloud Resource Management with Turnaround
Time Driven Auto-Scaling

T

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

2

from the server side on the cloud. The aforementioned core
concept is applied in most approaches currently made
available by cloud-service providers. However, one drawback
is that each manager must determine the indicator metric and
the threshold used for the scaling polices of the target service.
Conversely, current products also allow schedule-based auto
scaling to be applied using a configuration file, but typically
with no assistance in developing an appropriate schedule.

In addition, recently numerous studies have focused on
determining the relationship between system information and
performance experience for the purpose of helping select the
metric and the trigger threshold or for estimating the response
time of the end user. However, the genuine experiences of
clients cannot be readily understood by only using the
collected server-side information because of some connected
technical challenges. First, the computing resource is provided
by virtualization technology, and each physical machine runs
numerous VM instances concurrently. Thus, the capacity of
each VM instance is uncertain and differences exist in the
CPU steal time and the IN/OUT wait time that are decided by
neighbors on the same physical machine. Second, the modern
system architecture comprises several distinct services and
retrieving the details of the capacity of all components might
not be possible, which increases the complexity of the
estimation method.

This paper introduces a novel cloud resource management
framework where the turnaround time of active clients is
efficiently monitored directly from outside a service. This
framework supports both dynamic and schedule-based auto
scaling. In the case of dynamic auto scaling, the framework
can deploy one or several monitors on the client-side, which
repeatedly send requests for sampling response times over
certain durations of service time. A coordinator collects this
information in order to decide when the service system must
scale out. In the case of schedule-based auto scaling, the
framework provides a pre-configuration maker that can
conduct a pretest in order to determine the required number of
instance nodes over various periods and assist the service
manager in developing an effective schedule based on
workload history. This framework might be useful for certain
services that handle periodic workloads and this mechanism
can be used for stabilizing service quality by preparing
adequate resources before the arrival of workload peaks. To
validate the proposed framework, serial tests were performed
for a file-uploading service and the results were compared
with those obtained using another mechanism in which the
request-arrival rate serves as the target metric. Via extensive
experimental evaluation and reported performance indicators,
the influences of distinct parameters on the new framework
are also discussed as a significant original contribution for the
community of researchers in the cloud resource management
area.

The remainder of the paper is organized as follows. We
briefly describe the previous relevant work in Section II;
Section III introduces the designed system and proposed auto
scaling mechanisms; the experimental results and discussions
are presented in Section IV, while conclusive remarks and

directions of future work are given in Section V.

II. RELATED WORKS
The key concerns of cloud-service providers are minimizing

costs and satisfying performance requirements. This might
involve two sub-problems, job scheduling and resource
provision, both not in general terms but in relation to the
specific targeted goal of turnaround time-driven auto-scaling.
The first problem involves scheduling jobs into suitable VMs
in order to optimize performance based on a specific system
capacity, whereas the second involves providing adequate
resources for satisfying the demanded capacity [13].

For addressing the resource-provision problem, two
strategies are available, the schedule-first and scale-first
strategies. In numerous approaches, the schedule-first strategy
is used [14], [15]. In this strategy, focus is placed on the
schedule policy in order to estimate the processing time of
submitted jobs and to determine the execution order and the
VM worker. In the schedule-first strategy, specific rules based
on instance usage and instance type can be applied to develop
a schedule in order to minimize costs and satisfy deadlines.
Moreover, the system will scale out or scale up if a scheduler
cannot determine how certain jobs can be completed before
the deadline, given the resources currently available.
Therefore, this strategy might be suitable for lengthy jobs or
multi-type jobs because they are highly sensitive to the
execution sequence and the VM instance characteristics.

The scale-first strategy, which is easier to discuss than
schedule-first strategy in relation to the resource-provision
problem, focuses on the scaling policy [16]. This strategy can
be readily applied using a simple scheduler, which can be
merely a load balancer. Most of the current cloud
resource-management products support a simple rule-based
auto-scaling functionality. This allows service managers to use
certain system-utilization metrics as indicators in order to
determine the number of instances. However, selecting the
metric and the threshold required for promising a service
quality that satisfies the SLA, such as guaranteeing a
turnaround time, can be challenging.

Several approaches have been used in order to attempt to
identify the mapping relationships between system utilization
and performance. In [17], [18], [19], the measured capacity of
VM instance and the request-arrival rate were used for
estimating the response time or the cumulative distributions of
the response time on a certain number of VM instances.
However, these approaches typically cannot be adapted for use
in distinct service architectures. Because a system might
comprise numerous dissimilar services, obtaining all
resource-capacity details might not be possible.

Another approach is to use a direct metric as the indicator
when performing the auto scaling [20], [21], [22]. One
SLA-driven system [21] requires only the setting of a request
response time between a load balancer and application servers.
The load balancer checks the average response time of each
server node and the system allocates a new server node when
the average response time of any server node is outside a
predefined tolerance range. This approach can be used

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

3

effectively to guarantee stable server-side performance, but
the capacity differences of servers or the dispatch policy of the
load balancer might lead to excessive scaling out. Thus, this
type of scaling cannot be used for guaranteeing the overall
performance of a system.

In the approach used in [22], a test was conducted in order to
determine the upper bound of requests per second that had an
acceptable turnaround response time, and the identified upper
bound was used as a base for monitoring the genuine requests
per second for the purpose of deciding the amount of
resources required for allocating VM instance dynamically
over the service time. This is a simple and validated method of
auto scaling that allows not only the scale-out timing to be
determined, but also enables an estimation of the appropriate
amounts of additional resources required. Moreover, this
approach can be readily used in systems that feature distinct
types of architecture, and the system does not have to be
modeled in order to estimate the service quality. This
approach can also be effectively applied in schedule-based
auto scaling after the workload history is used for
preconfiguring the scaling schedule. However, this approach
cannot be used for determining the precise amount of
resources required. In fact, previous studies have indicated
that the performance of the VM instance provided by
Infrastructure as a Service (IaaS) varies [23], mainly because
IaaS exploits virtualization technologies for providing the
resource-supply service. In numerous instances, a single
physical machine is shared, and each machine cannot be fully
separate from other machines. Distinct numbers of VMs or
various jobs running on the physical machine, such as the
creation of a new VM instance, might substantially affect the
performance of each instance. Thus, the performance of each
VM instance is not identical, which means that a limit
identified using a specific test cannot fit all VM instances in
distinct situations or times. For this motivation, for example,
some recent international projects, such as the EU Mobile
Cloud Networking [24], have proposed novel methodologies
based on experimental characterization of non-functional
performance indicators resulting from different traffic patterns
(e.g. linearly growing traffic, step-shaped, impulse-shaped)
and their linear/non-linear combination in order to enable the
realistic prediction of working conditions.

In summary, several problems are associated with the
approaches used in studies related to this work; for example,
to estimate service quality, detailed capacity information on
each component must be obtained; systems cannot effectively
cope with services that are deployed on distinct machines; and
reaction time demands can cause performance to drop
unpredictably. To solve these problems, a system was
proposed in our previous work [25], where monitors were
deployed outside a service in order to sample turnaround times
and analyze the samples for the purpose of driving a rule
based auto scaling mechanism. The previous work only
focused on presenting a dynamic auto scaling mechanism for
ensuring the stability of service performance from the
client-side of view. In this paper, we try to propose an
integrated cloud resource management framework that can be

used across multiple cloud platforms. Different with the work
in [25], the proposed framework provides both dynamic and
schedule-based auto scaling mechanisms. Such an integrated
framework has the relevant advantages of generality and not
requiring the knowledge of the capacity details of each
component for estimating possible turnaround times. A
performance drop caused because of any reason can be
detected, and system reaction is based on predefined action in
order to provide end users with a stable service quality.

III. OUR FRAMEWORK FOR TURNAROUND TIME DRIVEN
AUTO-SCALING

In order to guarantee a stable quality of a service deployed
on a cloud platform, we have designed, implemented, and
evaluated an original cloud resource management framework
with turnaround time driven auto-scaling. Our framework can
be regarded as a service deployment and management toolset.
The detailed architecture of the proposed framework is
described in subsection III-A, while the dynamic auto scaling
and schedule-based auto scaling mechanisms are described in
subsections III-B and III-C, respectively.

A. Architecture
Fig. 1 shows the architecture of the designed framework,

which includes three layers, the Cloud Service Provider layer,
the Service Management layer, and the Monitor layer. The
Cloud Service Provider layer supplies the main resources
required for running a service, including computing, storage,
and networking resources. This layer currently supports AWS,
GCE, and other OpenStack-based [26] IaaS systems.

Fig. 1. Architecture of the designed framework.

The Service Management layer is the main part of the
proposed framework: among the other facilities and supports,

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

4

it originally includes the implementation of our dynamic
auto-scaling and schedule-based scaling mechanisms. The
flow of operations of this layer mimics the
resource-management mechanism of AWS. The Service
Formation module can obtain all the resources defined in a
configuration file in order to build the architecture of a system
automatically. The format of the configuration file is similar to
AWS CloudFormation [27], in order to facilitate and leverage
rapid application and exploitation in existing deployment
environments. The module acquires certain resources such as
VMs and load balancers through the Cloud Provider Adapter.
Furthermore, the module also obtains custom resources that
cloud providers do not support.

As already sketched, the Service Management layer
contains both Dynamic scaling module and Schedule-based
scaling module. In Dynamic scaling module, the Service
Watch is a server that collects all the data from various
monitors such as the Turnaround Time Monitors in the
Monitor layer, and the Event Alarm can use statistical data
obtained from the monitors in order to implement the Scaling
Policy and generate the Auto Scaling Group. In
Schedule-based scaling module, the Elastic Load Tester is a
flexible load-testing tool, and it can build a specific
scale-distributed testing framework in order to simulate a large
number of clients for the purpose of load testing. The
pre-configuration Maker is designed for estimating the amount
of service resources demanded in a specific period and for
developing a pre-configuration file that is used for managing
the resources. Finally, the Auto Scaling Schedule Executor
can apply the configurations in order to arrange the resources
of the system to be available at a predefined time. The details
of the scaling modules are described separately in the
following subsections.

The Monitor layer contains the Response Time Monitor,
which repeatedly sends requests to the service in order to
evaluate the turnaround time on the client end. The monitor
can be installed on numerous local computers (i.e. clients)
nearby the server to eliminate the effect of network latency. In
this way, service manager could observe the genuine user
experience of the performance for the purpose of helping
maintain stable service quality.

B. Dynamic Auto Scaling
The proposed dynamic auto scaling mechanism is used for

dynamically coordinating the resource provisioning of a
service. Fig. 2 shows a workflow example of the dynamic
scaling module, the details of which are described as
following:
1) Turnaround Time Monitors measure the turnaround times

at the client side, for example, get the response time by
using the GET method in order to load a target webpage
at regular predefined intervals.

2) The monitors send the metrics to the Service Watch,
which collects and classifies these data.

3) Event Alarm repeatedly checks whether the specific
metrics are greater than the threshold or not.

4) If the answer is “true,” trigger the relative-scaling policy
and execute it. The answer means that the system might
suffer a lack of computing resources, and thus the service
must obtain additional resources.

5) All web servers included in the example are organized by
Auto Scaling Group, which can use a setting in order to
generate numerous identical VMs. The scaling policy
increases the capacity of Auto Scaling Group.

6) Auto Scaling Group generates a new web server in the
group and allows the service performance to return to the
acceptable range.

The workflow is continually repeated while the service is
online. Moreover, multiple Event Alarms and Scaling Policies
can be defined in order to monitor distinct metrics and adjust
various resource deployments. The scenario presented in this
example is one of a lack of resources. However, the
mechanism can also be applied in situations where resources
are in excess in order to eliminate resources and to save costs.

Fig. 2. Workflow of the proposed dynamic scaling module.

C. Schedule-based Auto Scaling
In the Schedule-based auto scaling module, based on a

given workload period, the Pre-configuration Maker can
automatically conduct serial testing with the help of Elastic
Load Tester, in order to generate a schedule for managing the
resources. With the resulted pre-configuration information, the
Auto Scaling Schedule Executor can easily apply it to arrange
the resources of the system demanded in the specific period.

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

5

The detailed workflows of Pre-configuration Maker and
Elastic Load Tester are described in the following subsections.

1) Pre-configuration Maker
Pre-configuration Maker is designed for estimating the

amount of service resources demanded in a specific workload
period and for developing a pre-configuration file, which is
used for managing the resources. Fig. 3 shows the workflow
used for generating the pre-configuration file, which are
described as the following steps:
1) Upload the service-resource configuration and the

workload configuration. Analyze the workload
configuration, and convert it into several 3-min slices and
use an increasing order as the test plan. The conversion
flow is shown in Fig. 4.

2) Use the Service Builder to construct the target service on
the cloud platform according to the service-resource
configuration.

3) Choose a slice obtained sequentially in Step 1, and send
the command that defines the request-per-second in the
current slice to the Elastic Load Tester. The workflow of
Elastic Load Tester is described in the next subsection in
detail.

4) Repeatedly generate a specific number of requests within
a specific duration.

5) Wait for the service to scale out with respect to the
turnaround time of all requests and then make it fit the
SLA. Every time the executed service scales out, extend
the waiting time in the current slice.

6) Record the capacity of each auto-scaling group while the
service is entering a steady status, and then return to Step
3 and test the next slice. If all tests are completed, export
the service-resource pre-configuration file.

Fig. 3. Workflow of the Pre-configuration Maker.

Fig. 4. Conversion from a workload to a test plan.

After that, the Pre-configuration file can be used by the
Auto Scaling Schedule Executor, for the purpose of deciding
the amount of computing resources required and for allowing
the quality of service to be of an acceptable level when
workloads are predictable.

2) Elastic Load Tester
As mentioned above, Elastic Load Tester plays an important

role for generating the Pre-configuration file in the workflow
of our Pre-configuration maker. It is a flexible load-testing
tool based on Locust [28], which can build a specific
scale-distributed testing framework in order to simulate a large
number of clients for the purpose of load testing (distributed
mode, remote setup of numerous concurrent hosts to emulate a
high workload).

Fig. 5 shows the basic concept of the mechanisms by which
Locust testing works in its distributed mode. Slave Locust
Runners are deployed on numerous hosts, and these runners
work under a Master Locust Runner. Slave Locust Runners
send requests sequentially to the testing target for the purpose
of sampling. The Master Locust Runner sends test commands
to Slave Locust Runners and collects the testing result
obtained from the framework in a specific environment. The
Locust framework can be used to effectively simulate a large
number of clients and avoid the bottleneck problem that arises
on the tester side.

Fig. 5. Distributed testing mode of Locust.

The detailed workflow of the Elastic Load Tester is shown
in Fig. 6, which includes two phases. The first phase involves
setting up a test in the Locust testing framework. In the second,

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

6

test commands are continually sent to the testing framework
according to the instructions in the predefined
workload-definition file. Furthermore, commands from the
Workload Generator are all passed through the Test Console,
which directly controls the testing framework. The details of
the procedure used are the following:
1) Read the Workload Configuration and the Test

Environment Configuration. The Workload Configuration
declares the number of requests per second that would be
present at a given time. The Test Environment
Configuration decides the mode of the Locust framework,
such as the single-host mode and the distributed mode,
and it assigns the number of nodes in the distributed
mode.

2) In the distributed mode, the Framework Builder generate
a multi-node test environment, shown in Fig. 5. The
Framework Builder can also be used to construct the
environment manually if VMs are not used as Slave
Locust Runners.

3) The Traffic Load Generator splits the load pattern into
several slices, and each slice can be used to generate
distinct requests per second.

4) The test command is sent according to the schedule
prepared in the preceding step.

5) The Tester Coordinator executes the test and collects the
results from the Locust testing framework.

Fig. 6. Workflow of the Elastic Load Tester.

IV. SIMULATION AND EXPERIMENTAL RESULTS
This section describes the simulation and evaluation of the

proposed framework in the case of both the dynamic and the
schedule-based auto-scaling mechanisms and their comparison
with the approach proposed by Vasar et al. [22]. The testing
environment of the experiments is shown in Fig.7. For the
sake of simplicity and easy interpretability of the collected
results (with no hard-to-understand dependency on application
specific peculiarity, the target system that was tested in the
experiment was a simple file-uploading web service. Each
server node deployed a simple receive server, Droopy [29], on
a Google Compute Engine (GCE) n1-standard-1 type instance.
The tester nodes were also built on GCE and used the same
instance type. The target and the tester were included in
Google Asia-East-1 region in Changhua, Taiwan, but on
distinct zones (i.e. Asia-East-1a and Asia-East-1b). A zone is
an isolated location within a region, and each zone contains
the computation, storage, and networking instruments required
for assuring the availability of a region. The use of zones can
prevent the target and the tester from being deployed on the
same physical machine and can provide a suitable distance
between the service and the load generator. Each request
uploaded a 100-KB file to the server through the GCE load
balancer.

Fig. 7. Testing environment

A. Dynamic Auto Scaling Results
To validate the proposed dynamic auto scaling mechanism,

three testing with different thresholds (i.e. 500, 700, and 1000
ms) for the scaling policy were performed. The steps used in
the experiment are illustrated below:
1) Generate a workload configuration (as shown in Fig. 8) in

order to simulate a user workload pattern. In each round
of the experiment, the same variable workload was used
continually for approximately 1 hour to simulate the
workload.

2) Generate a 100-KB file as the uploaded file for use in

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

7

each request.
3) Prepare a service-deployment configuration file. The

initial number of server nodes is one. The scale threshold
must be set in this step; the thresholds used individually in
the experiments were 500, 700, and 1000 ms.

4) Build a distributed-architecture workload generator
featuring four tester nodes. A single monitor was set on a
single tester node to measure the turnaround time of each
request.

5) Start testing. Three rounds of testing were performed
using each threshold setting.

Fig. 8. Workload configuration.

Table I summarizes the results of different threshold during
dynamic auto scaling, where the average, standard deviation
(SD) and coefficient of variation (CV) for turnaround times of
all the requests in the test workload are presented. With
respect to the turnaround time performance, the results in
Table I show that the average turnaround times of the test
workload were less than 130ms, regardless of what threshold
was used. However, the average turnaround time measured
when the threshold was 500ms was roughly 15% lower than
that obtained when the threshold was 1000ms. Furthermore,
the SD and CV of the turnaround time at a threshold on 500ms
were much lower than those measured at threshold on 700ms
and 1000ms.

TABLE I
RESULTS OF DIFFERENT THRESHOLD ON DYNAMIC AUTO SCALING
Threshold (ms) 500 700 1000

Average of turnaround time
(ms) 108.07 116.74 127.45

SD of turnaround time (ms) 76.63 93.05 143.83
CV of turnaround time (ms) 70.91% 79.71% 112.84%

Instance minutes 137 121 112

The instance minutes in Table I represents how many
minutes of instances are used during each testing. The
proposed dynamic scaling mechanism can automatically scale
the required instance when the threshold was violated.
Therefore, a lower threshold may result better turnaround time
performance with the cost of more instance minutes. The
results in Table I indicate that the use of distinct thresholds
can lead to dissimilar overall performance. Setting a small
threshold on the turnaround time allowed the enhancement of
the overall service performance.

TABLE II
CUMULATIVE PERCENTAGES OF DIFFERENT THRESHOLD ON DYNAMIC AUTO

SCALING

Threshold (ms)

Turnaround
Time (ms)

500 700 1000

100 64.54% 50.01% 48.92%
200 98.88% 97.95% 95.81%
300 99.45% 99.08% 98.23%
400 99.62% 99.33% 98.57%
500 99.73% 99.53% 98.93%

In order to demonstrate the stability of the proposed

dynamic scaling mechanism, Table II shows the cumulative
percentages for turnaround times of different thresholds on
dynamic auto scaling. The results in Table II present that
almost 99% of the requests’ turnaround time at a threshold of
500ms were less than 200ms, and those of threshold at 700ms
and 1000ms were 97.95% and 95.81%, respectively. The
results indicate that stable service performance can be ensured
in the proposed dynamic scaling mechanism. Moreover, these
results also demonstrate that the monitoring method used in
the proposed framework can be employed for ensuring that
turnaround times on client-side of view can serve as a
dynamic auto-scaling metric.

B. Schedule-based Auto Scaling Results
This subsection describes the use of the Pre-configuration

maker of the proposed framework for generating a
pre-configuration file from the workload patterns presented in
Fig. 8. To validate the proposed schedule-based mechanism,
three testing with different thresholds (i.e. 500, 700, and 1000
ms) of scaling policy were also performed. The following
illustrates the steps that were used in the experiment:
1) Generate a workload configuration for simulating user

workload patterns. The workload used was the same as
that shown in Fig. 8.

2) Generate a 100-KB file as the uploaded file for use in
each request.

3) Prepare a service-deployment configuration file. The
initial number of server nodes was one. The scale
threshold must be set in this step; the thresholds used
individually were also 500, 700, and 1000 ms.

4) Build a distributed-architecture workload generator
featuring four tester nodes. A single monitor was set on a
single tester node to measure the turnaround time of each
request.

5) Start pretesting and generate a scaling schedule.
6) Verify the scaling schedule prepared in Step 5 by

performing three rounds testing, using the workload
patterns whose procedures follow those described in
Section IV-A.

TABLE III
RESULTS OF DIFFERENT THRESHOLD ON SCHEDULE-BASED AUTO SCALING

Threshold (ms) 500 700 1000
Average of turnaround time

(ms) 99.26 105.02 111.18

SD of turnaround time (ms) 43.09 61.07 107.61
CV of turnaround time (ms) 43.41% 58.15% 96.79%

Instance minutes 132 121 104

Table III summarizes the results of different thresholds in

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

8

schedule-based auto scaling. The results of schedule-based
auto scaling show the same trend in dynamic auto scaling,
where setting a small threshold on the turnaround time
allowed the enhancement of the overall service performance.
However, compared with the results in Table I, both the
turnaround time performance and instance minutes resulted in
schedule-based auto scaling were much better than those in
dynamic auto scaling, regardless of what threshold was used.

TABLE IV
CUMULATIVE PERCENTAGES OF DIFFERENT THRESHOLD ON SCHEDULE-BASED

AUTO SCALING
Threshold (ms)

Turnaround
Time (ms)

500 700 1000

100 74.62% 66.58% 54.79%
200 99.64% 99.36% 99.05%
300 99.84% 99.67% 99.48%
400 99.90% 99.80% 99.68%
500 99.92% 99.87% 99.79%

Table IV shows the cumulative percentages for turnaround

times of different thresholds on schedule-based auto scaling.
The results in Table IV illustrate that no matter what threshold
was set, more than 99% of the requests’ turnaround time were
less than 200ms. The results show the outstanding stability of
the proposed schedule-based scaling mechanism, which is also
better than that of the dynamic scaling mechanism. It indicates
that the use of schedule-based auto scaling can enhance
service quality, and the function used for generating the
pre-configuration in the proposed framework was effective.

In order to compare the proposed schedule-based and
dynamic auto scaling more clearly, Fig. 9 presents the average
and SD of the turnaround time results when selecting different
thresholds. It shows that schedule-based auto scaling was
superior to dynamic auto scaling in all cases when the same
threshold setting was used. In these experiments, the average
turnaround time in the case of schedule-based auto scaling was
decreased by approximately 10ms and the standard deviation
of the turnaround time was decreased by approximately 30ms.

Fig. 9. Results of schedule-based auto scaling compare to dynamic auto
scaling.

The experimental results indicate that the proposed
framework can guarantee the performance in a service within

a specific quality range. It also demonstrates that the use of
pre-configuration maker in the schedule-based auto scaling
mechanism can stabilize the service performance to a greater
extent than the use of dynamic auto scaling. Schedule-based
auto scaling mechanism is a better choice when workload
variation can be predicted, since operational latency would be
avoided by pre-configuration when resource changes are
required.

C. Comparisons and Discussions
In this subsection, the results obtained in this study,

including the proposed dynamic and schedule-based auto
scaling mechanism, are compared with those obtained using
the scheme proposed by Vasar et al. [22], where arrival-rate
was used as the target metric. The comparison is made exactly
against Vasar et al.’s scheme is because the arrival-rate (i.e.
workload) was also regarded as a critical and significant
metric for auto-scaling policy [9]. For performing the
comparison, the same workload (as shown in Fig. 8) was
generated and tested in each scheme. The arrival-rate
threshold in Vasar et al.’s scheme was set as 70 requests per
second, and the turnaround-time threshold in the proposed
framework was set as 700ms.

Fig. 10. Comparison of turnaround time results in different auto scaling
schemes.

Fig. 10 shows the turnaround time variation results in
different auto scaling schemes, with serving the same
workload (Fig. 8). The results in Figure 10 show that the
turnaround times of Vasar et al.’s scheme are very unstable
following the timeline. In particular, the variation is very
obvious during the timeline from 20 minute to 40 minute.
Compared with it, the results of the proposed turnaround
time-driven auto scaling mechanisms are more stable,
especially for the result of proposed schedule-based auto
scaling mechanism.

TABLE V
SUMMARIZED RESULTS IN DIFFERENT AUTO SCALING SCHEMES

Schemes
Proposed

schedule-based
mechanism

Proposed
dynamic

mechanism

Vasar et al.’s
scheme [22]

Average of turnaround
time (ms) 105.02 116.74 130.27

SD of turnaround time
(ms) 61.07 93.05 141.08

CV of turnaround time
(ms) 58.15% 79.71% 108.30%

Instance minutes 121 121 110

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

9

Table V and Table VI illustrate the comparisons of

summarized results and cumulative percentages results of
different auto scaling schemes, respectively. The results in
Table V show that all of the metrics respect to turnaround time
performance in the two proposed mechanisms are much better
than that of Vasar et al.’s scheme, with the cost of a few
additional instance minutes. In terms of cumulative
percentages results in Table VI, more than 95% of the requests’
turnaround time are less than 200ms in all of the auto scaling
schemes. However, only 42.58% of the requests’ turnaround
time in Vasar et al.’s scheme are less than 100ms, which is
inferior while comparing with the results in the proposed
dynamic or schedule-based mechanism.

TABLE VI
CUMULATIVE PERCENTAGES OF DIFFERENT AUTO SCALING SCHEMES

Schemes

Turnaround
Time (ms)

Proposed
schedule-based

mechanism

Proposed
dynamic

mechanism

Vasar et al.’s
scheme [22]

100 66.58% 50.01% 42.58%
200 99.36% 97.95% 95.47%
300 99.67% 99.08% 98.14%
400 99.80% 99.33% 98.54%
500 99.87% 99.53% 98.89%

Overall, the comparison results demonstrate that the

turnaround time driven auto scaling mechanisms in the
proposed framework can guarantee a better performance than
Vasar et al.’s scheme. The proposed schedule-based auto
scaling mechanism is the best choice when workload variation
can be predicted. The pretesting technique of our
pre-configuration maker in schedule-based auto scaling
mechanism can be used to identify relationships between
distinct server numbers and turnaround times, for the purpose
of obtaining the information required for making decisions in
specific situations. If adequate information is gathered, the
current status of the system can be addressed and the next
action can be determined. This can allow the proposed
framework to be useful in diverse architectures, and enable the
number of operations to be increased for maintaining stable
service quality. In the case of certain services, where the
possible workload is not known, the alternative dynamic auto
scaling mechanism of the proposed framework is an effective
solution. Unlike Vasar et al.’s scheme where the
request-arrival rate on the server side is monitored, the
dynamic auto scaling mechanism proposed here can be used to
determine performance change and handle unpredictable
variations of service turnaround times. The overall service
quality obtained using the proposed framework is highly
stable when proper thresholds and sampling periods are
chosen.

The proposed framework is suitable for any virtualized
service in the cloud. It can be readily applied to certain
services that can be used to increase service system capacity
by scaling out in order to meet service performance
requirements and improve user experience. For example,
increased numbers of web servers or processing servers can be
provided in file storage services to maintain stable

performance during peak times and avoid service interruption
in order to save user time and retain user trust in the service.
The Pre-configuration maker used in the proposed framework
can guarantee stable quality in cloud service even dealing with
different workload patterns, such as impulses and steps. In
addition, the proposed framework only monitored turnaround
time as the threshold metric. Integrating additional metrics or
connecting to the monitoring service of the IaaS provider in
order to obtain additional information might be useful for
generating distinct policies for adapting to disparate
application scenarios. For instance, the arrival rate could be
used for choosing a suitable increment number of instances
whenever the turnaround time reaches the threshold in order to
handle large numbers of situations. These metrics can be used
to complement each other in order to eliminate monitoring
blind spots.

V. CONCLUSIONS
This study proposed a cloud resource management

framework that can be used across multiple cloud platforms in
order to deploy, monitor, and scale out a service automatically.
The framework is driven by turnaround time, and provides
both dynamic and schedule-based auto scaling mechanisms for
ensuring the stability of service performance. The proposed
schedule-based mechanism has demonstrated to be a better
choice when workload variation can be predicted. The
experimental results shows that the concept of turnaround time
driven auto scaling can provide stable service quality, and the
function used for generating the pre-configuration in the
proposed framework is effective. Compared with Vasar et al.’s
scheme [22], both proposed auto-scaling mechanisms could
guarantee a better performance and enhance service quality. In
future, the proposed mechanisms are suggested to incorporate
with some predictive auto-scaling techniques to provide
quantitative resource scaling recommendation, which could be
very useful for disparate application scenarios.

VI. ACKNOWLEDGMENTS
The work was supported by the Fund of Cloud Computing

and Big Data for Smart Agriculture (Grant No.117-612014063
and No.177-61201406306), and the MOST of Taiwan (Grant
No.105-2511-S-009-007-MY3).

REFERENCES
[1] M. Cusumano, “Cloud computing and SaaS as new computing

platforms,” Communications of the ACM, vol. 53, no. 4, pp. 27-29,
2010.

[2] A. F. M. Hani，I. V. Paputungan and M. F. Hassan, “Renegotiation in
service level agreement management for a cloud-based system,” Acm
Computing Surveys, vol. 47, no. 3, pp.1-21, 2015.

[3] M. N. Sadiku, S. M. Musa and O. D. Momoh, “Cloud computing:
opportunities and challenges,” IEEE Potentials, vol. 33, no. 1, pp. 34-36,
2014.

[4] S. Mistry，A. Bouguettaya，H. Dong and A. K. Qin “Metaheuristic
optimization for long-term iaas service composition, ” IEEE
Transactions on Services Computing, DOI: 10.1109/TSC.2016.2542068,
2016.

[5] A. Biswas, S. Majumdar, B. Nandy and A. El-Haraki. “Predictive
auto-scaling techniques for clouds subjected to requests with service

2169-3536 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2706019, IEEE Access

10

level agreements,” 2015 IEEE World Congress on Services, pp. 311-318,
2015.

[6] T. Lorido-Botran，J. Miguel-Alonso and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559-592, 2014.

[7] Y. W Ahn，A. M. K. Cheng，J. Baek and M. Jo, “An auto-scaling
mechanism for virtual resources to support mobile, pervasive, real-time
healthcare applications in cloud computing,” IEEE Network, vol. 27,
no. 5, pp. 62-68, 2013.

[8] M. Maurer, I. Brandic, and R. Sakellariou, “Enacting SLAs in clouds
using rules,” in Proceedings of the 17th International Conference on
Parallel Processing, Berlin, Heidelberg, vol.1, pp. 455–466, 2011.

[9] J. Yang，C. Liu，Y. Shang and B. Cheng, “A cost-aware auto-scaling
approach using the workload prediction in service clouds,” Information
Systems Frontiers, vol. 16, no. 1, pp.7-18, 2014.

[10] “AWS CloudWatch - Cloud & Network Monitoring Services,” Amazon
Web Services, Inc. [Online]. Available: //aws.amazon.com/cloudwatch/.

[11] “RightScale: Cloud Portfolio Management by RightScale,” RightScale:
Cloud Portfolio Management by RightScale. [Online]. Available:
http://www.rightscale.com.

[12] “Scalr Enterprise Cloud Management Platform.” [Online]. Available:
http://www.scalr.com/.

[13] M. Mao and M. Humphrey, “Scaling and scheduling to maximize
application performance within budget constraints in cloud workflows,”
in 2013 IEEE 27th International Symposium on Parallel Distributed
Processing (IPDPS), pp. 67–78, 2013.

[14] F. Zhao，J. Si and J. Wang, "Research on optimal schedule strategy for
active distribution network using particle swarm optimization combined
with bacterial foraging algorithm," International Journal of Electrical
Power & Energy Systems, vol. 78, pp. 637-646, 2016.

[15] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline and
budget constraints,” in 2010 11th IEEE/ACM International Conference
on Grid Computing (GRID), pp. 41–48, 2010.

[16] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, New York, NY, USA, pp. 49:1–49:12, 2011.

[17] Z. Xiao， Q. Chen， H. Luo, “ Automatic scaling of internet
applications for cloud computing services,” IEEE Transactions on
Computers, vol. 63, no. 5, pp. 1111-1123, 2014.

[18] K. Xiong and H. Perros, “Service performance and analysis in cloud
computing,” in 2009 World Conference on Services - I, pp. 693–700,
2009.

[19] M. Firdhous, O. Ghazali, and S. Hassan, “Modeling of cloud system
using Erlang formulas,” in 2011 17th Asia-Pacific Conference on
Communications (APCC), pp. 411-416, 2011.

[20] T. C. Chieu, A. Mohindra, and A. A. Karve, “Scalability and
performance of web applications in a compute cloud,” in 2011 IEEE 8th
International Conference on e-Business Engineering (ICEBE), pp.
317–323, 2011.

[21] W. Iqbal, M. Dailey, and D. Carrera, “SLA-driven adaptive resource
management for web applications on a heterogeneous compute cloud,”
Cloud Computing, Springer Berlin Heidelberg, pp. 243–253, 2009.

[22] M. Vasar, S. N. Srirama, and M. Dumas, “Framework for monitoring
and testing web application scalability on the cloud,” in Proceedings of
the WICSA/ECSA 2012 Companion Volume, New York, NY, USA, pp.
53–60, 2012.

[23] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 performance analysis for
resource provisioning of service-oriented applications,” in Proceedings
of the 2009 International Conference on Service-oriented Computing,
Berlin, Heidelberg, pp. 197–207, 2009.

[24] "EU mobile cloud networking" [Online], Available:
http://www.mobile-cloud-networking.eu/site/

[25] X. L. Liu, S. M. Yuan, G. H. Luo, H. Y. Huang, “Auto-Scaling
Mechanism for Cloud Resource Management Based on Client-Side
Turnaround Time.” Advances in Intelligent Systems and Computing, vol
388. Pp. 209-219, 2016.

[26] “OpenStack open source cloud computing software,” OpenStack Open
Source Cloud Computing Software. [Online]. Available:
http://www.openstack.org.

[27] “AWS CloudFormation - Configuration Management & Cloud
Orchestration,” Amazon Web Services, Inc. [Online]. Available:
https://aws.amazon.com/cloudformation/.

[28] “locustio/locust,” GitHub. [Online]. Available:
https://github.com/locustio/locust.

[29] “stackp/Droopy,” GitHub. [Online]. Available:
https://github.com/stackp/Droopy.

