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Abstract—Cloud resource management research and 
techniques have received relevant attention in the last years. In 
particular, recently numerous studies have focused on 
determining the relationship between server-side system 
information and performance experience for reducing resource 
wastage. However, the genuine experiences of clients cannot be 
readily understood only by using the collected server-side 
information. In this paper, a cloud resource management 
framework with two novel turnaround time driven auto-scaling 
mechanisms is proposed for ensuring the stability of service 
performance. In the first mechanism, turnaround time monitors 
are deployed in the client-side instead of the more traditional 
server-side, and the information collected outside the server is 
used for driving a dynamic auto-scaling operation. In the second 
mechanism, a schedule-based auto scaling pre-configuration 
maker is designed to test and identify the amount of resources 
required in the cloud. The reported experimental results 
demonstrate that using our original framework for cloud 
resource management, stable service quality can be ensured and, 
moreover, a certain amount of quality variation can be handled 
in order to allow the stability of the service performance to be 
increased.  
 

Index Terms—Network, resource management, big data, 
turnaround time, service management 
 

I. INTRODUCTION 
HE introduction of Software as a service (SaaS) [1] has 
significantly changed the scenario of IT resource usage. 

Customers use information services directly through the 
Internet and no longer have to deploy, manage, and monitor 
the selected software by themselves. Services are chosen 
based on considering not only functionality, but also 
performance, stability, security, and quality. Currently, a 
service benefits from being provided accompanied by a 
Service Level Agreement (SLA) [2], which is a contract that 
addresses factors that customers care about, such as a 
guaranteed quality level and the specific description of a 
provided service. In addition, service providers are not 
required to build their own IT infrastructure in the age of 
cloud computing [3]; they can allocate the demanded 
resources rapidly using cloudified and virtualized 
infrastructures. Application programming interfaces, such as 
 
 

those provided by Amazon Web Service (AWS) or Google 
Compute Engine (GCE), can be utilized by service providers 
to create, destroy, and configure, for example, Virtual 
Machines (VMs), storage, and load balancers [4]. It is widely 
known and accepted that this approach allows service 
providers to save substantially on cost when compared with 
building and maintaining their own computing, storage, and 
networking resources. 

Auto scaling [5] is a key technique used for ensuring that 
the quality of a service fits the negotiated SLA and for 
reducing resource wastage. It can be used for automatically 
increasing or reducing resources according to distinct 
situations. Auto scaling can be further classified into dynamic 
auto scaling and schedule-based auto scaling mechanisms [6]. 
On the one hand, dynamic auto scaling [7], [8], known also as 
rule-based auto scaling, can be used for scaling out or scaling 
up service resources based on the rules that managers 
predefine. The auto-scaling application monitors certain 
metrics of service measured under genuine workloads and 
adjusts the system deployment. This is a simple scheme, 
generally used for assuring a favorable user experience when 
workloads are unpredictable, although it is likely to increase 
latencies until real allocation of additional resources. On the 
other hand, in schedule-based auto scaling [9], the amount of 
resources required for specific periods are pre-assigned based 
on historical workload patterns. In this kind of mechanism, the 
adverse effects of reaction latency on service performance and 
stability are avoided. However, the genuine workload patterns 
of the service must be predictable and regular, and additional 
methods are required for developing a schedule based on 
workload history and predictions. These two mechanisms are 
not mutually exclusive and they can be combined under 
various scenarios. 

Currently, several cloud resource management frameworks 
are available, such as AWS CloudWatch [10], RightScale [11], 
and Scalr [12], which supply basic auto-scaling functionality. 
The mechanisms used in most products involve monitoring 
system information on the server side in order to trigger 
system adjustment under certain conditions. The available 
metrics include CPU Utilization, Disk Read IN/OUT, Network 
IN/OUT, and other additional custom metrics. Service 
providers can assign any metric that is currently accessible 
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from the server side on the cloud. The aforementioned core 
concept is applied in most approaches currently made 
available by cloud-service providers. However, one drawback 
is that each manager must determine the indicator metric and 
the threshold used for the scaling polices of the target service. 
Conversely, current products also allow schedule-based auto 
scaling to be applied using a configuration file, but typically 
with no assistance in developing an appropriate schedule. 

In addition, recently numerous studies have focused on 
determining the relationship between system information and 
performance experience for the purpose of helping select the 
metric and the trigger threshold or for estimating the response 
time of the end user. However, the genuine experiences of 
clients cannot be readily understood by only using the 
collected server-side information because of some connected 
technical challenges. First, the computing resource is provided 
by virtualization technology, and each physical machine runs 
numerous VM instances concurrently. Thus, the capacity of 
each VM instance is uncertain and differences exist in the 
CPU steal time and the IN/OUT wait time that are decided by 
neighbors on the same physical machine. Second, the modern 
system architecture comprises several distinct services and 
retrieving the details of the capacity of all components might 
not be possible, which increases the complexity of the 
estimation method. 

This paper introduces a novel cloud resource management 
framework where the turnaround time of active clients is 
efficiently monitored directly from outside a service. This 
framework supports both dynamic and schedule-based auto 
scaling. In the case of dynamic auto scaling, the framework 
can deploy one or several monitors on the client-side, which 
repeatedly send requests for sampling response times over 
certain durations of service time. A coordinator collects this 
information in order to decide when the service system must 
scale out. In the case of schedule-based auto scaling, the 
framework provides a pre-configuration maker that can 
conduct a pretest in order to determine the required number of 
instance nodes over various periods and assist the service 
manager in developing an effective schedule based on 
workload history. This framework might be useful for certain 
services that handle periodic workloads and this mechanism 
can be used for stabilizing service quality by preparing 
adequate resources before the arrival of workload peaks. To 
validate the proposed framework, serial tests were performed 
for a file-uploading service and the results were compared 
with those obtained using another mechanism in which the 
request-arrival rate serves as the target metric. Via extensive 
experimental evaluation and reported performance indicators, 
the influences of distinct parameters on the new framework 
are also discussed as a significant original contribution for the 
community of researchers in the cloud resource management 
area. 

The remainder of the paper is organized as follows. We 
briefly describe the previous relevant work in Section II; 
Section III introduces the designed system and proposed auto 
scaling mechanisms; the experimental results and discussions 
are presented in Section IV, while conclusive remarks and 

directions of future work are given in Section V.  

II. RELATED WORKS 
The key concerns of cloud-service providers are minimizing 

costs and satisfying performance requirements. This might 
involve two sub-problems, job scheduling and resource 
provision, both not in general terms but in relation to the 
specific targeted goal of turnaround time-driven auto-scaling. 
The first problem involves scheduling jobs into suitable VMs 
in order to optimize performance based on a specific system 
capacity, whereas the second involves providing adequate 
resources for satisfying the demanded capacity [13]. 

For addressing the resource-provision problem, two 
strategies are available, the schedule-first and scale-first 
strategies. In numerous approaches, the schedule-first strategy 
is used [14], [15]. In this strategy, focus is placed on the 
schedule policy in order to estimate the processing time of 
submitted jobs and to determine the execution order and the 
VM worker. In the schedule-first strategy, specific rules based 
on instance usage and instance type can be applied to develop 
a schedule in order to minimize costs and satisfy deadlines. 
Moreover, the system will scale out or scale up if a scheduler 
cannot determine how certain jobs can be completed before 
the deadline, given the resources currently available. 
Therefore, this strategy might be suitable for lengthy jobs or 
multi-type jobs because they are highly sensitive to the 
execution sequence and the VM instance characteristics. 

The scale-first strategy, which is easier to discuss than 
schedule-first strategy in relation to the resource-provision 
problem, focuses on the scaling policy [16]. This strategy can 
be readily applied using a simple scheduler, which can be 
merely a load balancer. Most of the current cloud 
resource-management products support a simple rule-based 
auto-scaling functionality. This allows service managers to use 
certain system-utilization metrics as indicators in order to 
determine the number of instances. However, selecting the 
metric and the threshold required for promising a service 
quality that satisfies the SLA, such as guaranteeing a 
turnaround time, can be challenging. 

Several approaches have been used in order to attempt to 
identify the mapping relationships between system utilization 
and performance. In [17], [18], [19], the measured capacity of 
VM instance and the request-arrival rate were used for 
estimating the response time or the cumulative distributions of 
the response time on a certain number of VM instances. 
However, these approaches typically cannot be adapted for use 
in distinct service architectures. Because a system might 
comprise numerous dissimilar services, obtaining all 
resource-capacity details might not be possible. 

Another approach is to use a direct metric as the indicator 
when performing the auto scaling [20], [21], [22]. One 
SLA-driven system [21] requires only the setting of a request 
response time between a load balancer and application servers. 
The load balancer checks the average response time of each 
server node and the system allocates a new server node when 
the average response time of any server node is outside a 
predefined tolerance range. This approach can be used 
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effectively to guarantee stable server-side performance, but 
the capacity differences of servers or the dispatch policy of the 
load balancer might lead to excessive scaling out. Thus, this 
type of scaling cannot be used for guaranteeing the overall 
performance of a system. 

In the approach used in [22], a test was conducted in order to 
determine the upper bound of requests per second that had an 
acceptable turnaround response time, and the identified upper 
bound was used as a base for monitoring the genuine requests 
per second for the purpose of deciding the amount of 
resources required for allocating VM instance dynamically 
over the service time. This is a simple and validated method of 
auto scaling that allows not only the scale-out timing to be 
determined, but also enables an estimation of the appropriate 
amounts of additional resources required. Moreover, this 
approach can be readily used in systems that feature distinct 
types of architecture, and the system does not have to be 
modeled in order to estimate the service quality. This 
approach can also be effectively applied in schedule-based 
auto scaling after the workload history is used for 
preconfiguring the scaling schedule. However, this approach 
cannot be used for determining the precise amount of 
resources required. In fact, previous studies have indicated 
that the performance of the VM instance provided by 
Infrastructure as a Service (IaaS) varies [23], mainly because 
IaaS exploits virtualization technologies for providing the 
resource-supply service. In numerous instances, a single 
physical machine is shared, and each machine cannot be fully 
separate from other machines. Distinct numbers of VMs or 
various jobs running on the physical machine, such as the 
creation of a new VM instance, might substantially affect the 
performance of each instance. Thus, the performance of each 
VM instance is not identical, which means that a limit 
identified using a specific test cannot fit all VM instances in 
distinct situations or times. For this motivation, for example, 
some recent international projects, such as the EU Mobile 
Cloud Networking [24], have proposed novel methodologies 
based on experimental characterization of non-functional 
performance indicators resulting from different traffic patterns 
(e.g. linearly growing traffic, step-shaped, impulse-shaped) 
and their linear/non-linear combination in order to enable the 
realistic prediction of working conditions. 

In summary, several problems are associated with the 
approaches used in studies related to this work; for example, 
to estimate service quality, detailed capacity information on 
each component must be obtained; systems cannot effectively 
cope with services that are deployed on distinct machines; and 
reaction time demands can cause performance to drop 
unpredictably. To solve these problems, a system was 
proposed in our previous work [25], where monitors were 
deployed outside a service in order to sample turnaround times 
and analyze the samples for the purpose of driving a rule 
based auto scaling mechanism. The previous work only 
focused on presenting a dynamic auto scaling mechanism for 
ensuring the stability of service performance from the 
client-side of view. In this paper, we try to propose an 
integrated cloud resource management framework that can be 

used across multiple cloud platforms. Different with the work 
in [25], the proposed framework provides both dynamic and 
schedule-based auto scaling mechanisms. Such an integrated 
framework has the relevant advantages of generality and not 
requiring the knowledge of the capacity details of each 
component for estimating possible turnaround times. A 
performance drop caused because of any reason can be 
detected, and system reaction is based on predefined action in 
order to provide end users with a stable service quality.  

III. OUR FRAMEWORK FOR TURNAROUND TIME DRIVEN 
AUTO-SCALING 

In order to guarantee a stable quality of a service deployed 
on a cloud platform, we have designed, implemented, and 
evaluated an original cloud resource management framework 
with turnaround time driven auto-scaling. Our framework can 
be regarded as a service deployment and management toolset. 
The detailed architecture of the proposed framework is 
described in subsection III-A, while the dynamic auto scaling 
and schedule-based auto scaling mechanisms are described in 
subsections III-B and III-C, respectively.  

A. Architecture 
Fig. 1 shows the architecture of the designed framework, 

which includes three layers, the Cloud Service Provider layer, 
the Service Management layer, and the Monitor layer. The 
Cloud Service Provider layer supplies the main resources 
required for running a service, including computing, storage, 
and networking resources. This layer currently supports AWS, 
GCE, and other OpenStack-based [26] IaaS systems. 

 
Fig. 1.  Architecture of the designed framework. 
 

The Service Management layer is the main part of the 
proposed framework: among the other facilities and supports, 
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it originally includes the implementation of our dynamic 
auto-scaling and schedule-based scaling mechanisms. The 
flow of operations of this layer mimics the 
resource-management mechanism of AWS. The Service 
Formation module can obtain all the resources defined in a 
configuration file in order to build the architecture of a system 
automatically. The format of the configuration file is similar to 
AWS CloudFormation [27], in order to facilitate and leverage 
rapid application and exploitation in existing deployment 
environments. The module acquires certain resources such as 
VMs and load balancers through the Cloud Provider Adapter. 
Furthermore, the module also obtains custom resources that 
cloud providers do not support. 

As already sketched, the Service Management layer 
contains both Dynamic scaling module and Schedule-based 
scaling module. In Dynamic scaling module, the Service 
Watch is a server that collects all the data from various 
monitors such as the Turnaround Time Monitors in the 
Monitor layer, and the Event Alarm can use statistical data 
obtained from the monitors in order to implement the Scaling 
Policy and generate the Auto Scaling Group. In 
Schedule-based scaling module, the Elastic Load Tester is a 
flexible load-testing tool, and it can build a specific 
scale-distributed testing framework in order to simulate a large 
number of clients for the purpose of load testing. The 
pre-configuration Maker is designed for estimating the amount 
of service resources demanded in a specific period and for 
developing a pre-configuration file that is used for managing 
the resources. Finally, the Auto Scaling Schedule Executor 
can apply the configurations in order to arrange the resources 
of the system to be available at a predefined time. The details 
of the scaling modules are described separately in the 
following subsections. 

The Monitor layer contains the Response Time Monitor, 
which repeatedly sends requests to the service in order to 
evaluate the turnaround time on the client end. The monitor 
can be installed on numerous local computers (i.e. clients) 
nearby the server to eliminate the effect of network latency. In 
this way, service manager could observe the genuine user 
experience of the performance for the purpose of helping 
maintain stable service quality. 

B. Dynamic Auto Scaling 
The proposed dynamic auto scaling mechanism is used for 

dynamically coordinating the resource provisioning of a 
service. Fig. 2 shows a workflow example of the dynamic 
scaling module, the details of which are described as 
following: 
1) Turnaround Time Monitors measure the turnaround times 

at the client side, for example, get the response time by 
using the GET method in order to load a target webpage 
at regular predefined intervals.  

2) The monitors send the metrics to the Service Watch, 
which collects and classifies these data. 

3) Event Alarm repeatedly checks whether the specific 
metrics are greater than the threshold or not.  

4) If the answer is “true,” trigger the relative-scaling policy 
and execute it. The answer means that the system might 
suffer a lack of computing resources, and thus the service 
must obtain additional resources. 

5) All web servers included in the example are organized by 
Auto Scaling Group, which can use a setting in order to 
generate numerous identical VMs. The scaling policy 
increases the capacity of Auto Scaling Group. 

6)  Auto Scaling Group generates a new web server in the 
group and allows the service performance to return to the 
acceptable range.  

The workflow is continually repeated while the service is 
online. Moreover, multiple Event Alarms and Scaling Policies 
can be defined in order to monitor distinct metrics and adjust 
various resource deployments. The scenario presented in this 
example is one of a lack of resources. However, the 
mechanism can also be applied in situations where resources 
are in excess in order to eliminate resources and to save costs. 

 
Fig. 2.  Workflow of the proposed dynamic scaling module. 
 

C. Schedule-based Auto Scaling 
In the Schedule-based auto scaling module, based on a 

given workload period, the Pre-configuration Maker can 
automatically conduct serial testing with the help of Elastic 
Load Tester, in order to generate a schedule for managing the 
resources. With the resulted pre-configuration information, the 
Auto Scaling Schedule Executor can easily apply it to arrange 
the resources of the system demanded in the specific period. 
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The detailed workflows of Pre-configuration Maker and 
Elastic Load Tester are described in the following subsections. 

1) Pre-configuration Maker  
Pre-configuration Maker is designed for estimating the 

amount of service resources demanded in a specific workload 
period and for developing a pre-configuration file, which is 
used for managing the resources. Fig. 3 shows the workflow 
used for generating the pre-configuration file, which are 
described as the following steps: 
1) Upload the service-resource configuration and the 

workload configuration. Analyze the workload 
configuration, and convert it into several 3-min slices and 
use an increasing order as the test plan. The conversion 
flow is shown in Fig. 4. 

2) Use the Service Builder to construct the target service on 
the cloud platform according to the service-resource 
configuration. 

3) Choose a slice obtained sequentially in Step 1, and send 
the command that defines the request-per-second in the 
current slice to the Elastic Load Tester. The workflow of 
Elastic Load Tester is described in the next subsection in 
detail.  

4) Repeatedly generate a specific number of requests within 
a specific duration. 

5) Wait for the service to scale out with respect to the 
turnaround time of all requests and then make it fit the 
SLA. Every time the executed service scales out, extend 
the waiting time in the current slice. 

6) Record the capacity of each auto-scaling group while the 
service is entering a steady status, and then return to Step 
3 and test the next slice. If all tests are completed, export 
the service-resource pre-configuration file.   

 

 
Fig. 3.  Workflow of the Pre-configuration Maker. 

 

 
Fig. 4.  Conversion from a workload to a test plan. 
 

After that, the Pre-configuration file can be used by the 
Auto Scaling Schedule Executor, for the purpose of deciding 
the amount of computing resources required and for allowing 
the quality of service to be of an acceptable level when 
workloads are predictable. 

2) Elastic Load Tester  
As mentioned above, Elastic Load Tester plays an important 

role for generating the Pre-configuration file in the workflow 
of our Pre-configuration maker. It is a flexible load-testing 
tool based on Locust [28], which can build a specific 
scale-distributed testing framework in order to simulate a large 
number of clients for the purpose of load testing (distributed 
mode, remote setup of numerous concurrent hosts to emulate a 
high workload). 

Fig. 5 shows the basic concept of the mechanisms by which 
Locust testing works in its distributed mode. Slave Locust 
Runners are deployed on numerous hosts, and these runners 
work under a Master Locust Runner. Slave Locust Runners 
send requests sequentially to the testing target for the purpose 
of sampling. The Master Locust Runner sends test commands 
to Slave Locust Runners and collects the testing result 
obtained from the framework in a specific environment. The 
Locust framework can be used to effectively simulate a large 
number of clients and avoid the bottleneck problem that arises 
on the tester side. 

 
Fig. 5.  Distributed testing mode of Locust. 
 

The detailed workflow of the Elastic Load Tester is shown 
in Fig. 6, which includes two phases. The first phase involves 
setting up a test in the Locust testing framework. In the second, 
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test commands are continually sent to the testing framework 
according to the instructions in the predefined 
workload-definition file. Furthermore, commands from the 
Workload Generator are all passed through the Test Console, 
which directly controls the testing framework. The details of 
the procedure used are the following: 
1) Read the Workload Configuration and the Test 

Environment Configuration. The Workload Configuration 
declares the number of requests per second that would be 
present at a given time. The Test Environment 
Configuration decides the mode of the Locust framework, 
such as the single-host mode and the distributed mode, 
and it assigns the number of nodes in the distributed 
mode. 

2) In the distributed mode, the Framework Builder generate 
a multi-node test environment, shown in Fig. 5. The 
Framework Builder can also be used to construct the 
environment manually if VMs are not used as Slave 
Locust Runners. 

3) The Traffic Load Generator splits the load pattern into 
several slices, and each slice can be used to generate 
distinct requests per second.  

4) The test command is sent according to the schedule 
prepared in the preceding step. 

5) The Tester Coordinator executes the test and collects the 
results from the Locust testing framework. 

 
Fig. 6.  Workflow of the Elastic Load Tester. 

 

IV. SIMULATION AND EXPERIMENTAL RESULTS 
This section describes the simulation and evaluation of the 

proposed framework in the case of both the dynamic and the 
schedule-based auto-scaling mechanisms and their comparison 
with the approach proposed by Vasar et al. [22]. The testing 
environment of the experiments is shown in Fig.7. For the 
sake of simplicity and easy interpretability of the collected 
results (with no hard-to-understand dependency on application 
specific peculiarity, the target system that was tested in the 
experiment was a simple file-uploading web service. Each 
server node deployed a simple receive server, Droopy [29], on 
a Google Compute Engine (GCE) n1-standard-1 type instance. 
The tester nodes were also built on GCE and used the same 
instance type. The target and the tester were included in 
Google Asia-East-1 region in Changhua, Taiwan, but on 
distinct zones (i.e. Asia-East-1a and Asia-East-1b). A zone is 
an isolated location within a region, and each zone contains 
the computation, storage, and networking instruments required 
for assuring the availability of a region. The use of zones can 
prevent the target and the tester from being deployed on the 
same physical machine and can provide a suitable distance 
between the service and the load generator. Each request 
uploaded a 100-KB file to the server through the GCE load 
balancer. 

 
Fig. 7.  Testing environment 

A. Dynamic Auto Scaling Results 
To validate the proposed dynamic auto scaling mechanism, 

three testing with different thresholds (i.e. 500, 700, and 1000 
ms) for the scaling policy were performed. The steps used in 
the experiment are illustrated below: 
1) Generate a workload configuration (as shown in Fig. 8) in 

order to simulate a user workload pattern. In each round 
of the experiment, the same variable workload was used 
continually for approximately 1 hour to simulate the 
workload. 

2) Generate a 100-KB file as the uploaded file for use in 
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each request. 
3) Prepare a service-deployment configuration file. The 

initial number of server nodes is one. The scale threshold 
must be set in this step; the thresholds used individually in 
the experiments were 500, 700, and 1000 ms. 

4) Build a distributed-architecture workload generator 
featuring four tester nodes. A single monitor was set on a 
single tester node to measure the turnaround time of each 
request.  

5) Start testing. Three rounds of testing were performed 
using each threshold setting. 

 
Fig. 8.  Workload configuration. 
 

Table I summarizes the results of different threshold during 
dynamic auto scaling, where the average, standard deviation 
(SD) and coefficient of variation (CV) for turnaround times of 
all the requests in the test workload are presented. With 
respect to the turnaround time performance, the results in 
Table I show that the average turnaround times of the test 
workload were less than 130ms, regardless of what threshold 
was used. However, the average turnaround time measured 
when the threshold was 500ms was roughly 15% lower than 
that obtained when the threshold was 1000ms. Furthermore, 
the SD and CV of the turnaround time at a threshold on 500ms 
were much lower than those measured at threshold on 700ms 
and 1000ms. 

TABLE I 
RESULTS OF DIFFERENT THRESHOLD ON DYNAMIC AUTO SCALING 
Threshold (ms) 500 700 1000 

Average of turnaround time 
(ms) 108.07 116.74 127.45 

SD of turnaround time (ms) 76.63 93.05 143.83 
CV of turnaround time (ms) 70.91% 79.71% 112.84% 

Instance minutes 137 121 112 
 

The instance minutes in Table I represents how many 
minutes of instances are used during each testing. The 
proposed dynamic scaling mechanism can automatically scale 
the required instance when the threshold was violated. 
Therefore, a lower threshold may result better turnaround time 
performance with the cost of more instance minutes. The 
results in Table I indicate that the use of distinct thresholds 
can lead to dissimilar overall performance. Setting a small 
threshold on the turnaround time allowed the enhancement of 
the overall service performance. 

TABLE II 
CUMULATIVE PERCENTAGES OF DIFFERENT THRESHOLD ON DYNAMIC AUTO 

SCALING 

Threshold (ms) 
 

Turnaround 
Time (ms) 

500 700 1000 

100 64.54% 50.01% 48.92% 
200 98.88% 97.95% 95.81% 
300 99.45% 99.08% 98.23% 
400 99.62% 99.33% 98.57% 
500 99.73% 99.53% 98.93% 

 
In order to demonstrate the stability of the proposed 

dynamic scaling mechanism, Table II shows the cumulative 
percentages for turnaround times of different thresholds on 
dynamic auto scaling. The results in Table II present that 
almost 99% of the requests’ turnaround time at a threshold of 
500ms were less than 200ms, and those of threshold at 700ms 
and 1000ms were 97.95% and 95.81%, respectively. The 
results indicate that stable service performance can be ensured 
in the proposed dynamic scaling mechanism. Moreover, these 
results also demonstrate that the monitoring method used in 
the proposed framework can be employed for ensuring that 
turnaround times on client-side of view can serve as a 
dynamic auto-scaling metric. 
 

B. Schedule-based Auto Scaling Results 
This subsection describes the use of the Pre-configuration 

maker of the proposed framework for generating a 
pre-configuration file from the workload patterns presented in 
Fig. 8. To validate the proposed schedule-based mechanism, 
three testing with different thresholds (i.e. 500, 700, and 1000 
ms) of scaling policy were also performed. The following 
illustrates the steps that were used in the experiment: 
1) Generate a workload configuration for simulating user 

workload patterns. The workload used was the same as 
that shown in Fig. 8. 

2) Generate a 100-KB file as the uploaded file for use in 
each request. 

3) Prepare a service-deployment configuration file. The 
initial number of server nodes was one. The scale 
threshold must be set in this step; the thresholds used 
individually were also 500, 700, and 1000 ms.  

4) Build a distributed-architecture workload generator 
featuring four tester nodes. A single monitor was set on a 
single tester node to measure the turnaround time of each 
request. 

5) Start pretesting and generate a scaling schedule. 
6) Verify the scaling schedule prepared in Step 5 by 

performing three rounds testing, using the workload 
patterns whose procedures follow those described in 
Section IV-A.  

TABLE III 
RESULTS OF DIFFERENT THRESHOLD ON SCHEDULE-BASED AUTO SCALING 

Threshold (ms) 500 700 1000 
Average of turnaround time 

(ms) 99.26 105.02 111.18 

SD of turnaround time (ms) 43.09 61.07 107.61 
CV of turnaround time (ms) 43.41% 58.15% 96.79% 

Instance minutes 132 121 104 
 
Table III summarizes the results of different thresholds in 
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schedule-based auto scaling. The results of schedule-based 
auto scaling show the same trend in dynamic auto scaling, 
where setting a small threshold on the turnaround time 
allowed the enhancement of the overall service performance. 
However, compared with the results in Table I, both the 
turnaround time performance and instance minutes resulted in 
schedule-based auto scaling were much better than those in 
dynamic auto scaling, regardless of what threshold was used. 

TABLE IV 
CUMULATIVE PERCENTAGES OF DIFFERENT THRESHOLD ON SCHEDULE-BASED 

AUTO SCALING 
Threshold (ms) 

 
Turnaround 
Time (ms) 

500 700 1000 

100 74.62% 66.58% 54.79% 
200 99.64% 99.36% 99.05% 
300 99.84% 99.67% 99.48% 
400 99.90% 99.80% 99.68% 
500 99.92% 99.87% 99.79% 

 
Table IV shows the cumulative percentages for turnaround 

times of different thresholds on schedule-based auto scaling. 
The results in Table IV illustrate that no matter what threshold 
was set, more than 99% of the requests’ turnaround time were 
less than 200ms. The results show the outstanding stability of 
the proposed schedule-based scaling mechanism, which is also 
better than that of the dynamic scaling mechanism. It indicates 
that the use of schedule-based auto scaling can enhance 
service quality, and the function used for generating the 
pre-configuration in the proposed framework was effective. 

In order to compare the proposed schedule-based and 
dynamic auto scaling more clearly, Fig. 9 presents the average 
and SD of the turnaround time results when selecting different 
thresholds. It shows that schedule-based auto scaling was 
superior to dynamic auto scaling in all cases when the same 
threshold setting was used. In these experiments, the average 
turnaround time in the case of schedule-based auto scaling was 
decreased by approximately 10ms and the standard deviation 
of the turnaround time was decreased by approximately 30ms. 

 
Fig. 9.  Results of schedule-based auto scaling compare to dynamic auto 
scaling. 
 

The experimental results indicate that the proposed 
framework can guarantee the performance in a service within 

a specific quality range. It also demonstrates that the use of 
pre-configuration maker in the schedule-based auto scaling 
mechanism can stabilize the service performance to a greater 
extent than the use of dynamic auto scaling. Schedule-based 
auto scaling mechanism is a better choice when workload 
variation can be predicted, since operational latency would be 
avoided by pre-configuration when resource changes are 
required. 

C. Comparisons and Discussions 
In this subsection, the results obtained in this study, 

including the proposed dynamic and schedule-based auto 
scaling mechanism, are compared with those obtained using 
the scheme proposed by Vasar et al. [22], where arrival-rate 
was used as the target metric. The comparison is made exactly 
against Vasar et al.’s scheme is because the arrival-rate (i.e. 
workload) was also regarded as a critical and significant 
metric for auto-scaling policy [9]. For performing the 
comparison, the same workload (as shown in Fig. 8) was 
generated and tested in each scheme. The arrival-rate 
threshold in Vasar et al.’s scheme was set as 70 requests per 
second, and the turnaround-time threshold in the proposed 
framework was set as 700ms. 

 

 
Fig. 10.  Comparison of turnaround time results in different auto scaling 
schemes. 

Fig. 10 shows the turnaround time variation results in 
different auto scaling schemes, with serving the same 
workload (Fig. 8). The results in Figure 10 show that the 
turnaround times of Vasar et al.’s scheme are very unstable 
following the timeline. In particular, the variation is very 
obvious during the timeline from 20 minute to 40 minute. 
Compared with it, the results of the proposed turnaround 
time-driven auto scaling mechanisms are more stable, 
especially for the result of proposed schedule-based auto 
scaling mechanism. 

TABLE V 
SUMMARIZED RESULTS IN DIFFERENT AUTO SCALING SCHEMES 

Schemes 
Proposed 

schedule-based 
mechanism 

Proposed 
dynamic 

mechanism 

Vasar et al.’s 
scheme [22] 

Average of turnaround 
time (ms) 105.02 116.74 130.27 

SD of turnaround time 
(ms) 61.07 93.05 141.08 

CV of turnaround time 
(ms) 58.15% 79.71% 108.30% 

Instance minutes 121 121 110 
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Table V and Table VI illustrate the comparisons of 

summarized results and cumulative percentages results of 
different auto scaling schemes, respectively.  The results in 
Table V show that all of the metrics respect to turnaround time 
performance in the two proposed mechanisms are much better 
than that of Vasar et al.’s scheme, with the cost of a few 
additional instance minutes. In terms of cumulative 
percentages results in Table VI, more than 95% of the requests’ 
turnaround time are less than 200ms in all of the auto scaling 
schemes. However, only 42.58% of the requests’ turnaround 
time in Vasar et al.’s scheme are less than 100ms, which is 
inferior while comparing with the results in the proposed 
dynamic or schedule-based mechanism. 

TABLE VI 
CUMULATIVE PERCENTAGES OF DIFFERENT AUTO SCALING SCHEMES 

Schemes 
 

Turnaround 
Time (ms) 

Proposed 
schedule-based 

mechanism 

Proposed 
dynamic 

mechanism 

Vasar et al.’s 
scheme [22] 

100 66.58% 50.01% 42.58% 
200 99.36% 97.95% 95.47% 
300 99.67% 99.08% 98.14% 
400 99.80% 99.33% 98.54% 
500 99.87% 99.53% 98.89% 

 
Overall, the comparison results demonstrate that the 

turnaround time driven auto scaling mechanisms in the 
proposed framework can guarantee a better performance than 
Vasar et al.’s scheme. The proposed schedule-based auto 
scaling mechanism is the best choice when workload variation 
can be predicted. The pretesting technique of our 
pre-configuration maker in schedule-based auto scaling 
mechanism can be used to identify relationships between 
distinct server numbers and turnaround times, for the purpose 
of obtaining the information required for making decisions in 
specific situations. If adequate information is gathered, the 
current status of the system can be addressed and the next 
action can be determined. This can allow the proposed 
framework to be useful in diverse architectures, and enable the 
number of operations to be increased for maintaining stable 
service quality. In the case of certain services, where the 
possible workload is not known, the alternative dynamic auto 
scaling mechanism of the proposed framework is an effective 
solution. Unlike Vasar et al.’s scheme where the 
request-arrival rate on the server side is monitored, the 
dynamic auto scaling mechanism proposed here can be used to 
determine performance change and handle unpredictable 
variations of service turnaround times. The overall service 
quality obtained using the proposed framework is highly 
stable when proper thresholds and sampling periods are 
chosen. 

The proposed framework is suitable for any virtualized 
service in the cloud. It can be readily applied to certain 
services that can be used to increase service system capacity 
by scaling out in order to meet service performance 
requirements and improve user experience. For example, 
increased numbers of web servers or processing servers can be 
provided in file storage services to maintain stable 

performance during peak times and avoid service interruption 
in order to save user time and retain user trust in the service. 
The Pre-configuration maker used in the proposed framework 
can guarantee stable quality in cloud service even dealing with 
different workload patterns, such as impulses and steps. In 
addition, the proposed framework only monitored turnaround 
time as the threshold metric. Integrating additional metrics or 
connecting to the monitoring service of the IaaS provider in 
order to obtain additional information might be useful for 
generating distinct policies for adapting to disparate 
application scenarios. For instance, the arrival rate could be 
used for choosing a suitable increment number of instances 
whenever the turnaround time reaches the threshold in order to 
handle large numbers of situations. These metrics can be used 
to complement each other in order to eliminate monitoring 
blind spots. 

V. CONCLUSIONS 
This study proposed a cloud resource management 

framework that can be used across multiple cloud platforms in 
order to deploy, monitor, and scale out a service automatically. 
The framework is driven by turnaround time, and provides 
both dynamic and schedule-based auto scaling mechanisms for 
ensuring the stability of service performance. The proposed 
schedule-based mechanism has demonstrated to be a better 
choice when workload variation can be predicted. The 
experimental results shows that the concept of turnaround time 
driven auto scaling can provide stable service quality, and the 
function used for generating the pre-configuration in the 
proposed framework is effective. Compared with Vasar et al.’s 
scheme [22], both proposed auto-scaling mechanisms could 
guarantee a better performance and enhance service quality. In 
future, the proposed mechanisms are suggested to incorporate 
with some predictive auto-scaling techniques to provide 
quantitative resource scaling recommendation, which could be 
very useful for disparate application scenarios. 
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