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Identifying the stiffness parameters of
a structure using a subspace approach
and the Gram–Schmidt process in a
wavelet domain

Wei-Chih Su1, Chiung-Shiann Huang2, Ho-Cheng Lien1 and
Quang-Tuyen Le2

Abstract
This article presents a procedure to improve the accuracy of calculated stiffness matrix of a structure based on the
identified modal parameters from its measured responses. First, a continuous wavelet transform is applied to the mea-
sured responses of a structure, and the state–space model can be reconstructed by the wavelet coefficients of accelera-
tion that can be obtained from the measured noisy responses. The modal parameters are identified using the subspace
approach. Second, the identified mode shapes are corrected via Gram–Schmidt process. Finally, the identified natural fre-
quencies and the corrected mode shapes in previous steps are utilized to build the stiffness matrix of structure. The
accuracy of the proposed approach is numerically confirmed, and the noise effects on the ability to precisely identify the
stiffness matrix are also investigated. The measured data of two eight-story steel frames in a shaking table test are ana-
lyzed to demonstrate the applicability of the procedure to real structures.
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Introduction

Damage to a structure is caused by many sources, espe-
cially intense loading during a strong earthquake and
the degradation of structural material. Identifying the
location and level of structural damage is critical to the
investigation of the serviceability and safety of struc-
tures. Early evaluation of damage or structural degra-
dation is essential for preventing disastrous accidents.
Studies on structural health monitoring have been
receiving increasing attentions in the field of civil
engineering.

The modal parameters of a structure can be used to
figure out the stiffness characteristics of a structure.
For this reason, the damaged structures can be detected
by the change of the modal parameters. In recent

decades, the modal identification methods that are
implemented in time domain, frequency domain, or
time–frequency domain are simple and extensively
adopted.1–3 Various formulations in time–frequency
domain are performed to process the noisy data from
various field tests.4,5 The proposed procedure is a
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typical example of the cooperation between a state–
space model and a subspace approach6,7 in time–
frequency domain for the modal identification.
However, the accuracy of the identified modal para-
meters is always reduced by the imperfections of the
measured responses, which usually comprise certain
noise from unknown input or system resolutions.

Due to the strong capability of data de-noising, con-
tinuous wavelet transforms have been discussed in
some studies that aim to identify the modal parameters
of a linear system.8–10 Huang and Su11 utilized continu-
ous wavelet transform for the earthquake responses of
a structure using various wavelet functions. They pro-
posed modal identification procedures that are based
on a time series model to determine structural modal
parameters of the system using the coefficient of a
wavelet transform.

As mentioned previously, the identified modal para-
meters could be used to observe whether the structure is
damaged or not. But, the damaged location is difficult
to be found from the results of modal identification. A
stiffness matrix–based approach7,12 that employs identi-
fied modal parameters and given mass properties is a
vibration-based damage detection approach for finding
the damaged location. The stiffness parameters have
been identified for controlling the flexible members in
robotic manipulator or marine riser system.13–15 In the
ideal experimental condition, the clear and noise-free
responses would be measured. However, the noisy
vibration is always obtained in the on-site test; for this
reason, the de-noising procedure needs to apply on the
modal identification process.

Despite the de-noising procedure reducing the influ-
ence of noise in the frequency identification, it often
removes certain parts’ signal energy and causes identifi-
cation error for mode shapes in higher modes. The
orthogonality property, which cooperates with the mass
and stiffness matrices of the mode shapes, can be used
to correct the identified mode shapes. In linear algebra,
many orthogonalization algorithms and approaches
have been proposed and widely used for computing an
orthogonal basis, such as Householder transformations,
Givens rotations, and Gram–Schmidt process.16 There
are two basic computational variants for executing the
Gram–Schmidt process: the classical Gram–Schmidt
algorithm and the modified Gram–Schmidt algo-
rithm.17 For the rounding error, the classical Gram–
Schmidt algorithm may produce a set of vectors which
is lost orthogonality.18 The modified Gram–Schmidt
algorithm has better numerical properties stable than
the classical Gram–Schmidt algorithm.19

This study proposes a comprehensive procedure to
accurately obtain a stiffness matrix using the identified
modal parameters based on Gram–Schmidt process.

The identified modal parameters are calculated from a
subspace approach in Morlet wavelet domain. The iden-
tified mode shapes are corrected by applying the given
mass properties and Gram–Schmidt process. The
structural stiffness parameters can be calculated via the
previous identified natural frequencies and the corrected
mode shapes. The applicability of this approach was
verified in a numerical analysis using simulated earth-
quake acceleration responses of a six-story shear build-
ing. The measured noisy responses and input with 10%
variance of the noise-to-signal ratio (NSR) are pro-
cessed. The proposed procedure was successfully applied
to the measured acceleration responses of two eight-
story steel frames in a shaking table test and proved the
feasibility of this procedure in practical cases. The col-
umns in the first and third story of the steel frame were
constructed of steel plates with cutoff.

Methodology

Subspace approach in Morlet wavelet domain

In the case of a linear structure, the equation of motion
for the dynamic responses can be expressed as follows

M€x+C _x+Kx ¼ f ð1Þ

where M, C, and K represent the mass matrix, damping
matrix, and stiffness matrices, respectively, of the sys-
tem; €x is the measured acceleration response vector; _x
is the measured velocity response vector; x is the displa-
cement response vectors; and f represents for the input
force vectors. Consider that the observed degrees of
freedoms apply to the case of incomplete observation
and only acceleration or velocity responses are mea-
sured. Here, the expression y ¼ Lx is used to describe
the observed responses, in which L is a matrix with
components equal to 0 or 1 according to the non-
observed or observed conditions.

The state–space model is generally considered in the
following formulation

zk + 1 ¼ Azk +Bfk
yk ¼ Ezk +Dfk

�
ð2Þ

where A, B, E, and D are the system matrices that are
related to M, C, and K; z ¼ xT _xT

� �T
is a state vari-

able. As shown in equation (2), the following recursive
formula can be obtained

yk + s ¼ EAszk +Dfk + s +
Xs

i¼1

EAi�1Bfk + s+ i�1 ð3Þ

Applying the continuous Morlet wavelet transform
to equation (3) and treating y and f as vector functions
yield the following
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W cs
yk + s ¼EAs

W cs
zk +DW cs

fk + s

+
Xs

i¼1

EAi�1BW cs
fk + s+ i�1

ð4Þ

where the definition of the continuous wavelet trans-
form for a function f ðtÞ can be written as follows

W cs
f p; að Þ ¼ 1ffiffiffi

a
p

ð+‘

�‘

f tð Þc�s
t � p

a

� �
ð5Þ

Variable a is the dilation of the scale parameter,
variable p is the translation parameter, and csðtÞ is the
mother function. The superscript * denotes the complex
conjugate. Morlet wavelets are utilized to form equa-
tion (5). Equation (6) is used to define the standard
Morlet mother wavelet with order s

cs tð Þ ¼ usp�1=4e�t2=2 eist � e�s2=2
� �

ð6Þ

where us ¼ ð1+ e�s2 � 2e�3s2=4Þ�1=2 is the normaliza-
tion constant. Using equation (4), one can further con-
struct the following

W cs
yk;s ¼ YaW cs

zk +FaW cs
fk;s ð7Þ

where

W cs
yk;s¼ W cs

yTk W cs
yTk + 1 � � � W cs

yTk + s�1

� �T
Ya¼ ET EAð ÞT � � � EAs�1

� 	Th iT

Fa¼

D 0 0 � � � 0

EB D 0 � � � 0

EAB EB D � � � 0

..

.

EAs�1B EAs�2B � � � D

2
6666664

3
7777775

W cs
fk;s¼ W cs

fTk W cs
fTk + 1 � � � W cs

fTk + s�1

� �T
ð8Þ

where the two sets W cs
yk;s and W cs

yk;s are the coef-
ficients of Morlet wavelet transform of yk and fk,
respectively. Equation (7) can be re-written as follows

ŶN ¼ YaẐN +FaF̂N ð9Þ

where

Ŷk;N ¼ W cs
yk;s W cs

yk + 1;s � � � W cs
yk +N�1;s

� �
Ẑk;N ¼ W cs

zk W cs
zk + 1 � � � W cs

zk +N�1

� �
F̂k;N ¼ W cs

fk;s W cs
fk + 1;s � � � W cs

fk +N�1;s

� �
8><
>:

ð10Þ

A brief summary of the subspace approach proce-
dure, which was organized by Huang et al.7 and in more
detail by Huang and Lin,6 is described as follows

1. Define an orthogonal projection matrix *?
f
¼

I� F̂
T

k;N ðF̂k;N F̂
T

k;N Þ
�1
F̂k;N onto the null space of

F̂k;N ;
2. Introduce the instrumental variables P ¼
½ F̂T

p;N Ŷ
T

p;N
�T;

3. Calculate the weighting matrices Wr ¼ I and
Wc ¼ ðPP?f P

T=NÞ�1=2;
4. Define the matrix �H ¼WrŶk;N*?

f
PWc=N ;

5. Apply singular value decomposition on �H ffi
Q�nD�nV

T
�n ;

6. Let Ga ¼ �GaT�n, where �Ga ¼W�1
r Q�nD

�1=2
�n ;

T�n ¼ D
�1=2
�n V�n ðẐk;N*?

f
PWc=NÞ�1=2;

7. Rewrite equation (7) as W cs
yk;s ¼ �Ga�zk +

FaW cs
fk;s, where �zk ¼ T�nW cs

zk ;

8. �Ga can be established by �Ga¼

�E
T ð�E�AÞT � � � ð�E�A

s�1Þ
T

h iT
;

9. Define �Ga1¼ ½ �ET ð�E�AÞT � � � ð�E�A
s�2Þ

T �T

and �Ga2¼ ½ ð�E�AÞT ð�E�A
2Þ

T
� � � ð�E�A

s�1Þ
T �T;

10. Calculate �A by solving the linear equation
�Ga2 ¼ �Ga1

�A.

Identification of modal parameters

The modal parameters of a system are generally identi-
fied using the eigenvalues and eigenvectors of the sys-
tem matrix A in equation (2). The terms of the space–
state variable are used to express the equation of
motion. However, matrix A cannot be directly deter-
mined from the preceding derivation. To identify the
modal parameters of a structure, employ matrix �A,
which is characterized as follows

�lj ¼ eljDt; �ϕj ¼ T�nϕj ð11Þ

where lj and ϕj are the jth eigenvalue of A and the jth
eigenvector of A, respectively, and �lj and �ϕj are the jth
eigenvalue of �A and the jth eigenvector of �A, respec-
tively. In equation (11), ϕj cannot be estimated because
T�n is unknown. To overcome this challenge, the modal
shape ϕj;y, which corresponds to the observed degrees
of freedom, needs to be determined first.

Based on the scheme in section ‘‘Subspace approach
in Morlet wavelet domain,’’ a new relationship can be
determined

ϕj;y ¼ �E�ϕj ð12Þ

The eigenvalues of A and �A are complex numbers
and can be expressed as follows
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lj ¼ aj + ibj
�lj ¼ aj + ibj

ð13Þ

From the relationship between the eigenvalues of A
and �A in equation (11), one has

aj ¼
ln a2

j + b2
jð Þ

2Dt

bj ¼
an�1 bj=ajð Þ

t=Dt

ð14Þ

The modal parameters of the structural system can
be determined as follows

vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

j +b2
j

q

jj ¼
�aj

vj

ð15Þ

where vj is the jth pseudo-undamped circular natural
frequency, and jj is the jth modal damping ratio of the
structural system.

Construction of stiffness matrix

Consider the equation of motion of a structural
dynamic response, as shown in equation (1), and
assume the damping properties in structure, the modal
mode shapes perform the orthogonality property with
the mass and stiffness matrix20 as follows

MD ¼ ϕTMϕ; KD ¼ ϕTKϕ ð16Þ

where MD is the diagonal modal mass matrix, and KD

is the diagonal modal stiffness matrix of the structure.
The square of the modal frequencies is described as an
equation of matrix L as follows

L ¼M
�T=2
D KDM

�1=2
D ¼M

�T=2
D ϕTKϕM

�1=2
D ð17Þ

Assuming that the mass matrix was given, the stiff-
ness matrix can be obtained as follows

K ¼ ϕ�TM
T=2
D LM

1=2
D ϕ�1 ð18Þ

However, the error in the identified higher modal is
larger than the errors in other identified modals because
the de-noising procedure removes certain parts’ signal
energy. For this reason, a correction procedure of iden-
tified mode shapes based on the Gram–Schmidt process
is proposed. First, one can obtain the identical equation
as follows

�ϕT�ϕ ¼ I ð19Þ

where

�ϕ ¼M1=2ϕM
�1=2
D ð20Þ

As shown in equation (12), �ϕ is a unitary matrix.
The column vectors of �ϕ are implied to be an orthogo-
nal set. However, the ϕ̂ constructed by the identified
mode shapes during the de-noising procedure is not a
unitary matrix. In this situation, the column vectors of
ϕ̂ comprise a linear independent set.

Gram–Schmidt orthogonalization, which is also
referred to as the Gram–Schmidt process, is a proce-
dure that takes a nonorthogonal set of linearly inde-
pendent functions and constructs an orthogonal basis
over an arbitrary interval with respect to an arbitrary
weighting function. The complete procedure is
described as follows:

1. Define the projection operator

P~ϕi
ϕ̂j

� 	
¼

~ϕT
i ϕ̂j

~ϕT
i ~ϕi

~ϕi ð21Þ

2. Calculate orthogonal vectors

~ϕi ¼ ϕ̂i �
Xi�1

j¼1

P~ϕj
ϕ̂ið Þ ð22Þ

3. Normalize the orthogonal vectors ~ϕi

�ϕi ¼
~ϕi

~ϕik k
ð23Þ

Based on the given mass properties, the Gram–
Schmidt process is applied to the identified model
shapes. The identified higher modal is corrected, and
the stiffness matrix can be constructed.

Numerical verification

To prove that the proposed procedure is sensitive and
realizable in the numerical analysis, a six-story shear
building (Figure 1), which is simulated by Runge–
Kutta method, was subjected to the 1999 Chi-Chi earth-
quake at the base. The modal damping ratio is set to
constant value of 5% in the simulation process. Table 1
lists the theoretical modal parameters of the six-story
frame. Figure 1 describes the acceleration responses of
the shear building and the input excitation at t=5–45 s
with Dt=0.005 s, which were employed in the identifi-
cation process. The frequency response function, which
is well-known modal identification approach, was usu-
ally used to describe the resonance frequencies of sys-
tem. Figure 2 reveals the rough natural frequencies of
the structure in 0.85, 2.3, 3.6, 4.8, 5.7, and 6.2Hz, but
the sixth modal is not very obvious.

The modal assurance criterion (MAC) proposed by
Allemang and Brown21 was used to check agreement
between the identified mode shapes and the theoretical
mode shapes

4 Advances in Mechanical Engineering



MAC ϕk;i;ϕk;a

� 	
¼

ϕT
k;iϕk;a




 


2
ϕT

k;iϕk;iϕ
T
k;aϕk;a

ð24Þ

where ϕk,i and ϕk,a are the identified ith mode shape
and the corresponding analytical mode shape, respec-
tively. The MAC values move in the range of [0,1]. The
MAC values are close to one, which indicates that the
two mode shapes are similar. The MAC values are close

to zero, which indicates that the two mode shapes are
orthogonal to each other.

In the numerical example, the ‘‘accurate’’ results
are should be defined as follows: the relative errors
between the identified frequencies and the theoretical
frequencies are within 2%, the relative errors between
the identified damping ratio and the theoretical damp-
ing ratio are within 20%, and the MAC values exceed
0.95.

Figure 1. Schematic representation of a six-story frame and its simulation responses.

Table 1. Theoretical modal parameters of the six-story frame.

Mode First Second Third Fourth Fifth Sixth

fnðHzÞ 0.846 2.310 3.576 4.831 5.745 6.209
jð%Þ 5.00 5.00 5.00 5.00 5.00 5.00
Mode shapes 1.000 20.951 20.838 0.672 20.443 20.221

0.929 20.450 0.220 20.877 1.000 0.619
0.793 0.288 1.000 20.406 20.815 20.896
0.601 0.874 0.518 1.000 0.025 1.000
0.367 1.000 20.618 0.103 0.783 20.909
0.190 0.663 20.751 20.685 20.753 0.586
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Effects of noise

Corrupted noise always exists in the measured responses.
To challenge this situation in the numerical process, the
simulated responses and input excitation were randomly
added by 10% variance of the NSR of noise.

The processing of noisy responses reveals the diffi-
culty of obtaining accurate results for each mode at
s\ 10. When NSR=5%, the first to fourth modes
attained accurate damping results at s. 35; the fifth
mode attained accurate damping result at s. 45; and
the sixth mode could not obtain accurate damping
result for s\ 50. Figure 3(a) describes the stabilization
diagrams of the identified results obtained from the
noisy responses without filter.

In the Morlet wavelet domain, the interested fre-
quency bands are retained. The continuous wavelet
transform typically performs a frequency filter effect.
Figure 3(b) illustrates the stabilization diagrams of the
identified results in the case of processing noisy data
with Morlet wavelet de-noising. The identified results
via a filter theorem are as follows: the first to fourth
modes attained accurate damping results at s. 15, the
fifth mode attained accurate damping result at s. 18,
and the sixth mode could not obtain an accurate damp-
ing ratio for s\ 22. Figure 3 reveals the more accurate
natural frequencies of the structure than the frequency
response function in 0.846, 2.310, 3.575, 4.829, 5.747,
and 6.207Hz, including the highest modal. Some inter-
ested frequency ranges were kept, which was useful for
obtaining accurate damping results.

As mentioned previously, the existing error in the
identified higher modal was larger than the errors

obtained for the other identified modals because the de-
noising procedure removes certain parts’ signal energy.
Figure 3 reveals that the de-noising procedure signifi-
cantly altered the identified fifth and sixth mode shapes,
and its MAC values are less than 0.98. Figure 4 shows
that the MAC values after the Gram–Schmidt process
and modified Gram–Schmidt process are applied to the
identified mode shapes using various values of s. The
identified fifth and sixth mode shapes are corrected and
its MAC values exceed 0.99 at (I, J). 10. The identified
mode shapes were corrected by classical Gram–Schmidt
algorithm compared a bit poorly with that was cor-
rected by modified Gram–Schmidt algorithm, but not
obvious. The identified mode shapes are independent
and like orthogonal set; for this reason, similar results
can be obtained by these two algorithms.

Constructing a stiffness matrix

For the assumption of a given mass matrix, combined
with the identified natural frequencies and corrected
mode shapes, the stiffness matrix of a structure can be
determined by equation (18). Considering the original
shear building model as ‘‘frame A,’’ ‘‘frame B’’ was cre-
ated by reducing the local stiffness of the first story and
third story of ‘‘frame A’’ to 800 and 1200 kN/m, respec-
tively. Because both models are shear building, the the-
oretical stiffness matrix of both models is a tri-diagonal
matrix, and one will focus on the relative errors of tri-
diagonal elements in the following numerical study.

Table 2 lists the relative errors of the calculated stiff-
ness matrix using equation (18). The modal parameters

Figure 2. The frequency response function of a six-story frame.

6 Advances in Mechanical Engineering



Figure 3. Stabilization diagrams of the identified results: (a) without a filter and (b) after de-noising by Morlet wavelet.

Table 2. Estimated stiffness matrix and its relative error (without correcting the identified mode shapes).

Stiffness matrix

Frame A 1005.679
(0.568%)

21009.295
(0.929%)

21.707 226.118 25.944 21.221

21009.295
(0.929%)

2018.604
(0.930%)

2984.881
(1.512%)

51.134 25.516 1.408

21.707 2984.881
(1.512%)

1922.019
(3.899%)

2997.626
(0.237%)

248.759 5.081

226.118 51.134 2997.626
(0.237%)

1978.508
(1.075%)

2921.725
(7.827%)

290.224

25.944 25.516 248.759 2921.725
(7.827%)

2603.219
(4.129%)

21520.698
(1.380%)

21.221 1.408 5.081 290.224 21520.698
(1.380%)

2924.168
(2.528%)

Frame B 1032.500
(3.250%)

21070.332
(7.033%)

52.096 277.855 25.960 270.882

21070.332
(7.033%)

2090.303
(4.515%)

2997.328
(0.267%)

67.212 41.677 165.054

52.096 2997.328
(0.267%)

1915.541
(4.223%)

2996.853
(0.315%)

2157.634 271.003

277.855 67.212 2996.853
(0.315%)

1899.878
(5.549%)

2778.033
(2.746%)

158.965

25.960 41.677 2157.634 2778.033
(2.746%)

2170.846
(5.615%)

21511.971
(0.798%)

270.882 165.054 271.003 158.965 21511.971
(0.798%)

2806.405
(3.941%)

Note: Because of shear building, the bold values are represented to results focused on tri-diagonal elements of matrix.
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Figure 4. Stabilization diagrams of the identified mode shapes: (a) corrected by the Gram–Schmidt process and (b) corrected by
the modified Gram–Schmidt process.

Table 3. The estimated stiffness matrix and its relative error (identified mode shapes corrected by Gram–Schmidt process).

Stiffness matrix

Frame A 993.009
(0.699%)

2987.187
(1.281%)

210.334 4.971 28.821 10.730

2987.187
(1.281%)

1975.543
(1.223%)

2973.735
(2.626%)

220.714 25.241 225.385

210.334 2973.735
(2.626%)

1961.160
(1.942%)

2962.204
(3.780%)

238.300 32.145

4.971 220.714 2962.204
(3.780%)

1959.807
(2.010%)

2975.316
(2.468%)

211.932

28.821 25.241 238.300 2975.316
(2.468%)

2523.684
(0.947%)

21543.922
(2.928%)

10.730 225.385 32.145 211.932 21543.922
(2.928%)

3066.367
(2.212%)

Frame B 1009.182
(0.918%)

21017.580
(1.758%)

17.394 25.771 7.541 24.765

21017.580
(1.758%)

2035.744
(1.787%)

21039.315
(3.932%)

20.523 222.101 16.429

17.394 21039.315
(3.932%)

2035.590
(1.780%)

21022.276
(2.228%)

21.317 219.013

25.771 20.523 21022.276
(2.228%)

1821.097
(1.172%)

2817.916
(2.239%)

14.198

7.541 222.101 21.317 2817.916
(2.239%)

2312.837
(0.558%)

21502.725
(0.182%)

24.765 16.429 219.013 14.198 21502.725
(0.182%)

2692.001
(0.296%)

Note: Because of shear building, the bold values are represented to results focused on tri-diagonal elements of matrix.
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that would be used in equation (18) were identified
from the noisy simulation dynamic responses in the
Morlet wavelet domain. For the ‘‘frame A’’ and ‘‘frame
B,’’ the maximum relative errors are 7.827% and
7.033%, respectively. Evaluating whether the variant of
the local stiffness is less than 5% is difficult based on
the identified modal parameters. For this reason, the
difference of local stiffness between ‘‘frame A’’ and

‘‘frame B’’ which were created without a mode shape
correction procedure is not very clear.

The proposed procedure is used to create the stiff-
ness of ‘‘frame A’’ and the stiffness of ‘‘frame B’’ from
the noisy dynamic responses. Table 3 also lists the rela-
tive errors of the calculated stiffness matrix using the
Gram–Schmidt process and equation (18). The modal
parameter that is employed in the Gram–Schmidt

Figure 5. Photograph and time history of an eight-story frame.
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process and equation (18) was also identified from the
noisy simulation dynamic responses in the Morlet
wavelet domain. For ‘‘frame A’’ and ‘‘frame B,’’ the
maximum relative errors are 3.780% and 3.932%,
respectively. Evaluating whether the variant of the local
stiffness exceeds 5% is easy based on the identified
modal parameters. Therefore, the difference in local
stiffness between ‘‘frame A’’ and ‘‘frame B,’’ which were
created by the proposed procedure, is very clear.

Application to a shake table test

To extend the applicability of the proposed approach
when using practical measurements, the responses of
two eight-story steel frame were measured in shaking
table tests. The tests were performed in the laboratory
of the National Center for Research on Earthquake
Engineering in Taipei City, Taiwan (Figure 5). The first
frame, which is structurally regular, was denoted as
‘‘standard.’’ The length, width, and height of the frame
were 1.8, 1.2, and 8.5m (Figure 5), respectively. Lead
plates were piled on each floor such that the total mass
of the steel frame was approximately 4.519 tons. The

second frame, which is structurally irregular with
respect to stiffness and denoted as ‘‘cutoff’’ was identi-
cal to ‘‘standard,’’ with the exception that the columns
of the first and third stories were constructed of steel
plates with cutoff, as shown in Figure 6, and others are
constructed with intact steel plates.

Both frames were subjected to base excitations of the
1999 Chi-Chi earthquake, which occurred on 21
September 21 1999 in Chi-Chi, Nantou County,
Taiwan, with a 100 gal (1m/s2) reduced level. Data were
recorded at a sampling rate of 200Hz. The acceleration
responses of the base and all floors at t=5–35 s were
employed in the evaluation of modal parameters of the
frame. Figure 5 displayed the base excitations and accel-
eration responses of all floors in the long-span direction
of the ‘‘standard’’ frame, which was subjected to a
100 gal loading of the 1999 Chi-Chi earthquake.

Table 4 summarizes the identified modal parameters
of both frames, and Figure 7 shows the identified mode
shapes that were corrected by the Gram–Schmidt pro-
cess. Figure 6 implies that the columns of the first and
third stories, which were constructed by steel plates
with cutoff, did not significantly alter the mode shapes.
As expectation, the identified frequencies of the ‘‘stan-
dard’’ frame are slightly larger than the identified fre-
quencies ‘‘cutoff’’ frame. Even in the higher modes, the
identified modal damping ratios for different frames
were smaller than 2%. A 2% of modal damping is typi-
cally adopted in the dynamic analysis of a steel struc-
ture in the design process.

Table 5 shows the final identified stiffness matrix of
both frames. Variables K(i)(i2 1) in the stiffness matrix
represent the local stiffness of the story between the ith
and i2 1th floors. Table 6 lists the relative errors
between the ‘‘standard’’ and the ‘‘cutoff’’ frames. K1g in
Table 6 indicates the stiffness values of the structural
elements between the first floor and the ground floor,
where

P8
i¼1 K1i +K1g ¼ 0, thus, K1g can be calculated

based on K1i (i=1–8) for each frame.
For the condition when both the ‘‘standard’’ and the

‘‘cutoff’’ frames were subjected to a 100-gal Chi-Chi
earthquake loading, the relative errors of the local stiff-
ness between ‘‘standard’’ and ‘‘cutoff’’ frames are listed
in Table 6. Compared with the ‘‘standard’’ frame, the
stiffness values for the second, fourth, fifth, sixth,
seventh, and eighth floors of ‘‘cutoff’’ frame do not

Table 4. Identified natural frequencies and damping ratios of both the ‘‘standard’’ and ‘‘cutoff’’ frames.

Frame Mode First Second Third Fourth Fifth Sixth Seventh Eighth

Standard fnðHzÞ 1.052 3.112 5.179 7.123 8.921 10.469 11.725 12.512
jð%Þ 0.636 0.251 0.213 0.176 0.175 0.172 0.179 0.195

Cutoff fnðHzÞ 1.007 3.057 5.089 6.981 8.825 10.407 11.572 12.441
jð%Þ 0.693 0.379 0.301 0.287 0.219 0.216 0.185 0.170

Figure 6. A photograph of a steel plate with cutoff.
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significantly change, but the stiffness values of the first
and third floors decrease to 8.864% and 8.008%,

respectively. These values reveal that the first and third
stories of the ‘‘cutoff’’ frame were slightly damaged.

Figure 7. Identified mode shapes of both the ‘‘standard’’ and ‘‘cutoff’’ frames.
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Conclusion

This study presented an orthogonalization-based
approach for correcting the identified mode shapes that
were evaluated from structural dynamic responses in
Morlet wavelet domain. The corrected mode shapes
and given mass properties will be used to create an
accurate stiffness matrix of a structure. This procedure
is divided into the following three stages: (1) identifying
the modal parameters of a structure from measured
seismic responses, (2) assuming that the mass properties
were given and correcting the identified mode shapes
via the Gram–Schmidt process, and (3) constructing
the stiffness from the identified natural frequencies and
correcting the mode shapes.

In the modal identification stage, a continuous Morlet
wavelet transform was applied to the measured
responses; therefore, the state-variable model was recon-
structed in the wavelet domain. The modal parameters of
the structure were calculated from subspace approach.
To reduce the numerical error of the identified mode
shapes during the de-noising procedure, the mass proper-
ties and Gram–Schmidt process were used to correct the
identified mode shapes. The identified natural frequen-
cies and corrected mode shapes were employed to con-
struct the stiffness matrix of the structure.

To validate the proposed procedure, the numerically
simulated responses of a six-story shear building model
subjected to earthquake input were employed in the iden-
tification process. The noise effects on the ability to pre-
cisely identify the stiffness matrix were also investigated.
The proposed procedure determined stiffness parameters
that were more accurate than the stiffness parameters of
the procedure without mode shape correction.

The real measured data of two eight-story steel
frames, with a length, width, and height of 1.8, 1.2, and
8.5m, respectively, from a shaking table test are ana-
lyzed to demonstrate the applicability of the proposed
procedure to real structures. The proposed method suc-
cessfully proved that the stiffness values of these two
frames differed between the first story and third story.
This comprehensive procedure, which was applied to
the experimental responses, demonstrates its practical
applicability to a real symmetrical building.
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Table 5. Identified stiffness matrix of both the ‘‘standard’’ and ‘‘cutoff’’ frames.

Stiffness matrix (kN/m)

Standard 780.2342 2837.836 43.98267 22.97081 3.552926 2.809886 0.511029 6.375347
2837.836 1722.024 2917.276 53.47203 25.93369 20.04274 0.175858 2.253992
43.98267 2917.276 1722.219 2912.034 56.94597 23.09068 20.37461 4.029386
22.97081 53.47203 2912.034 1719.429 2908.316 53.59368 23.69292 4.611722
3.552926 25.93369 56.94597 2908.316 1700.953 2901.942 56.85761 1.024018
2.809886 20.04274 23.09068 53.59368 2901.942 1706.639 2911.585 59.29386
0.511029 0.175858 20.37461 23.69292 56.85761 2911.585 1700.403 2896.087
6.375347 2.253992 4.029386 4.611722 1.024018 59.29386 2896.087 1693.801

Cutoff 772.7837 2830.678 47.54845 22.44991 2.546618 2.228547 2.19979 1.452748
2830.678 1707.279 2917.123 53.07994 23.74075 0.63243 21.50896 20.2842
47.54845 2917.123 1723.348 2912.251 55.49978 22.69367 0.541615 20.81442
22.44991 53.07994 2912.251 1721.041 2909.132 53.36249 22.59622 20.40708
2.546618 23.74075 55.49978 2909.132 1703.184 2898.932 53.25404 24.66255
2.228547 0.63243 22.69367 53.36249 2898.932 1635.668 2838.581 50.38481
2.19979 21.50896 0.541615 22.59622 53.25404 2838.581 1631.751 2892.115
1.452748 20.2842 20.81442 20.40708 24.66255 50.38481 2892.115 1590.285

Note: Because of shear building, the bold values are represented to results focused on bi-diagonal elements of matrix.

Table 6. Relative errors of identified local stiffness parameters between the ‘‘standard’’ and ‘‘cutoff’’ frames.

K87 K76 K65 K54 K43 K32 K21 K1g

Relative error (%) 0.854 0.017 0.024 0.090 0.334 8.008 0.443 8.864

Note: The bold values are to highlight the significant changes in the relative error of stiffness parameters.
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