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Bianchi type I anisotropic power-law solutions for the Galileon models
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We will study the cosmological solutions of a class of Galileon models. A special class of the Bianchi
type I power-law solutions will be presented in this paper. We will show that these Bianchi type I power-law
solutions are stable during the inflationary phase. In addition, we will also show that the presence of a
phantom field induces at least an unstable mode for the perturbation equation and destabilizes the power-

law solutions.

DOI: 10.1103/PhysRevD.96.023529

I. INTRODUCTION

Cosmic inflation [1] has served as a successful paradigm
of modern cosmology in resolving several cosmological
problems including the monopole, horizon, and flatness
problems [1]. In addition, it also offers a precise frame-
work to accommodate the observations of the Wilkinson
Microwave Anisotropy Probe (WMAP) [2] and Planck
satellites [3] designed for the survey of the cosmic micro-
wave background (CMB) radiation. Indeed, many obser-
vations have been shown to be consistent with the
theoretical predictions of the standard inflationary models
[2,3]. There are, however, some large scale CMB anomalies
observed by the WMAP [2] and the Planck [3]. For
example, the hemispherical asymmetry and the cold spot
are beyond the predictions of standard inflationary models.
As a result, these exotic features of CMB imply that the
early universe should be slightly anisotropic rather than
isotropic. Hence, isotropic inflationary models, based on
the homogeneous and isotropic Friedmann-Lemaitre-
Robertson-Walker (FLRW) spacetime [4], should be modi-
fied by the introduction of the anisotropic inflation models,
e.g., the anisotropic Bianchi spacetimes [5,6].

The cosmic no-hair conjecture proposed by Hawking
and his colleagues [7,8] claims that all classical hairs (or
equivalently spatial anisotropic directions) of the early
universe will disappear once the vacuum energy dominates
the late-time universe. More precisely, Hawking claimed
[7] that all cosmological models with a positive cosmo-
logical constant A will approach a late-time homogeneous
and isotropic de Sitter spacetime. This conjecture was
partially proven by Wald [9]. It was shown that all non-
type-IX Bianchi spacetimes will evolve toward the late-
time de Sitter spacetime if the dominant energy condition
and the strong energy condition are both satisfied. For the
type-IX Bianchi spacetime, it will behave similarly if the
cosmological constant A is sufficiently large [9]. Recently,
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there have been a number of discussions concerning the
validity of the cosmic no-hair conjecture in various cos-
mological models including the higher curvature models
[10,11], the Lorentz Chern-Simons theory [12], the massive
vector theories [13], the supergravity-motivated models
[14-20], the nonlinear massive gravity models [21], and the
massive bigravity [22]. Moreover, the cosmic no-hair
conjecture has also been extensively discussed in the case
of inhomogeneous and anisotropic cosmology [23]. It is
worth noting that a “holographic” proof for this conjecture
using the idea that the entropy of our expanding universe
will reach a maximum-entropy value has been done
recently in Ref. [24]. Observationally, improved constraints
on the isotropy of the universe have been obtained in a
general test using Planck’s data on the CMB temperature
and polarization [25].

Among the models mentioned above [10-22], there is a
famous counterexample to the cosmic no-hair conjecture
derived from a supergravity-motivated model proposed by
Kanno, Soda, and Watanabe (KSW) [14]. An interesting
review on this model can be found in Ref. [15]. As a result,
a spatial anisotropy of the Bianchi type I (BI) metric,
interpreted as a spatial hair, has been shown to be non-
vanishing in the postinflationary phase derived from a
special coupling term between scalar and electromagnetic
fields, i.e., f2(¢)F,, F* [14].

In addition, the BI metric has been shown to be an
attractor solution to the KSW model for both canonical
scalar field [14] and noncanonical scalar fields models
including the Dirac-Born-Infeld (DBI) and supersymmetric
Dirac-Born-Infeld (SDBI) fields [17,18]. Moreover, the
cosmological implications of the KSW model such as the
effect of anisotropic expansion on the correlations between
T, E, and B modes of CMB and on the primordial
gravitational waves have also been carried out in detail
in Refs. [19,20]. Among the generalizations of the KSW
model, there is a scenario [16,17] introduced by the
inclusion of an additional phantom field with negative
kinetic energy. The phantom field is expected to be
responsible for the dark energy associated with the
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expanding of our current universe [26]. As a result, the
inclusion of the phantom field turns the corresponding
anisotropic cosmological solutions unstable during the
inflationary phase [16,17]. As a result, the final state of
our universe will tend toward an isotropic state as predicted
by the cosmic no-hair conjecture.

In addition to the (S)DBI models, there is another
interesting noncanonical type of scalar field model known
as the Galileon scalar field model with an action that is
invariant under the Galilean symmetry 0,7 — 0,7 + b,
with b, a constant vector [27]. Developed from the
Dvali-Gabadadze-Porrati  braneworld model [28] by
Nicolis, Rattazzi, and Trincherini [27], the Galileon model
introduces higher derivative terms of the Galileon (scalar)
field but admits only second order field equations, which
ensure that it will be free from the Ostrogradsky instability
of the Galileon models [29]. The Galilean symmetry is,
however, broken in curved space [30]. A covariant version
of the Galileon model was therefore introduced in
Ref. [30] as a more general extension [27]. It has thus
been discussed extensively in Refs. [31-35]. More inter-
estingly, a generalized version of the covariant Galileon
model was also proposed in Ref. [31]. This model has also
been shown in Ref. [32] to be equivalent to the higher
derivatives model proposed by Horndeski a long time ago
[36]. Note also that the generalized Galileon model can
be reduced to the DBI model [17] in a proper limit.
Moreover, the generalized Horndeski model, with the
generalized Galileon model as its subclass, has also been
proposed in Ref. [37].

In this paper, we would like to find both isotropic and
anisotropic inflationary solutions in the context of the
covariant Galileon field coupled to the electromagnetic
field. We will also examine whether the cosmic no-hair
conjecture holds in the Galileon-vector model in the
absence (or presence) of the phantom field [26]. As a
result will be shown in a moment, the BI inflationary
power-law solutions found in the Galileon-vector model
turn out to be stable. The presence of a phantom field does
lead to the collapse of the corresponding BI power-law
solutions as expected [14,16,17].

This paper will be organized as follows: (i) A brief
review and the motivation of this paper have been sum-
marized in Sec. L. (ii) A set of isotropic power-law solutions
of the Galileon model will be presented in Sec. II. (iii) In
Sec. III, a set of BI power-law solutions of the Galileon-
vector model will be presented along with the stability
analysis of this set of solutions. (iv) In addition, we will
show the power-law solutions are a set of attractor solutions
in Sec. IV. (v) The BI power-law solutions of the Galileon-
vector-phantom model along with their stability analysis
will be shown in Sec. V. (vi) In addition, a general stability
analysis for a more general Galileo-vector-phantom model
will be presented in Sec. VI. (vii) Finally, concluding
remarks will be given in Sec. VIL
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II. GALILEON MODELS AND THE ISOTROPIC
POWER-LAW SOLUTIONS

In this paper, we will focus on a simple scenario of the
covariant Galileon model, also known as the G-inflation
model [34], with the action given by

S = / d“x\/g_]{]va + K(¢.X) — G(gh. X)qu}

M2
= / d4x\/§{7pR + ko exp [;/I_qﬁ} X

P
Adp
- — X0 2.1
wep 3| x4} 2.
focusing on exponential interactions given by

T Ag

K(¢,X) =k —|X; G, X) = —|X.
#X) = koexp % G x) = mexo 3

(2.2)

K(¢,X) and G(¢,X) can in general be any arbitrary
functional of the scalar field ¢ with its kinetic term defined
as X = —0,¢0"¢/2 [30]. It will be shown later that this
choice will lead us to power-law solutions. Note that M, is
the Planck mass, while 7, 4, k(, and g are field parameters.

As a result, the variational equation of action (2.1) with
respect to g, leads to the corresponding Einstein field
equations [34],

1 3 (i
M3G,, =M <Rm, - 2Rgﬂy> =T,=> Tw. (23)
i=2

with

7

T;(f) = kO(Xg/w + Dy¢Dv¢) exXp |:M:| ’ (24)
p
(3) o A
T/w = =9 |:<_D0'XD ¢ +2—X >g/w
MP
+ (Dy¢DuX +DV¢DMX)
A AP

and D, the covariant derivative. In addition, the variational

equation of the Galileon field ¢ = ¢(#) can be shown to
be [34]
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3
Z gl) —
i=2
with

ED =k, <D¢ - LX) exp [ﬂ},

M, M,

(2.7)

12
£6) — 90{2W X*-[(O¢)* - (D,D,$)* — R, D' D" ]
P

- ZMLD"XD“(]S} exp [;/I—(ﬁ] .

p P

(2.8)

In order to obtain (an)isotropic cosmological solutions,
we will consider the BI metric space with a metric given by
[14-17]

ds®> = —di* + ajdx* + a3dy* + a3dz?
= —dt* + exp2a(t) — 4o(t)]dx*

+exp2a(t) + 26(1)](dy* +dz*)  (2.9)
with a;, @, and o the scale factors, the isotropy parameter,
and the anisotropy parameter, respectively. The relation
among a;, a, and o can be read off directly from the above
equations. Note that ¢ should be much smaller than « in
order to accommodate the observational data obtained from
WMAP [2] and Planck [3]. In addition, the scalar field will
also be assumed to be a function of time only, ¢ = ¢(7), in
accord with the BI metric space.

Note that Eq. (2.8) reduces to

,
EG) = go{%q; {6H +9H? — (ZH2> —Roo]
P

214 .. - A
Rty

p

(2.10)

with the help of the identity

(Cg)?
3

(00" + ¢"T%,0°) ] = 6H § +OH¢” - (Z H%) ¢’
i=1

(D Dv¢)2 <D¢) [(8/481/ - FZD80)¢]

(2.11)

Here H= (> H;)/3 and H; = a;/a; (i = 1-3) are the
mean Hubble parameter and its components, respectively.
Note again that the most general field equations for
arbitrary functionals K (¢, X) and G(¢, X) can be found
in Ref. [34].

In addition, the component equations of the Einstein
equation (2.3) can be shown to be

PHYSICAL REVIEW D 96, 023529 (2017)

o o K ¢ ¢
—3ME(a? - &%) + 2 []+3 {]
p(a o7) 2CXP M, ¢ 9o €Xp M agb
JoA APl
—Mexp{M—p]q’z =0, (2.12)
- M3a—-3Mia? + = 5 exp[jf}(d}—i—3dq'ﬁ)¢2 —
p
(2.13)
6+3a6=0. (2.14)

Note that one of the Egs. (2.12)-(2.14) is redundant
following the constraint D,K* = D,(M3G* —T*) =0
derived from the Bianchi identity and energy conservation
law. As a result, we have a nonredundant set of three
equations for the field variables ¢, a, and o. Following
Refs. [14,16,17], we will try to find a set of power-law
solutions of the following forms:

Mi;:\flogt+¢o.

a={logt; o =nlogt;

(2.15)

The power law solution for a system with scalar-vector
coupling is known to violate Hawking’s conjecture. Hence
it is important to examine all possible extensions of these
scalar-vector coupling systems. In particular, the Galileon
model is a very important generalization along this
approach [14]. It is straightforward to show that the
power-law ansatz shown above is probably the only known
and consistent way to induce a consistent set of power-law
solutions with all terms in the ordinary differential equa-
tions (ODEs) varying as 1/7>. In particular, the kinetic
terms &2, 6%, and ¢®¢?* are all required to evolve as 1/72.
On the other hand, the power-law solution puts a strong
constraint on the possible interactions that can be intro-
duced consistently in the system. This is the main reason
that we are focusing on the model shown in action (2.1).
Indeed, we will show in the next section that a consistent set
of power-law solutions will require that 7 = 0 even if we
introduce a nontrivial interaction term in the first place. In
addition, our main interest is to study the effect of some of
the Galileon terms step by step. The result indicates that the
system ends up with a set of field equations that still
endorses a set of stable anisotropic power-law solutions in a
fairly complicated way.

A. Isotropic limit

First of all, Eq. (2.14) reduces to the algebraic equation
n(3,—-1)=0. (2.16)

Inflationary  (or equivalently strongly expanding)
solutions requires that {> 1. As a result, the solution
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¢ = 1/3 is not an interesting solution. We will focus on the
solution

n=20 (2.17)
that represents an isotropic solution with ¢ = 0. Note again
the o-related equation (2.14) is absent from the field
equations if we started out with the isotropic FLRW metric
in the first place. Therefore, the solution { = 1/3 to the
Eq. (2.14) is not a solution for the isotropic FLRW metric
space. Finally, it can be shown that Egs. (2.6), (2.12), and
(2.13) reduce immediately to the following set of algebraic
equations:

2
~o(3E ~ g~ 95(¢ ~ 1)~ U + 5 £ =0,

(2.18)
2 & 3 Aoy
-3 —|—k03+3C§‘v—§§v:0, (2.19)
) 3. &
-3¢ +§Zj§~v—5v:0. (2.20)
Here, we have introduced a new variable,
v = gOMp exp[’kb()]? (221)

for convenience. We note that there are two additional
constraints, 7 = 0 and & = 2/4, which will make sure that
each term in the field equations is proportional to 1/#2. It is
clear that the solution 7 = 0 leads to

12
K(¢,X) — koX: kog

5 (2.22)

As a result, we obtain, from Egs. (2.19) and (2.20), that

/12
ko =~5 (3¢~ ). (2.23)
3
v = %g. (2.24)

We can insert these relations back into Eq. (2.18) for a
consistent check. Equation (2.23) appears as a simple
degree-two algebraic equation of . If we treat k, as a
field parameter, the solution to { can be shown to be

1 /A% =6k,

fe=z+—F (2.25)

In order to figure out whether these solutions are infla-
tionary solutions, we will focus on two critical cases below.
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Case I: ky = 1 such that K(¢, X) represents the kinetic
term of a canonical scalar field. As a result, the corre-
sponding ¢ is given by

2 -6
347

(= % + (2.26)
with 4 > v/6. It is then easy to show that 1/3 < ¢ < 2/3.
Hence, the Galileon model does not admit any isotropic
inflationary power-law solutions that require § > 1.

Case 2: ky = —1 such that K (¢, X) represents the kinetic
term of a phantom field. As a result, the corresponding { is
given by

1 V2246
(=t (2.27)

It is straightforward to show that { = 2/3 for A > 1. On the
other hand, we have ¢ = v/6/(34) > 1if A < 1. Hence, the
isotropic inflationary power-law solutions to the Galileon
model exist for all 1 < 1.

III. GALILEON-VECTOR MODEL

A. The model and its anisotropic power-law solutions

Note that the Galileon model (2.1) can only admit
isotropic power-law solutions (7 = 0) according to the
equation for anisotropic parameter ¢ as shown in
Eq. (2.14). Hence, if we would like to obtain anisotropic
power-law solutions to the Galileon with # # 0, a non-
minimally coupling Galileon model should be considered.
For example, an electromagnetic field can do the job
[14—17]. In this section, we would like to try if we can
find anisotropic solutions by introducing a gauge field (4,)
coupling to the Galileon field (¢) via the interacting term
f*(¢)F,, F* [14-17] motivated by the supergravity theory
[14,15]. Here F,, =d,A, —0,A, is the field strength of
gauge field A, and f(¢) is a functional of the scalar field ¢.
To be more specific, we will focus on the Galileon-vector
model with an action given by

9

M2
S :/d4x\/§{2pR + ko exXp |:M
2 2,
_&exp |:_L¢:|F Fﬂb}'
4 M,

Note that, following Refs. [14,16,17], the functional f(¢) is
also chosen as an exponential function

F(#) = foexp {— ;—ﬂ

}X — goexp Bf} XU

P P

(3.1)

(3.2)

with f, and p > 0 two different coupling constants. Note
that the negative sign in exp[—p¢/M,]| is chosen to
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accommodate the inflationary power-law solutions as will
be shown explicitly in a moment.

As a result, the field equations of this model can be
shown to be

A, Valf* (@) F*]} =0, (3.3)

M%? (R/w - %Rg;w> - T,(,i) - T;(S) + 9 f (¢) FF,,
- fz(gb)FﬂyFlJ: =0, (34)
5<2) + 5(3) _f(/)(¢;f(¢) FWF’”’ -0, (3'5)

respectively. In addition, we also write f, = df/d¢ for

convenience. Note that ’T,(jy) are defined in Egs. (2.4) and

(2.5). Moreover, £() are defined in Egs. (2.7) and (2.8).
A consistent configuration of the gauge field A, is given

by [14,16,17]

= (0,A,(1),0,0). (3.6)
As a result, Eq. (3.3) reduces to
A(t) = f72(¢) exp[-a — 4o]p,, (3.7)

with p, the constant of integration [14]. Hence, Eq. (3.5)
can be written as
EQ + &) 4 f3f, exp[—4a —4o]p = 0. (3.8)

Furthermore, the Einstein equation (3.4) reduces to the
following component equations:

. T AP
=3M3 (& =)+ ) eXP[Mp ¢ + 3gpexp M— o’
% A i
_21\04 [MJQS +75-exp[-da —4dolp} = 0. (3.9)
— M2 - 3M3 9 o _¢
ia—3M5a + = 5 € M (§+3ad)d®
2 2
+—exp[ —4a —4o]p; =0, (3.10)
a+3aa—f—_zexp[—4a—4a]p2 =0. (3.11)
3M2 A
By introducing a new variable [14,16,17],
f—2p2
=10 P8 exp o). (3.12)

we can derive a set of algebraic equations from Egs. (3.8)—
(3.11) given below,

PHYSICAL REVIEW D 96, 023529 (2017)

2
ko (3 1) = 98L(C ~ 1o~ UL + 5 v = pl =0,
(3.13)

& l
— 3% + 352 +k0 +383¢v — 5411—&-520, (3.14)
C—3C2+%53(3C—1)v+é20, (3.15)
BC—Dn—§=0. (3.16)

Note that the following constraints are required in order that
each term in these equations evolves as 1/%:

=0, (3.17)

2
£=". (3.18)
—pE+20 427 = 1. (3.19)

These relations also demonstrate the power of the expo-
nential form interactions adopted in this paper. The
exponential interactions are in fact the most important
feature to the existence of a set of consistent power-law
solutions. These equations put forward a set of constraints
to the field parameters (z, 4, p). This is in fact the key to the
existence of a set of consistent power-law solutions. We are
dealing with a system with three variables (¢, 7, &). In
addition, we can show that

=3p(3¢ - 1), (3.20)
C+r]=z+%, (3.21)

from Eqgs. (3.16) and (3.19), respectively with the help of
Eq. (3.18), i.e., £ = 2/A. Here we have introduced a new
parameter z = p/A for convenience.

Note that, if we choose f(¢) = foexplpp/M,] with
p >0, we will obtain the following solution: { = —5 —
p/A—=1/2 <0 for positive A [14,16,17]. This means that
the inflationary constraint { > 1 is inconsistent with this
choice. This is the reason why we chose the negative
sign in the definition of exponential coupling f(¢) =
Foexpl—pp/M,).

Moreover, Egs. (3.14) and (3.15) can be rewritten as

/12
ko:_§(18§2—18z€—155+1zz +10z+2)

- _g[(zz +1)(6z — 1) = 18zn + 3n(6n — 1)],

(3.22)
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/13
U:E
13

(6 —2z—1)
(3.23)

respectively, with the help of Egs. (3.20) and (3.21).

As aresult, Eq. (3.13) is automatically satisfied with the
solutions given in Egs. (3.20)—(3.23) due to the Bianchi
identity mentioned earlier. Note that the algebraic
Eq. (3.22) can be solved immediately by treating k, as a
field parameter. The result is

5, z,vA (3.24)

Z
C_Ci_12+§ 12

Here, we have defined a new variable A as

64k,

A=9-—r- 60z* — 20z. (3.25)

In fact, we can show that A is always positive,

A= (6z+1)*=24n(6z+1—6n) = (6z+ 1 — 121)*
(3.26)

with the help of Eq. (3.22). Hence, it is straightforward to
show that
VA = |67+ 1129 (3.27)

Moreover, the positivity of A implies that we always have
the following inequality for k, such as

12

ko < =7 (602 +202 - 9). (3.28)
In addition, the constraint v > 0 leads to the following

constraints:
3n<2z+ 1. (3.29)
Note that the constraints { 4+ 7 > 0 and { — 257 > 0 must
be obeyed if the solution ¢ represents an expanding
solution. With the help of Eq. (3.21), we can show
that the constraint { 47 > 0 is obeyed for all positive A

and p. On the other hand, the constraint { — 27 > 0 implies
that

1
In<z+x.

5 (3.30)

In addition, / > 0 implies thaty > 0 and { > 1/3. Note that
we have excluded the alternative solution { < 1/3 and
n < 0. The alternative choice will lead to the result
z < —1/6. Hence, the alternative choice does not represent
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an expanding solution. As a result, { > 1/3 implies that
n < z+ 1/6. All constraints on 7 show that

1
0<;7<£+—

3te (3.31)

is the final constraint required for 7. Therefore, #n is
expected to be considerately smaller than z and is the only
constraint for the existence of the expanding solutions.
Hence, the corresponding constraint on k is that

ko < —g[(zz +1)Bz-1) +36n-1)].  (3.32)

This constraint can easily be achieved for expanding
solutions obeying the constraint # < z/3 + 1/6. In par-
ticular, ky < —342z%/4 is a direct constraint for the exist-
ence of the inflationary solution derived from the
requirement that z > 1.

B. Inflationary solutions

Next, we would like to examine whether these expan-
ding solutions represent inflationary solutions with the
constraints {+#>1 and { — 25> 1. Note that the sol-
ution { =¢{_ = 1/3 + 5 cannot represent an inflationary
solution for # < £. Therefore, the only possible inflationary
solution is { = ¢ . First of all, the first constraint

1
C+n=z+=>1

5 (3.33)

implies that

> 1, (3.34)
or equivalently p > A. It is clear that if 1 < 1, then p =
O(1) would be enough for the solution to drive the
inflation.

In addition, the second constraint, { —2x > 1, can be
rewritten as

1
C—21122+§—377>>1 (3.35)

implies that

3n <<z—%. (3.36)
Both constraints can easily be achieved if z > 1 and n < z.
Note again that the constraint k, < —342z%/4 is required,
according to Eq. (3.32), for the existence of the inflationary
solution.

Note that A =36z> if n=1/12 as indicated by
Eq. (3.27). Therefore, if 7 =1/12 < {, we should have
the following constraints:
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(3.37)

This assures that the power-law solutions obtained here can
represent inflationary solutions with the anisotropy param-
eter n negligibly small in comparison with the isotropy
parameter {. As a result, the constraint # < { is consistent
with the observations of WMAP and Planck.

C. Stability analysis of anisotropic inflationary
power-law solutions

We will try to find out whether the anisotropic power-
law solutions obtained are stable during the inflationary
phase. This can be done by considering a set of compatible
power-law perturbations of the following form: da = A",
oo = Bt", and 6¢p = M ,Ct" [16,17]. Here A, B, and C are
all constants. As a result, perturbing Eqgs. (3.8), (3.10), and
(3.11) around the anisotropic power-law solutions leads us
to a set of algebraic equations, which can be rewritten as a
matrix equation,

A A Ap Ap A
D B = Az] A22 A23 B — O, (338)
c Azl Axn As C
where the explicit definitions of A;; are given by
12 6
Ay = = vnz—ﬁ—/1 { (2@’—1)1}—5—1(0]11—4,01;
Ay = —4pl;
4 2
A]3 = 1(3€—2)U—|—k0 n
36 8
+ |:7§(C_ 1)11 +IU + (3C— 1)k0:|n
36 8
+76(§—1)v+1v+2p21, (3.39)
21 21
Ay =—-n"—|6{— -1 |n—-—=; Ay = ——;
21 n’ ( ¢ U ) 3 22 3
2 6
A23:/1—vn —I— (34’—1)1}71—}— (3(—1)1}4—31
(3.40)
41 )
A31:371n—|—§; A32=n +(3C—l)n+§,
2,
EC —gpl (3.41)

It is noted that the stability of the corresponding anisotropic
inflationary power-law solutions will be determined by the
value of n, which can be obtained by solving Eq. (3.38).
In particular, we will have stable or unstable anisotropic
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power-law solutions during the inflationary phase for
negative or positive n, respectively. Mathematically, non-
trivial solutions to Eq. (3.38) exist only when

detD = 0. (3.42)

It is straightforward to show that this determinant equation
gives a degree 6 polynomial equation of n,

n(agn® +---+a;) =0, (3.43)
with
8(3¢ —1)wl
ap = TE’ (344)
24 8
(16:1—41}2"‘74‘0—10"‘](0, (345)
where
E=[P(1502-3n—130+2n+2)
—22%p(3¢ =3 — 1) + 42k + 24Lv — 8v].  (3.46)

As a result, nontrivial solutions to Eq. (3.43) must obey the
following equation:
f(n)=agn’+---+a; =0. (3.47)
It is known that this equation will have at least one
positive root corresponding to an unstable mode of the
anisotropic power-law solutions if a;as < 0 as discussed in
Refs. [16,17]. We will therefore discuss the sign of the
coefficients a; and aq during the inflationary phase
corresponding to two following constraints, z > 1 and
n < z, to find out whether the cosmic no-hair conjecture is
violated. As a result, we are able to show that
ag~A*z(3z-2) > 0, (3.48)
according to Egs. (3.36), (3.37), and the definition of ag
given by Eq. (3.45). Next, our goal is the sign of a;. It is
clear that the sign of E will be that of a; since { > 1, v > 0,
and [ > 0 as shown above. In particular, £ > 0 will indicate
a; > 0, and vice versa. During the inflationary phase, in
which { ~ z > 1 and { > 5, we can approximately revalue
E as follows:
E=92372 > 0. (3.49)
It is now clear that a; > 0. The result, in which ag > 0 and
a; > 0, means that the unstable mode may not be able to
survive in this model. This is consistent with investigations
done in the previous papers for both canonical and
noncanonical (DBI and SDBI) scalar fields [17]. Hence,

023529-7



TUAN Q. DO and W.F. KAO

we need to provide more proof to conclude whether the
anisotropic inflationary solutions of the Galileon-vector
model are indeed stable against field perturbations. To
confirm this claim, we are going to list the other coefficients
a;’s (i = 2-5) of the polynomial f(n) in Eq. (3.47) and
show that they are all positive definite. If this is true, f(n)
will remain positive for all n > 0. To do this, we need first
to simplify the components A;;’s of matrix D by keeping
only the leading terms. The results are

6 /12
All 2/1—27}7124’; (7C+k0>n—4pl,

36
+7¢2’U+2p217 (350)
12 21
AZ] = —n2 — <6§—ﬂ—3@)n _g;
2 18 12 P
Az :Pvn2+?gvn+ﬁcv+§l, (3.51)
) 41

Note that we have listed A;;’s that contain only leading
terms. Thanks to these simplifications along with the
approximated values of {, ky, and v as defined in
Egs. (3.21) and (3.37), the approximated values of the
coefficients a;’s (i = 2-5) can be evaluated as follows:

as = 36p°z, (3.53)

ay = p*(135z> + 18z + 61), (3.54)

as = p*(162z° + 108z + 3621 + 35l),  (3.55)

a, = p*(16273 + 54721 + 45znl + 18z1). (3.56)

It is apparent that all coefficient a;’s (i = 2-5) are positive
if n, z, and [ are all positive. This result proves our claim
that the anisotropic power-law solutions of the Galileon-
vector model with gauge field are indeed stable during the
inflationary phase. Hence, the cosmic no-hair conjecture
seems to be generally violated in the context of the KSW
model for both canonical and noncanonical scalar fields ¢
due to the existence of the coupling term between scalar
and gauge fields, f2(¢)F? [14-17].

IV. AUTONOMOUS EQUATIONS AND
ATTRACTOR SOLUTION

The stability of the new set of anisotropic inflationary
solutions has been shown with a power-law perturbation
approach [16,17]. We can also show that these solutions are
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attractor solutions with the help of a set of autonomous
equations [14,16,17]. Indeed, the field equations (3.8)—
(3.11) can be written as

dXx a 2
T x_3x+Z, 4.1
da 2 +3 (4.1)
dy 14 ¢
— =—-—=Y , 4.2
da o> + po'cz (4.2)
dz a
— =——=Z-2(X+1)Z YZ, 4.3
L2 X 4+ )Z 4 43)
with
. y —1
XZg; Y = ¢.; szo p.Aexp ﬂ—204—26,
a M ,a M,a M,

(4.4)

and the auxiliary variables

A
W‘r e exp |:221-$ :| 5 Wﬂ = 3 /goMpd exp |:2]$ :| (45)
P p

obeying the equation

dw, @ AY
A T woa
da o +

W;. (4.6)
Here we have parametrized the field equations by « instead
of ¢t with da = adt. We will show in a moment that
[14,16,17] the anisotropic fixed points of autonomous
equations are identical to the new set of power-law
solutions we obtained earlier. As a result, by showing that
the fixed points are attractor solutions is equivalent to the
proof that the corresponding power-law solutions are stable
solutions. First of all, it is straightforward to show that
the equation dW,/da = 0 leads to a trivial solution 7 = 0
(W, =1) for qb # 0. This is consistent with the power-law
solutions found in Sec. III. Note that the auxiliary variable
Wﬁ can be defined from the Hamiltonian equation (3.9),

6(X2—1)+ koY? + Z?

Wi = Y —e6y?

(4.7)
The fixed points of the autonomous equations are
defined as the solutions to the equations dX/da =0,
dY/da =0, dZ/da =0, and dW,/da = 0. As a result,
we can obtain
7? = -3X(2X —pY - 1) (4.8)
from the equations dX/da =0 and dZ/da = 0. In addi-
tion, we can show that
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4X+1)
Y=——"-+-, 4.9
A+2p (4.9)
a AY
—=—-— 4.1
o’ 2 (4.10)

from the equations dZ/da = 0 and dW,/da = 0. Note that
we will ignore the trivial solutions Z = 0 and W, = O to the
equations dZ/da = 0 and dW,/da = 0.

In order to write the autonomous equations closely as
equations of dynamical variables X, Y, Z, and W, we need
to solve Egs. (3.8) and (3.10) and rewrite all irrelevant
variables as autonomous variables. Indeed, we can write
Eq. (3.8) as
|

PHYSICAL REVIEW D 96, 023529 (2017)

¢ 3¢ 24 (3 2Y?
k Y A S () [
°(Md2+3 tlat ey y) 5 +9

P P
X Y2W3 + pZ? = 0. (4.11)
In addition, we can also write Eq. (3.10) as
d+1 ¢ +3Y 1/2W2+Z2 3=0. (4.12)
@ 2\M,& e T T T

As a result, Eqs. (4.11) and (4.12) can be solved to
give

¢ WL —Y2W3(22Y? — Z2) + 6koY + 2pZ° (4.13)
M,i* YW2(3Y3W3 — 42Y + 12) + 2k, ’ '
7 1 (3Y2W2[9V° W4 — Y2W2(A2Y? — Z2) + 6kyY + 2pZ>
= OY W, — ¥ Wi ) FOKY 27T gpawa 22 gl (4.14)
o 6 YW2(3Y3W2 —42Y + 12) + 2k
As a result, we can write the autonomous equations as
dX X (3Y2W2[9Y W% — Y2W2(22Y? — Z?) + 6kyY + 2pZ? A
@2 il i 21( )+ 6koY + 2p ]—9Y3W§—22+18 -3X + =, (4.15)
da 6 YW2(3Y3W?2 —42Y + 12) + 2k, 3
dy Y (3Y2W2[OY W% — Y2W2(12Y? — Z%) + 6koY + 2pZ°
ar_ 1 j[ ; 5 2,1( )+ 0 +,0 ]—9Y3W%_22+18
da 6 YW2(3Y3W2 — 41Y + 12) + 2k,
9Y W4 — Y2W3(22Y? — Z%) + 6koY + 2pZ* (4.16)
YW2(3Y3W3 —42Y + 12) + 2k, ’ '
dZ  Z (3Y2W2[9V W} — Y2W2(A2Y? — Z2) + 6koY + 2pZ?
— == —9Y3W? —Z> + 18 —2(X +1)Z+pYZ. (417
da 6 { YW2(3Y W2 — 42Y + 12) + 2k, imeT X+ DZ+p (4.17)
The fixed points can be found by observing that Eq. (4.12)
. . k
implies that Sy =122 447+ 14822 (4.22)

¢ —9WIYP -3AY -7’ +18
M,i? 3W2Y? ’

(4.18)

with the help of Eq. (4.10). As a result, the equation
dY/da = 0 reduces to

(X+1)(2X —6z-1)(28,X> + $,X +2S3) =0  (4.19)
with
(62 45: 01140 4.2
S1 = zZ2+3z+ 1+ /1—2 s ( . O)
2 ko
S, =1222-8z-7+32— (4.21)

Y

2’

and z = p/A with the help of Egs. (4.7), (4.8), (4.9), (4.10),
and (4.18). There is a set of trivial solutions X = —1 and
X = 1/2 + 3z (corresponding to { = 1/3). In addition, the
nontrivial solutions of Eq. (4.19) read

1222+ 82473284302+ VA
. 8(622 + 5z + 1 +4%)

. (4.23)

with A defined in Eq. (3.25). We can show that these
solutions are identical to the anisotropic power-law sol-
utions, i.e., Egs. (3.24) and (3.21), we obtained in Sec. III.
Indeed, it is straightforward to show that
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FIG. 1. The anisotropic fixed point with the field parameters
chosen as A =0.1, p =50, and ky = —3p*>/2 is shown as
attractor solutions in this figure. All trajectories in the phase
space of X, Y, and Z, with different initial conditions converge
to the anisotropic fixed point (plotted as the purple point).
The initial conditions [X(t = 0),Y(t = 0),Z(t = 0)] are set as
(0.1, 0.45, 0.2) for the thin solid red curve, (0.15, 0.5, 0.15) for
the thick solid blue curve, and (0.2, 0.5, 0.2) for the green dotted
curve, respectively.

27+ 1
20

X. = -1 (4.24)

with the help of Eq. (3.21). Note also that only the solution
X_ corresponds to inflationary solutions ¢, . In addition,
the dynamical variables Y and Z can also be determined in
terms of X_ as shown in Egs. (4.8) and (4.9).

Note that Y is always positive similar to X and Z.
Besides, X =5/l <1, Y=¢/{~2/p<1, and Z? =
1/ ~9n/¢ < 1 during the inflationary phase with
p> A, =z, and ky=-31272/2. As a result, we can
show the attractor behavior of the anisotropic fixed point
(X_,Y,Z) by plotting the numerical solutions of the
autonomous equations with various initial conditions.
This result shown in Fig. 1 indicates that the anisotropic
(power-law) inflationary solution of the Galileon-vector
model is indeed a stable attractor solution [14,16,17].

V. GALILEON-VECTOR-PHANTOM MODEL
WITH A GAUGE FIELD AND PHANTOM FIELD

A. The model and its anisotropic power-law solutions

Besides the dark energy problem, the role of the phantom
field has long been a focus of string theory and the
evolution of the early universe [38]. It is also known to
be critical in the study of black hole solutions [39]. The
presence of the phantom field may play different roles in
various areas of interest. In particular, the presence of a
phantom field is known to turn the stable power-law
solutions into unstable in a number of models [16,17].
Hence we would like to study the effect of the phantom
field in this model. Following Refs. [16,17], we will include
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the kinetic and potential terms of an extra scalar field,
w =w/(1), in the action

/d“x\/_{ ”R—&—koexp[ﬁf

p

}X — goexp U/I—(q XOgp

p

-2 Loy = V(y) —%fz(rﬁ,w)FﬂyF’”}, (5.1)

2

with @ a positive or negative constant for our choice. Note
that ® < 0 and w > O represent canonical and phantom
scalar fields, respectively. Note also that the scalar field
coupling f(¢) has been changed to f(¢,w) in the action
(5.1). In particular, the introduction of the phantom field is
expected to turn the anisotropic inflationary solutions
unstable similar to the results shown in [16,17]. We will
show in a moment that this is also true for this Galileon-
vector model.

As a result, the following field equations of the action
(5.1) can be shown to be

9, {Vlf* (d.w)F*]} =0, (5.2)
&2 4 £0) MFMDFW =0, (5.3)
Oy — Vi) fy(@w)f(9.y) Fof =0, (54)
0} 2w
M2 (R _Llpy ) ~TY T — 0o o
p Hv 2 Uv 124 124 ,ﬂ// W
2

+ G B PwOy + V() + W FYF,

~ (. w)F, F, = 0. (5.5)

Here 7 ,(42;3) and £33 are defined in Egs. (2.4) and (2.5) and
Egs. (2.7) and (2.8), respectively. Furthermore, Eqgs. (5.3)
and (5.4) can be reduced to

ED +EO) 4 f3f, exp[-4a —4o]pi =0, (5.6)

3

-y = 3ay -~ f fl’/ exp|—4a —4o]p3 =0,  (5.7)
with the help of the field equation (5.2) for the gauge field.
In addition, the Einstein field equations (5.5) can be shown
to be:

- 3M3(a? —67) +%exp [AZ](/) +3goexp{/wi] ag’
90/1 AP
Rl

+f7exp[ 4a —40]p3 =0, (5.8)

023529-10



BIANCHI TYPE I ANISOTROPIC POWER-LAW ...

Ny 2, AP
—M%a—3M%a2+30exp{ }(¢+3a¢)¢
/7 2 _
—|—?exp[ 4a —4olp; =0, (5.9)
-2
64306 —<—5exp|—4a—4o]p; =0. (5.10)

P

Similar to the approach shown earlier in Sec. III, we will
assume that the power-law solutions take the following
forms [14,16,17]:

¢
— = ¢ logt ;
M, Silogt+ ¢y

a={logt; o =nlogt;

:fleogt+l//0. (511)

v
M,
We will also propose the following exponential potential
V(y) and gauge kinetic coupling function f(¢,w):

~

V(y) = Vyexp B}j , (5.12)
f(@.w) = foexp [— Z—ﬂ exp [Z—i] (5.13)

which are compatible with the power-law solutions. By
introducing the variables

W = Vo expliwg), (5.14)
s _J3°pi A
== exp2pdo = 2pyl. (5.15)
p

with 4 and p some positive constants similar to 4 and p, the
field equations (5.6)—(5.10) reduce to the following set of
algebraic equations:

2 .
—ko§1(35—1)—95%4’(5—1)0—2/15?U+E§?v—p120
(5.16)
(3¢ -1 E +21-0 (5.17
-5(3¢-1) - P 5. =0 A7)

52 2 ’i
=30+ 37 + ko> L 38¢w ——54 +—2+w+§:0,
(5.18)
C—3Cz+%§?(3c§—1)v+w+é:0, (5.19)
(BE-1m-5=0. (5.20)
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Note that the following constraints are required such that
each term in the field equations (5.6)—(5.10) evolves as ¢~

7=0, (5.21)

2
=-, 5.22
& =7 (522

-2
& = T (5.23)
—p& +p& +20+2n = 1. (5.24)

As a result, Egs. (5.20) and (5.24) imply that
1=3p(3¢ - 1), (5.25)
1

Ctn=z+2+5. (5.26)

Here we have defined new variables z = p/A and 2 = p/4
for convenience. In addition, kj, v, and @ can be shown
to be

22 R 5 . . 8w
koz—g 18(22+1)82-3 (2z+l)(6z+6z+5)+;1—2 ¢
16w
+2(3z+62+1)(2z4+22+1) +—5— e
2 4
:—g{(6z+62—1)<21+22+1—;1—?>
24
—18;7(22+1)(z+2)+371(22+1)(6;1—1)+:1—2w71],
(5.27)
23 R R R 8w
v=1g 6(2z+1)§—(6z+1)(2z—|—2z+1)—2—2
2 8
-1 [2(21 +254+1)=6n(22 4+ 1) —/1—(20] (5.28)
4
W= 3§—1 { 332z 422+ 1) — ﬂ
1 2w
<3z + 3z + 3;7) <3zf7 + = pE > (5.29)

Note that Eq. (5.16) is automatically satisfied due to the
Bianchi identity. This equation also provides an indepen-
dent check for the correctness of this set of power-law
solutions. Similar to Sec. III, Eq. (5.27) can be solved by
treating k, as a field parameter. The result is

5 z+42 20 VA

=t 32224+ 1) " 36222222+ 1)

(5.30)
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with A defined by

A =924 [2(22 4 1)(6z + 62 + 5) + 8w]?
— 144220222 + {2 Bz + 62+ 1)(2z +22 + 1)
+ 8] + 427k} (5.31)

Note that the parameter A has to be positive for the
existence of a real solution. Indeed, we can write A as

. X 8w]2
A:9/14/14{(22+1)(6z+62—12r/+1)—/{;} . (5.32)

Hence A is indeed a positive parameter.
As a result, the positivity of / implies that # > 0 and
¢ > 1/3. In addition, the constraint v > 0 implies that

1 8w
2422 41—
22+1<ZJr o /12)

following the expression of v given in Eq. (5.28). On the
other hand, the positivity of W leads to an inequality for #,

3 < (5.33)

2w

3> — e
223

(5.34)
according to Eq. (5.29). In addition, we also need the
following constraints for the scale factors to represent the
expanding solution: { +# > 0 and { — 25 > 0. As a result,
the constraint { +#n > 0 can easily be achieved for all
z+ 2> 0. On the other hand, the constraint { — 25 > 0
implies that

311<z+2—%. (5.35)
Note that we also have a number of constraints for # in this
model due to the existence of the phantom field. We will
discuss in a moment the case with # assuming the lowest
and highest bounds in accord with a set of inflationary
solutions.

B. Inflationary solutions

We will focus on the inflationary limit of the power-law
solutions corresponding to the constraints for the scale
factors { +#> 1 and {—21n> 1. As a result, the first
constraint is equivalent to

z+z>1 (5.36)
according to Eq. (5.26). Note that p > 1~ O(1) and p >
A~ O(1) will be enough to satisfy the constraint required.
On the other hand, the second constraint { — 257> 1 is
equivalent to
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1
<z tiog. (5.37)

Apparently, z+ 2> 1 is also good enough for this con-
straint. In addition, Eq. (5.34) implies that

2w
n>——s-

. 5.38
3% (5.38)

for a phantom field y with ® = —1 < 0. As a result, 5
obeys the following constraint:

2w 1 1
——mr<n<Lzlz+Z—5].

~ 5.39
3% 3 2 (5.39)

On the other hand, # > 0 will be enough for the constraint
(5.34) if @ = 1. Therefore the constraint for # will be

1 1
0 <z Z—z
<n 3<z+z 2)

for a canonical field y with @ = 1. Note also that Eq. (5.32)
implies that

(5.40)

~ ~ 8w]?
A =9)4j {(2z+ 1)(6z + 62) _Tﬂ . (541)

if
f=z+2>1

(5.42)

during the inflationary phase. Equivalently, we should have
the following approximation:

1 32%
-~ o~ 5 4 5\
=13 ko g (z+42)(4z 4+ 32);
2 X 3. 3. .
v —E(“Z +32); w —ZZC _ZZ(Z +2) (5.43)

during the inflationary phase. It is clear that this set of
power-law solutions can be made consistent with the
observational data of WMAP and Planck.

C. Stability analysis of anisotropic inflationary
power-law solutions

Similar to Sec. III B [16,17], we will consider the power-
law perturbations of the following forms: da = Ar",
oo = Bt", 6¢ = M ,Ct", and 6y = M ,Dt" with constants
A, B, C, and D. The perturbations will blow up at time
infinity if n > 0, meaning that the set of power-law
solutions is unstable. On the other hand, the corresponding
solution is stable if all n is negative definite. Indeed,
perturbing Egs. (5.6), (5.7), (5.9), and (5.10) leads to the
following matrix equation:
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A Ay Ay A Ay A
.| B Ay Ay Ay A B
) _ |4 Az A Ay _ 0. (5.44)
c Az An Az Ay c
D Ay Ap Ay Ayd \D
with
A=Al = 1) Ap =Ap(l=1);
Ap=Ap(l=1);  Ay=-2ppl, (5.45)
) on 4 . . 4. . 2 .
Ay =——+—pL; Ap =—pl; Ay =——ppl;
A o Q) w
. 2 2
App =2+ (= n+ 2w+ =27, (5.46)
® ®
Ay = Ay (1= 1); Az = Ayl = 1);
A33 =Axn(l— ?), A34 = jw_gi, (5.47)
A41 = A3 (I - 7)§ Ap =Ap(l— 7),
. . . 2p.
A=Ayl = 1); Ay = ?l- (5.48)

Note that the expressions of A;;(/) for i, j = 1, 2, 3 have
already been defined in Egs. (3.39)—(3.41). In addition, the
notation A,;(/ — 1) means that each [ in A ;j is replaced by 1

As a result, nontrivial solutions to Eq. (5.44) exist only
when

detD = 0. (5.49)

This determinant equation can be reduced to a degree 8
polynomial equation of n as follows:

n(bgn” +---+b;) =0, (5.50)

with
by = ag, (5.51)
by = LI Lo 150 — 6 —122—2“’ . (5.52)

wA

by keeping only the leading terms in the definition of »; for
simplicity. Note that ag > 0 is defined earlier in Sec. IIL
Hence by is also a positive coefficient. On the other hand,
the sign of b; depends on the signature of w. Indeed, b; > 0
if @ > 0. Similarly, b; < 0 if @ < 0. Note that there exists
at least a positive root to the determinant equation
detD =0 if bibg <0 [16,17]. It is apparent that b; < 0
for @ = —1 if the parameters obey the approximations
given by Egs. (5.42) and (5.43) during the inflationary
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phase. Therefore, this set of power-law solutions is indeed
unstable during the inflationary phase if y is a phantom
field with @ = —1 [16,17,26]. Therefore, the presence of a
phantom field will destabilize the power-law solutions
during the inflationary phase as expected.

VI. STABILITY ANALYSIS FOR A MORE
GENERAL GALILEON-VECTOR MODEL

The action of a general Galileon-vector-phantom model
is given by

S = /d“x\/—_g BR +K(p. X) = G(¢p, X)Op + %aﬂwaﬂy/
V)~ RO Fu|. (6.1)

Note that the Planck unit has been set with M, =1 for
convenience. As a result, the corresponding field equations
can be shown to be [34]

O {v=alft () f3(y)F*]} = 0. (6.2)

€D 1 €0 Lt ) B 1@ FuFr =0, (63)

2
O+ Vy () + 5 A0y W)Fu P =0, (64)

! 2 _ 70)
(R,Lu/ - _Rg/w> + a,ﬂ//ad// - T,Ml/ - Tﬂl/

2
1 2 2
+ G [— 5 OWOoy + V() + J19)3Ww) (¢Z‘z W) pie,,
- @) f3(w)F, FL =0, (6.5)
with £ and T() given by [34]
EW = O¢Kx + KyxD,XD*¢p — 2XKx,y + Ky, (6.6)
E®) = -20¢G,, + 2XGy,
- GX[(D¢)2 - (DﬂDD¢)2 - RﬂvDﬂ¢Dy¢]
+2Gxy(XOp — D, XD )
— Gxx(D,XD*X + O¢pD,XD"¢), (6.7)
Tl(l?f) = Kg/w + KXDy¢Du¢’ (68)
TS = (GxD, XD’ — 2XG ) g,,
- (GXD¢ + 2G(/))DM¢DD¢
— Gx(D,¢D,X + D,¢D,X). (6.9)

We wish to know the role of the phantom field in the
stability of the inflationary universe for a more general
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Galileon-vector model. We have shown in Sec. III that
power-law solutions put a set of strong constraints on the
interacting terms. We also show in Sec. V that the presence
of the phantom field introduces at least an unstable mode to
the stable solutions obtained in Sec. III. We expect the
phantom field will also introduce at least an unstable mode
for a more general Galileon-vector mode. Hence we will
assume that a set of stable solutions exists for the Galileon-
vector model when y = 0 in the action (6.1) in the first
place. Then we will try to show that the presence of the
phantom field does introduce an unstable mode for the
perturbation equations. To be more specific, we will focus
on a more general Galileon-vector-phantom model with the
interaction terms specified as

K($.X)=K(X);  G(¢h.X) = g(h)X.
with arbitrary K(X) and g(¢) [34]. Note also that we will
adopt the same BI metric and vector field presented in
Sec. III. As a result, Egs. (6.3) and (6.4) reduce, respec-
tively, to

(6.10)

— (¢ +3a fi})Kx — pdp*Kxx — 345[0‘(/5 +36% + 2 Plg
24
+ 2¢5¢29¢ + ¢*9(/;¢ + f1_3f52f1</; exp[—4a — 40]p; =0,

2
(6.11)

— = 3ay +V,, — [72f3° f2, exp[—4a — 4o]p} = 0.
(6.12)

Furthermore, the Einstein equation (6.5) can be shown to be

32— 6%) = —K+¢2KX+3d¢3g—§g¢—%2+V
—l—@exp[—&x—ém]pi, (6.13)
e @B
a+3a :—K+7KX+7(¢+3a¢)g+V
+ fl_zéfz_zexp[—4a — 40]p3, (6.14)
G+3a6 —ﬁexp[—4a—4a]pi. (6.15)

A. Perturbation

Assuming that there exists a set of analytic solutions to
field equations (6.11), (6.12), (6.14), and (6.15), we need to
perturb the field equations in order to find out whether
this set of solutions is stable. Note that there are a total
of five equations [(6.11)—(6.15)] available for our analysis.
We need, however, only four independent equations for
four variables. It is known that there is a redundant equation
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that can be related to the other four equations due to the
Bianchi identity D,(G* — T%) = 0. As a result, we can
focus on the field equations (6.11), (6.12), (6.14), and
(6.15). Therefore, we can perturb these equations with the
exponential perturbations of the following field variables:

Sa = Aexplwt], d6 = Bexp|wt],

5¢p = Cexplwt], Sy = D exp|wi]. (6.16)
The result can be written as a matrix equation,
A Byy By Bz By A
B B B B B B
D, _ | P B2 B DBy _o.
C B3y By Biz By c
D By By Byz Byl \D
(6.17)
with
Bu = =307 = 30K + 2 + S gl — 41123
1
B = —4MZ;

fi
Bz = —(Ky + ¢ Kxx +6adg— 2(,}5294))@2

—{3aKx + 3¢(¢ + dﬁb)KXX + ¢’ Kxxx

+ 6l +al(p+3ap)lg - 4 g5 — 2 gpp
"4
~ 3l +a2 + 3 gy + 208 04+ gy

bl
S Ji

fl(/) f21//

B, = 212 ¥y 6.18
o fi /2 (019)
321=—3U}w+4&2; 322:4&2

/2 /2
FipS 2y
Byy =2—"—"-3;
R
2
/2 /2

. P 2 2
B31 :—w2—3<2a—7 a)—gz, B32:—§Z,

92 %3
By = gt ¢ [¢—Kxx +¢<<}5+§o’e¢>g}w

2 2
¢ . . 1f1p .
1 /2
B34 — Vl/l - gf—;llz, (620)
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. 4
B41 = 306w — gz,

2
By =210y g, Py

3fi 7 31

Note that £ = f72(¢)f5° (w) exp[—4a — 40| p5 > 0 acts as
an additional variable. In addition, the following assump-
tions [16,17] will be adopted for the existence of an
inflationary solutions:

B42 = —0)2 - 3aw —gz,

(6.21)

as>o, a>0, axé ax¢, a>y. (6.22)

Furthermore, we will also assume that V() is a nearly flat
potential with the following property:

V>V,>V, >0 (6.23)

Accordingly, similar assumptions will also be imposed on
the positive coupling functions g(¢) and f;,

95 >> 9 > Jppp > 0, (6.24)
f1¢) f1¢¢ 6.25
()= 35

such that f; and g change slowly as ¢ evolves.

As mentioned above, the sign of @ is critical to the
stability of the anisotropic solutions. Indeed, @ > 0 or
@ < 0 corresponds to the existence of unstable or stable
anisotropic solutions. Hence we need to solve the algebraic
equation of @ derived from determinant equation,
detD, = 0.

()t
e

f1¢ }
18—=
7
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First of all, the coefficients B;;’s can be approximated as

By = —3¢29w2 - 3¢(Kx + 6(5%;59)60 - 4?(/)

X (6.27)
1

B3 =—(Kx + ¢’ Kxx +6idg— 2&52945)(02
—[3aKy + 3d¢2KXX + ¢¢3KXXX + 180‘52(‘?9

—4d ¢ 9 — 2¢39¢¢}w
. g
— 9P gy + 204 g4y + 5

- f1¢)2 _flw]
{3(101 fi > (6:28)
- . | |
Bss 2%90)2 + [%Kxx +gd¢zg} 0)+§0't¢39¢ 3];1"’2
(6.29)

during the inflationary phase under the assumptions (6.22).
As aresult, the determinant equation det D, = 0 reduces to
a degree 8 algebraic equation of w,

o(cgw’ + - +¢;) =0, (6.30)

with
B = 3.4, .
=Kx+¢ Kxx+2¢g +6adg—2¢"gy (631)

= M3+ NX?2 4+ P3,

==|(fe) ) () i
M 2[<f1 1\ ) ", e,

(6.32)

P=—p { [ L) - ] (1862, — 4y — 8 9pa)Viy + {(5& o= ) (1860 — 4y - Puas)

2

+6ad* (K + 66 9)g, + 18@(151; (a— &)g¢] VW}.

Ji

(6.33)
-6)— 14 V, + (5a—6- ¢3)VW}
)(180‘ Gy — 4¢9(/)(/; - ¢ 9ppe) t 605¢ (Kx + 6a¢9)9¢
(6.34)
(6.35)

Under the slowly changing potential prescribed by the constraints shown in Eqs. (6.22)—(6.26), it is clear that M, N, and P

are all negative. As a result, we can show that ¢; < 0.
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B. Galileon-vector model

We will try to show that cg > 0O if the solutions to the
corresponding Galileon-vector model (in the absence of
the y field) is a stable set of solutions. This then proves that
the presence of the phantom field introduces at least an
unstable mode from the result c;cg < 0. Indeed, the
perturbation equations for the Galileon-vector model can
be written as

A Byy By Biz| [A
Dg B = B31 B32 B33 B == 0 (636)
C By By By | \C

In addition, the determinant equation det @g = 0 reduces to
a degree 6 algebraic equation of w,

o(de@’ + -+ +dy) =0, (6.37)

with

d6 = Cg, (638)

_ @)Z_M] Y6 — 52
& 2[<f1 fi (Ba=6-¢)x

+ ¢’ [(5@ — 6 =) (180294 — Adgyp — B 9ppe)

+6ad*(Kx + 60 g)g, + 18’%0‘”}5(@ —6)gy |2
1

(6.39)

Here T — 3= f72(¢) exp[—4a —4o]p3 > 0 due to the
vanishing of the phantom field .

Note that ddg > 0 is required in order to exclude
an unstable mode from the perturbation equation
detf)g = 0. It is straightforward to show that d;c; <0,
under the same assumption that the potentials change
slowly. As a result, we have proven that c¢;cg < 0, and
hence there exists at least an unstable mode to the
perturbation equation detD, = 0. Therefore, the conclu-
sion is that the presence of the phantom field does
destabilize the inflationary solution as expected for the
Galileon-vector-phantom model in the BI metric space.
Hence the presence of the phantom field appears to
support the cosmic no-hair conjecture in a more general
context [16,17].

VII. CONCLUSION

Cosmic inflation [1] has served as a successful paradigm
of modern cosmology in resolving several cosmological
problems [1]. In addition, it also provides a useful

PHYSICAL REVIEW D 96, 023529 (2017)

framework to accommodate the observations of WMAP
[2] and Planck [3]. Many observations have been shown to
be consistent with the theoretical predictions of the stan-
dard inflationary models [2,3]. There are, however, some
large scale CMB anomalies observed by the WMAP [2]
and the Planck [3]. Hence, isotropic inflationary models,
based on the homogeneous and isotropic FLRW)spacetime
[4], should be modified by the introduction of the aniso-
tropic inflation models, e.g., the anisotropic Bianchi space-
times [5,6].

In addition to many successful scalar-vector models,
with a special scalar-vector interaction f(¢)?F?, the covar-
iant Galileon-vector model appears to be a promising
model for the anisotropically inflationary universe
[17,27-37]. Hence we propose to study the dynamic feature
of a special class of the Galileon model. As a result, we
have found many useful results.

In summary, we have presented a set of isotropic power-
law solutions for the Galileon-vector model in Sec. II. In
Sec. III, a set of BI power-law solutions for the Galileon-
vector model is presented along with the stability analysis
of this set of solutions. We also show that the solutions we
found are a set of attractor solutions in Sec. IV. The BI
power-law solutions of the Galileon-vector-phantom model
along with their stability analysis is shown in Sec. V. In
addition, a general stability analysis for a more general
Galileo-vector-phantom model is presented in Sec. VI. Our
results show that the BI power-law solutions are indeed
stable for the Galileon-vector model with a coupling term
of the form f?(¢)F,, F*. In addition, the presence of a
phantom field introduces an unstable mode to the field
equations. This shows that a stable solution for the
Galileon-vector model will be destabilized by the intro-
duction of a phantom field. Finally, we also present a
solution-independent stability analysis for a more general
Galileon-vector model. In particular, we also show the
power-law solutions we obtained are a set of attractor
solutions by solving a set of autonomous equations. The
result shows that the presence of a phantom field does tend
to destabilize the stable solution for the Galileon-vector
model. These results indicate that Galileon-vector models
deserve more attention. Hopefully, the results shown in this
paper will be helpful to the search for a more realistic
inflationary model.
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