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Detection of Coherent Signals Using 
Weighted Subspace Smoothing 

Ching-Wen Ma, Student Member, IEEE, and Ching-Cheng Teng 

Abstract-A new approach to detecting the number of co- 
herent signals incident upon a uniformly-spaced linear array is 
presented. The approach combines a modified spatial smoothing 
scheme and a modified MDL criterion. The modified spatial 
smoothing scheme, referred to as “weighted subspace smoothing,” 
is actually a generalization of the “post-smoothing” approach 
proposed by Krim and Proakis in 1994. It is shown that the noise 
eigenvalues obtained with weighted subspace smoothing are more 
accurate than those obtained with the original spatial smoothing. 
We thus attempt to improve detection performance using these 
more accurate eigenvalues. A novel modification of the minimum 
description length (MDL) criterion is proposed to accomplish this. 
Computer simulations are presented to study the performance 
improvement of this new approach. 

I. INTRODUCTION 

RRAY signal processing deals with extracting informa- A tion from measurements collected by an array of sensors. 
An important issue in this field is detecting how many signals 
impinge on the array. Once the number of signals is detected, 
many high-resolution direction-of-arrival (DOA) estimation 
methods can be used [1]-[4]. 

One way to solve the detection problem is based on hy- 
pothesis testing using eigenvalues of observed-vector covari- 
ance matrix [5], [6]. A disadvantage of this method is the 
subjective judgment required in choosing the threshold. To 
avoid this, Wax and Kailath [9] proposed an approach based 
on Akaike information criterion (AIC) [7] and Schwartz- 
Rissanen’ s minimum description length (MDL) criterion [ 81. 
Assuming spatially-white Gaussian noise is additive, they 
obtained two different criteria. The number of signals is 
determined as the value for which the AIC or the MDL 
criterion is minimized. Further investigation [lo]-[ 151 showed 
that the MDL criterion is consistent, while the AIC criterion 
exhibit better performance at a relatively lower SNR or with a 
smaller number of snapshots, at the cost of being inconsistent. 
Since consistency is important in detection, the MDL criterion 
seems to be more popular. There is an annoying problem 
with both criteria, however; the detection performance suffers 
serious degradation when some signals are coherent or highly 
correlated. To overcome this, Wax and Ziskind [19], Wax 
[20], Wu and Fuhrmann [21], Cho and DjuriC [22], and 
Viberg et al. [29] presented methods that determined the 
number of signals based on signal DOA estimates. Since 
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coherent signal DOA estimates are normally obtained by 
multidimensional minimization, these methods generate high 
computational loading. For a uniformly-spaced linear array 
(ULA), multidimensional minimization can be avoided by 
using the iterative quadratic maximum likelihood approach 
(IQML) [26] or the method of direction estimation (MODE) 
[27]. However, IQML and MODE both require that the number 
of signals be known in advance. Another solution is the spatial 
smoothing approach, which “decorrelates” coherent signals. In 
[18], Shan et al. applied the MDL criterion to a spatially- 
smoothed covariance matrix to alleviate the computational 
loading. 

In this paper, we present a new approach that exhibits 
better detection performance than directly applying the MDL 
criterion to the spatially-smoothed covariance matrix and 
does not require DOA estimation. The approach combines 
a modified spatial smoothing scheme and a modified MDL 
criterion. The modified spatial smoothing scheme applies the 
original spatial smoothing algorithm to an estimate of the 
noise-free covariance matrix. Since we estimate the noise- 
free covariance matrix by using the weighted signal sub- 
space, we call the resulting modified spatial smoothing scheme 
“weighted subspace smoothing” (WSS). WSS is actually a 
generalization of the “post-smoothing” approach proposed 
by Krim and Proakis [30]. By “post-smoothing,’’ they mean 
the smoothing transformation is applied to a well-defined 
reduced-rank approximation of the array covariance matrix. 
The reduced-rank approximation can be obtained using WSS 
with a particular weighting matrix. In this paper, we estimate 
the noise-free array covariance matrix using WSS with another 
weighting matrix. After the noise-free estimate is obtained, 
WSS performs the original spatial smoothing algorithm on it 
and obtains an estimate of the noise-free spatially-smoothed 
covariance matrix, which is denoted by R,. Here, “ ” denotes 
estimated and “ ” denotes application of spatial smoothing 
algorithm to the noise-free covariance matrix. The noise eigen- 
values of R, have been shown to be more accurate than 
those obtained with the original spatial smoothing scheme. 
We thus attempt to improve detection performance by using 
these more accurate eigenvalues. A novel modification of the 
MDL criterion is used to accomplish such purpose. Though 
the modification is simple, simulation results demonstrate that 
detection performance is improved considerably. 

Note that in [29], Viberg et al. proposed a method named 
weighted subspace fitting (WSF) detection scheme for signal 
detection. It is based on the asymptotic distribution of a 
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well-defined WSF cost function, which is constructed using 
the weighted signal subspaces. Because the scheme uses the 
weighted signal subpaces to improve the coherent signal 
detection for the first time, we briefly review the scheme. 
First, the scheme makes an assumption on the number of 
signals. Then, it uses ESPRIT [3] or the alternating projection 
method [4] to oblain initial estimates of DOA's and uses 
a Gauss-Newton type algorithm to minimize the WSF cost 
function. Finally, il. decides whether to accept this assumption 
or not by comparing the minimized WSF cost function with 
a judiciously selected threshold. Actually, the WSF detection 
scheme combines the problems of signal-detection and DOA- 
estimation as a whole. Although the WSF detection scheme is 
much more complicated than the proposed method described 
in previous paragraph, computer simulations show that its 
performance is inferior, especially when more signals are 
coherent. 

The paper is organized as follows. First, the problem is 
formulated and the method combining spatial smoothing and 
MDL (or AIC) criterion is reviewed in Section II. In this 
section, we also present the concept of WSS. In Section 111, the 
accuracy of the eigenvalues of R, is discussed and modified 
MDL criterion is then introduced to take advantage of this 
accuracy. In Section IV, detection performance is examined 
by simulations. In the last section, we present our conclusions. 

11. PROBLEM FORMULATION 

In this section, we first present the signal model and 
summarize the MDL criterion. We then point out the difficulty 
of applying the MDL criterion when some signals are coherent 
and outline how spatial smoothing can overcome the difficulty. 
Finally, we focus on weighted subspace smoothing, which 
we believe to be more efficient for both DOA-estimation and 
signal-detection problems. 

A. Signal Model and MDL Criterion 

m sensors is commonly modeled as follows 
Considering narrow-band signals, the output of an array with 

:x ( t )  = A ( O ) s ( t )  + n(t) (1) 

where x(t)  is an m x 1 complex observation vector, s ( t )  is a 
p x 1 vector that denotes the complex envelopes of p signals, 
A(@) is an m x p matrix whose columns are the direction 
vectors with parameters 0 denoting the angles of arrival of the 
p signals, and n(t) is an m x 1 vector representing receiver 
noise. 

It is assumed that s ( t )  and n(t) are stationary and ergodic, 
complex-valued normal random processes having zero means, 
n(t) is uncorrelated with s ( t ) ,  and the covariance matrix of 
n(t) is a21. Here, a2 is noise power at each sensor, and I is 
an identity matrix. Based on these assumptions, the covariance 
matrix of x ( t )  has the form 

R, A E [ x ( t ) ~ ( t ) ~ ]  (2) 
= P ~ ( @ ) E [ s ( t ) s ( t ) ~ ] A ( @ ) ~  + a21 ( 3 )  
= A ( @ ) R , A ( @ ) ~  + g 2 ~  (4) 

where E[y]  is the mean of y, (.)" denotes conjugate transpose, 
and R, 2 E [ ~ ( t ) s ( t ) ~ ] .  Computing the eigen-decomposition 
of R,, we obtain 

m 

(5) 
k=l 

where XI 2 XZ 2 ' . ' 2 Am. Let p' denotes the rank of R,. We 
have p' 5 p .  It follows from simple rank-property implications 
[I] that the last m - p' eigenvalues are all equal to a2, i.e., 

(6) 

If p' = p ,  we can determine the number of signals by 
computing how many eigenvalues are greater than the smallest 
eigenvalue. 

In practical applications, the exact ensemble covariance 
matrix R, is not known. Nonetheless, we are given a series of 
samples from x(t) ,  say {x( t l ) ,  x(t2), . . . , x ( t ~ ) } .  Our goal, 
here, is to estimate p using these samples. A solution to this 
problem lies in using an estimate of the covariance matrix 
instead of the exact one. The maximum-likelihood estimate of 
R,, the sample covariance matrix R,, is computed as follows: 

A,,+1 = Ap,+2 = . . . = A m - 0 .  - 

The eigen-decomposition of R, is 
m. 

(7) 

k = l  

Now, 11 > > . . .  > i, with probability 1 for finite 
N .  The detection of p' becomes an interesting problem. In 
[9], Wax and Kailath treated it as a model selection problem 
and applied the information theoretic criteria developed by 
Akaike (AIC) and by Rissanen (MDL) to it. After substituting 
maximum-likelihood estimates of the eigenvalues to a log- 
likelihood function, they concluded that the AIC and the MDL 
criteria could be simplified as 

AIC(k) = N ( m  - k )  log (9) 

and 

MDL(k) = N ( m  - k )  log (;;;;) ~ + ;k(Pln - k )  logN 

respectively, where 

A 1  

The estimate of p', denoted by @', is determined by the value of 
k E ( 0 ,  1, . . . , m - 1) which minimizes the AIC or the MDL 
criterion. In this paper, we concentrate on the MDL criterion, 
because it is consistent. 
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Q $  

B. A Combination of Spatial Smoothing and MDL Criterion 

It is well known that p’ < p ,  when some signals are 
fully correlated or coherent. As a result, the methods pre- 
sented above fail to detect fully correlated or coherent signals. 
Spatial smoothing enables the MDL criterion to deal with 
the problem, provided that the m a y  is uniformly-spaced and 
linear. The array is grouped into several subarrays, which 
have the same geometry. If we employ the forwardhackward 
spatial smoothing scheme, the estimated spatially-smoothed 
covariance matrix is given as follows 

-0 . . .  . . .  0 1- 
0 ... 0 1 0  

0 1 0 ... 0 

: : . .  

1 0 . . .  ... 0-  

where ( . ) T  denotes transpose, (.)* denotes conjugate, and 

zk = [0(k-1)x,/II,’x,’Io(K-k)xm’] ( 

Q k  = [O(k-l)xm’IQm’Xm’ Io(K-k)xm‘1 ( 

3) 

4) 
5) 

the subscript indicates the dimension of a matrix, 0 is a zero 
matrix, and 

In the above equation, m’ = m - K + 1 is the number of 
sensors of each subarray. It has been shown, in [24] and [25], 
that the exact ensemble spatially smoothed covariance matrix 
R, can be expressed as 

R, = A ( @ ) R , A ( @ ) H  + a21 (17) 

where A(@) is an m x p’ matrix consisting direction vectors. 
The rank of R,, denoted by p’, is now equal to the number 
of signals, p ,  regardless of the signal coherency. Computing 
eigen-decomposition of R,, we obtain 

m‘ 

k=l 

where > XZ > . ‘ .  > I,/. The number of signals 
could then be determined as the value, I C ,  that minimizes the 
following criterion 

M D L ( k )  = = N ( m ’ - k ) l o g  7 +-k(2m’-k) logN 

(19) 
(:;E;) a 

where 
m’ 

Here, k E {0,1, .. . ,m’ - l}. We designate the estimated 
number as p’. In [18], Shan et al. used this method to determine 

the source coherency structure, showing that the method is 
suitable for detecting coherent signals. In this paper, we make 
modifications on both spatial smoothing algorithm and MDL 
criterion to improve detection performance. 

Remark: R, is indeed formed by 2K . N vectors. One 
may suggest that the N in (19) should be replaced by 2 K .  N .  
However, if we do so, the criterion tends to overestimate the 
number of signals. 

C. The Weighted Subspace Smoothing 

Weighted subspace smoothing (WSS) “decorrelates” signal 
coherency by applying the smoothing transformation to the 
weighted signal subspace. Before introducing the scheme, we 
take a look at the eigen-decomposition of the covariance 
matrix R,, and define some notation. Following (3, we obtain 

R, = A(@)R,A(@)H + a21 
= E,A,E: + E,A,E,” 
= E,(& - a’)E; + 0’1 (22) 

A, A diag(A1,Az,.. . ,Xp~), and A, 2 diag(A,!+l, Ap/+2, 

. . . , A,) = 0’1. It is well known [l], that the range space of 
E, is a subset of the range space of A(@), i.e., 

where E, A [ e l , e 2 , . . . , e p / ] ,  E, A [ e p ’ + l , e p ’ + 2 , . . . , e m l ,  

Range{E,} C Range{A(@)} (23) 

with equality if and only if p’ = p .  The eigenvectors 
{el, e2, . . . , e,/} are usually called the signal eigenvectors, 
and the range space of E, is called the signal subspace. Its 
orthogonal complement is usually referred to as the noise 
subspace, which is spanned by the columns of E,. The eigen- 
decomposition of the sample covariance matrix R, is defined 
in a similar fashion as (22) 

R, = E,A,Ef + E,A,EE. (24) 

Here, p’ must be estimated using the MDL criterion, or other 
method, to construct E,, E,, A,, and A,. The signal compo- 
nent and the noise component are now separated. From (23), 
we know that the signal eigenvectors are linear combinations 
of direction vectors. Thus, we can decorrelate the coherent 
signals based on E,. One method of achieving this is to apply 
spatial smoothing to the following matrix 

R, A E,WEf (25) 

where W is a weighting matrix. If W is set to be A,, then 
R, is a reduced-rank approximation of the array covariance 
matrix. In [30], the reduced-rank approximation isAused to 
improve DOA-estimation accuracy. If W is set to be A, -6’1, 
where 

m 

then R, is an estimate of the noise-free array covariance 
matrix. We will improve detection performance using this 
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Variance 

R,. Below, we summarize the weighted subspace smoothing 
scheme: 

a) Compute the sample covariance m p i x  R,. 
b) Perform eigen-decomposition on R,. 
c) Use the MDL criterion (or AIC criterion) to estimate 

the rank of l%, (or equivalently the rank of Et.,), say p', 
then obtain Es, G2, and A,. 

d) Compute the estimate of the noise-free covariance ma- 
trix by 

it, = E,WEY (27) 

where W = A, - 6'1. 

rithm to R,, and obtain R, 
e) Apply the forwardhackward spatial smoothing algo- 

Signal Eigenvalues Noise Eigenvalues 
A1 I x, I A3 I K, A 5  1 K, I xi 1 K, 1 i, 

2 979 I 0 426 I 0 277 1 0 229 0 027 I 0 022 1 0 016 1 0 017 1 0 018 

where ZI, and Q k  are given in (14), (15), and (16). 
Here, we assume that the source coherent structure [18] 
is known. Thus, we know how to choose a proper K.  

111. DETECTION OF COHERE" SIGNALS 

Since coherent signals are decorrelated by WSS, the number 
of signals can be determined due to the special structure 
of the eigenvalues of R,, the noise-free spatially-smoothed 
covariance matrix. In fact, the number of signals is equal to 
the rank of R,. In practical applications, the R, estimate is 
used, and is designated as R,. If the number of snapshots is 
finite, the rank of R, is not equal to the number of signals. Our 
goal here, is to estimate the numbernof signals (or equivalently 
the rank of the matrix R,) using R,. We first show that the 
noise eigenvalues of g ,  are more accurate than the noise 
eigenvalues of R,. Then, a novel modification of the MDL 
criterion is proposed to take advantage of this greater accuracy. 

A. The Accuracy of Obtained Eigenvalues 

As shown in (1 S), we compute eigen-decomposition of R, 
and obtain 

m' 

(29) 

where xl > x 2  > . . . > X m t .  m' is the number of sensors of 
a subarray. Then, we have the following lemma. 

Lemma 1: Let {is, s = 1 ,2 , .  . . , p }  denote the signal 
eigenvalues of RI, and {X,,n = p + 1,p + 2 , . . . ,m '}  
denote the noise eigenvalues of R,. Let { x,, s = 1 , 2 ,  . . . , p }  
denote the signal eigenvalues of R,, and {in, n = p + 1, p + 
2, . . . , m'} denote the noise eigenvalues of R,. We have 

&, =xi 2 " H  
k e k e k  

k=l  

VarIi,) = ~ a r ( 5 , )  (30) 

Var{i,> << ~ a r { i , >  (3 1) 

where Var{y} denotes the variance of y. 

TABLE I1 
VARIANCES OF THE NOISE-FREE SPATIALLY 

SMOOTHED COVARIANCE MATRIX EIGENVALUES 

Szgnal Eiqenualues I Noise Eigenvalues 
I A, 1 A* I A3 1 A', I A, 1 .i, 1 .i7 I .is I x, 

Variance 12.947 10.403 I 0.2G 1 0.1S6 10.002 10.001 / O . O O O  1 0.000 I 0.000 

Proofi Recall that R, is obtained through applying 
the smoothing transformation to R, (R, = EsAsEF + 
EnAnEf). fix is obtained through applying the smoothing 
transformation to it, (R, = Es(As - G'I)~;). 

Equation (30) is necessary because perturbations of signal 
eigenvalues, xs and x,, result mainly from perturbation of 
EsAsEF; and such perturbation exists in both R, and R,. 
Equation (31) is necessary because perturbations of noise 
eigenvalues, x, and in, result mainly from perturbation of 
EnA,Ez; and such perturbation exists only in R,. Also, note 
that the noise eigenvalues are also slightly affected by pertur- 
bation of EsAsEf. Thus, Var{X,} # 0, but Var{X,} M 0. 

0 
We tested the lemma as follows. The uniformly spaced 

linear array under consideration consisted 10 equally spaced 
omnidirectional sensors (m = 10). The distance between two 
neighboring sensors was one half the signal wavelength. Four 
equal strength signals ( p  = 4), emanating from the far field, 
impinged on the array at distinct directions O", lo", 20", and 
30" w.r.t. the broadside of the array. The signals at 0" and 
10" were coherent as were signals at 20" and 30". Thus, 
p' = 2.  The signal-to-noise ratio, defined as the power of each 
signal to the noise power at each sensor, 02, was -4 dB. The 
forward/backward spatial smoothing scheme was used with 
each subarray containing nine sensors (m' = 9, K = 2). 
The sample covariance matrix, R,, was formed after 100 
snapshots, and x, and xk ,  k = 1 ,2 , .  . . , 9  were computed. 

Based on 100 independent experiments, we computed the 
variances of these eigenvalues. The results are shown in 
Tables I I and 11. The values iv Tables I and I1 reveal that the 
X I ,  was more accurate than Xk, for k = 5 ,  
may attempt to improve detection performance using &. 

, . *  

B. The ModiJied MDL Criterion 

x k  cannot be put into the the MDL criterion directly, 
because the structure of x k  differs from the structure of xk 
in that Xk is 

I - 

x, > x, > . . . > x, > 

x1 > x 2  > . ' . > x, > xp+l = xp+2 = . . . xm, == 2. 

= x,,, = . . . xm, = 0 (32) 
while X k  is 

(33) 
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It can be shown that the structure of &+a2 is equivalent to the 
structure of . i k .  This indicates that we may put x k  +6' instead 
of i k  into the MDL criterion. However, the detection perfor- 
mance seems unimproved by this kind of substitution. Below, 
we propose a novel method which improves performance a 
great deal. 

In accordance with Lemma 1, we propose a new detection 
method that put 

x k  = M ' x k  f G2 (34) 

instead of i k  into the MDL criterion, where M is a scalar 
greater than unity. M is chosen to satisfy 

Var{X,) M Var{X,j. (35) 

Naturally 

E(X,j = M .  E{i, - 8-2j + E(6-2) 
= M . 0 + a 2  
= a2 = E{X, j .  (36) 

On the other hand, the signal eigenvalues exhibit the following 
properties 

E{X,j = M .  E{X, - 6-2) + E(6-2) 
= (1M - l)E{i, - 6 2  j + E{i,) - E(6-2) + E(6-2) 

= E{:,} + ( M  - l)E{i, - 6-2) 

> E{i,}. (37) 

From (36) and (37), we conclude that signal eigenvalues 
are enlarged while noise eigenvalues remain the same in the 
mean. As a result, the new method can improve detection 
performance. The question of how to choose M remains. As 
M increases, A, is enlarged; the perturbation of x,, however, 
is also increased. Thus, an optimum value for M exists. In 
simulations, we found it advisable to set M to be the number 
of subarrays used in the spatial smoothing scheme. For the 
forwardhackward smoothing described in Section 11-B, we set 
M to be 2K. We now summarize (as follows) the detection 
method which follows from the weighted subspace smoothing 
scheme presented in Section 11-C: 

f) Perform eigen-decomposition on fi, to obtain x k .  

g) The number of signals is then determined as that value, k ,  
which minimizes the criterion 

MDL,(k)  = N(" - k )  log - (%) 
(38) 

1 
2 

+ -k(2" - k )  log N 

where 
m' 

A 1  U(k )  = - 
m' - k 

i = k + l  
(39) 

l / ( m ' - k )  

g ( k )  a ( 5 (2KK; + G2)) . (40) 
i = k + l  

Here, IC E ( 0 ,  l , . . . , m '  - l}. 

IV. SIMULATIONS 

Computer simulations were carried out to compare detection 
performances among the MDL, criterion, the MDL criterion, 
and the WSF detection scheme. Examples 1.1, 1.2, and 1.3 (be- 
low) show that detection performance of the MDL, criterion 
is much higher than the MDL criterion and the WSF detection 
scheme, especially when more signals are coherent. Example 2 
shows that a best value of M for the MDL, criterion exists. 
If M is set to be a too small value, detection performance 
is hardly improved. If M is too large, the MDL, criterion 
tends to overestimate the number of signals. In Examples 3.1 
and 3.2, we explore how unknown spatially-correlated noise 
affects these methods. Although the performances of all these 
methods deteriorate due to the spatially-correlated noise, the 
MDL, criterion turns to be the most robust one. 

Remark: For the WSF detection scheme, we use the 
MODE-2 method proposed in [27] instead of using the 
modified Gauss-Newton algorithm, which was called the 
modified variable projection (MVP) algorithm in [29], to 
minimize the WSF cost function. One advantage of using 
MODE-2 is that we do not need to use ESPRIT or the 
alternating projection method to initiate DOA estimates for 
the MVP algorithm. Another advantage is that MODE-2 
doesn't require a subjective steplength. Moreover, in all our 
simulations using the MODE-2 method to minimize the WSF 
cost function performs much better than using the MVP 
algorithm to do the same minimization. Note also, that the 
threshold for the hypothesis test within the WSF detection 
scheme is selected as the value at level 0.995 from an 
appropriate chi-square distribution (see [29] for more details). 

Example 1.1: In this example, a 10-sensor uniformly- 
spaced linear array with one half-wavelength inter-sensor 
spacing was employed. Five narrow-band signals with equal 
power impinged on the array, from the far field, at distinct 
directions -20", -lo", O", lo", and 20" w.r.t. the broadside 
of the array. Signals at O", lo", and 20" were coherent. 
Signals at -20" and -10" were uncorrelated with all other 
signals. Spatial-white Gaussian was an additive. The signal- 
to-noise ratio (SNR) was defined as the ratio of each signal 
power to the noise power at each sensor. We then used 100 
snapshots to construct the sample covariance matrix R,. Since 
the rank of the exact signal covariance R, was 3(< 5 ) ,  the 
MDL criterion failed to detect five signals. We employed the 
original spatial smoothing scheme or the proposed - WSS to 
decorrelate the signal coherency, and then both MDL and 
MDL, criteria did detect five signals, provided that SNR 
was sufficiently high. In this example, the forwardhackward 
smoothing transformation was used with smoothing degree 
K = 3. Thus, each subarray consisted of eight sensors, 
and M = 6 for MDL, criterion. We also used the WSF 
detection scheme to detect these five signals. To examine 
which criterion possessed better performance, we varied 
SNR and calculated detection probabilities for each method. 
One hundred independent Monte Carlo trials were used to 
calculate the detection probability for each SNR. The results 
are presented in Fig. 1. We plot the detection probabilities 
as a function of SNR and observe that the MDL, criterion 

- - 

~ 

~ 

- 

- 

- 

- 

- 

~ 
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SNR=-2 I MDL ... 

IS4 

g 

n i 

9 
8 
g: 
6 

Fig. 

subarray size m' 
m'=9 m'=s m'=7 

13 100 8 

Examule 1.1 

SNR=:' 

S N R 4  

Examule 1.2 

I I" 

MDL 0 0 0 
MDL, ,  100 100 100 
h4DL 0 49 0 
M D L , ,  IO0 100 100 
MDL 17 100 0 

1. The detection probabilities versus SNR. Results of Example 
1.1-three coherent signals. Solid line: The MDL, criterion. Dashed line: 
The 

~ 

criterion. Dot dash line: The WSF scheme. 

I I I I 

SNR=O I MDL ... I 9 I 100 I 7.5 

I I I I 

Fig. 2. The detection probabilities v e r s u s 2 R .  Results of Example 
1.2--fourcoherent signals. Solid line: The MDL, criterion. Dashed line: 
The MDL criterion. Dot dash line: The WSF scheme. 

0.4 

0.3 

Example 1.3 

Fig. 3. The detection p robab i l i t i eEus  SNR. Results of Example 1.3-five 
coherent sienals. Solid line: The MDL,,, criterion. Dashed line: The MDL 

~ criterion. got dash line: The WSF scheme. 
outDerformed the MDL criterion bv about 6.5 dB. When __ 
SNR > -3  dB, the MDL, criterion outperformed the WSF 
detection scheme. When SNR < -3 dB, although the WSF 
detection scheme was better than the MDL, criterion, it only 
exhibited detection probability below 90%. Obviously, when 
SNR < -3  dB, we prefer the WSF detection scheme. Thus, 
how to combine these two methods to maximize the detection 
probability for all SNR's is an interesting issue, but is beyond 
the scope of this paper. 

We are also interested in the effect of subarray size. In 
Table 111, the number of correct detections (out of 100) is 
listed in a column corresponding to different subarray sizes 
for various SNR's. We find that for either m, or MDL 
criterion, the best choice of subarray size was eight. Moreover, 
MDL, always outperformed MDL criterion, regardless of 
subarray size. 

Example 1.2: This example further checked performance 
improvement of MDL, criterion. Simulation conditions were 

___ 

~ ~ 

__ 

the same as those in Example 1.1, except the signal co- 
herency-signals at -lo", o", lo", and 20" were coherent 
and the signal at -20" was uncorrelated with all other signals. 
In this example, the best choice of subarray size was seven. 
Simulation results are shown in Fig. 2. The MDL, criterion 
outperformed the MDL criterion by about 8.5 dB. When 
S N R  > -1 dB, the MDL, criterion outperformed the WSF 
detection scheme. When SNR >8 dB, even the MDL criterion 
outperformed the WSF detection scheme. When SNR < -1 
dB, although the WSF detection scheme was better than the 
MDL, criterion, it only exhibited detection probability below 
80%. 

Example 1.3: Simulation conditions were the same as those 
in Example 1.2, except that all signals were coherent. Sim- 
ulation results are shown in Fig. 3. The MDL, criterion 
outperformed the MDL criterion by about 8 dB. The WSF 

- 

~ 

~ 

~ 

- 
__ 
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__ 
MDL,. with different M 

M = l  2 3 4 5 6 7 8 -  9 10 11 
0 0 0 2 1 4  6 9 1 0 1 1 1 5  SNR=-8 

SNR=-6 
SNR=-4 
SNR=-2 
SNR=-0 
SNR= 2 
SNR= 4 
SNR= 6 
SNR= 8 
SNR=10 
SNR=l2 

0 
0 
9 
9'3 
100 
100 
100 
100 
100 
100 

TABLE IV 
THE NUMBER OF CORRECT DETECTIONS (OUT 

OF 100) FOR DIFFERENT VALUES OF M 

0 0 9 36 55 60 60 63  61 61 56 
0 32 S1 97 08 (JS (J9 96 95 93 90 
3 99 100 100 100 100 98 97 v2 91 90 

93 100 100 100 100 'YJ 97 97 97 95 95 
100 100 100 100 100 99 99 99 99 96 94 
100 100 100 100 100 100 99 99 99 96 93 
100 100 100 100 100 100 100 100 100 95 93 
100 100 100 100 100 100 99 97 97 95 95 
100 100 100 100 100 99 99 99 98 96 96 
100 100 100 100 100 100 100 100 99 98 95 

detection scheme turned out to be an unsatisfactory method, 
which exhibited poor detection probability. In this case, we 
even prefer the MDL criterion to the WSF detection scheme. 

Judging from Examples 1.1, 1.2, and 1.3, we conclude that 
the MDL, criterion is the best criterion for detecting coherent 
signals impinging on a uniformly-spaced linear array. 

Example 2: In this example, we examined the effect of 
the scalar Ad, which enlarged the distance between signal 
and noise eigenvalues. The same simulation conditions as 
those in Example 1.1 were used, except the signal coherency: 
signals at -10' and 0" were coherent, signals at 10' and 
20' were coherent. Each subarray consisted nine sensors. In 
Table IV, the number of correct detections (out of 100) is 
listed in a column corresponding to the MDL criterion and 
the MDL, criterion with different value of M for various 
SNR's. We observe that when M was set to be 1, MDL, 
criterion did not perform better than MDL criterion. When 
SNR = -2, the performance of the MDL, criterion was 
even inferior to the MDL criterion. Suitable value of M 
was between 3-5. Note that in the example, the number of 
subarrays used in smoothing transformation was four. This 
validates that an advisable choice of M is the number of 
subarrays used in smoothing transformation. When M 2 6, 
the performance of the MDL, criterion deteriorated. In fact, 
when M = 7,8,9,10, or 11, the MDL, criterion tended to 
overestimate the number of signals. 

Example .3.1: We used this and the next example to see 
the effect of spatially-correlated noise on all the ad hoc 
detection methods. All simulation conditions of this example 
were the same as Example 1.1, except that the additive 
noise was spatially correlated and the SNR was fixed at 8 
dB. The spatially-correlated noise had exponentially decaying 
correlation among sensors. The noise covariance matrix had 
ikth element 

- 

- 

- 
- 

- 
- 
- 

- 

- 
~ 

Qzk = ff2a11z-kll e J ( x / 2 ) ( z - k )  (41) 

where CT' was adjusted to give the desired SNR and a 
became an indicator which indicated how severe the spatial 
correlation was. When a = 0, there was no correlation 
among sensors. As a grew up, the correlation increased. Note 
that this noise correlation model was the same as used in 
[31]-[33]. No spatial prewhiten of the data was performed, 
since the noise covariance was unknown. Fig. 4 shows the 
performance degradation due to increasing a. When a = 0, 

Example 3.1 

a 

Fig. 4. The detection probabilities in spatially correlated noisefields. Results 
of Example 3.1-=coherent signals. Solid line: The MDL, criterion. 
Dashed line: The MDL criterion. Dot dash line: The WSF scheme. 

Examule 3.2 

0.8 - 

5 0.7 - 

3 0.6- 
0 

0.5 - 

8 - 0.4 / 0.3 - 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

(I 

Fig. 5. The detection probabilities in spatially correlated n o s e l d s .  Results 
of Example 3 . 2 - - c o h e r e n t  signals. Solid line: The MDL, criterion. 
Dashed line: The MDL criterion. Dot dash line: The WSF scheme. 

all these methods exhibited 100% detection probability. When 
a = 0.25, the detection probability of the MDL, criterion was 
about 90%, the WSF detection scheme about 80%, and the 
MDL criterion about 65%. Although the detection capabilities 
of all these methods degraded due to spatial correlation among 
sensors, the MDL, criterion turned out to be the most robust 
method. 

Example 3.2: We checked, further, the robustness using this 
example. All simulation conditions of this example were the 
same as Example 1.2, except that the additive noise was 
spatially correlated and the SNR was fixed at 16 dB. The 
noise correlation model used in Example 3.1 was used in this 
example, too. Fig. 5 shows the performance degradation due 
to increasing a. Again, the MDL, criterion was the most 
robust method, then the WSF detection scheme, finally the 
MDL criterion. Actually, we observe that the performance 
degradation of the MDL, criterion and the WSF detection 

- 

- 

- 

___ 

- 
- 
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- 
scheme was similar and more mild than the MDL criterion. 
This occured probably because both these two methods took 
the advantage of the weighted signal subspaces while the MDL 
criterion did not. 

- 

V. CONCLUSION 

We have proposed a new approach to determining the 
number of coherent signals impinging on uniformly spaced 
linear arrays. It combines a new version of spatial smooth- 
ing and a new version of the MDL criterion, and greatly 
improves detection performance when it compares with the 
method that directly combines the MDL criterion and the 
spatial smoothing. When there are many coherent signals, 
the proposed approach also performs much better than the 
WSF detection scheme, which is much more complicated 
than the proposed approach. We call the new spatial smooth- 
ing approach weighted subspace smoothing. Analysis and 
simulations show the noise eigenvalues obtained with the 
weighted subspace smoothing are more accurate than those 
obtained with the original spatial smoothing scheme. As a 
result, detection performance can be improved by using these 
more accurate eigenvalues. One of the contributions of this 
paper is the establishment of a new version of the MDL 
criterion which accounts for the greater accuracy and leads to 
great performance improvement. An important parameter M 
of the proposed MDL, criterion enlarges the distance between 
signal and noise eigenvalues. This is the reason why detection 
performance could be improved. However, the question of how 
to choose the optimum value of M remains. We hope to report 
a systemic solution for this in future work. Weighted subspace 
smoothing can also be used to improve DOA (direction-of- 
arrival) estimation. In [30], the weighting matrix W was set to 
be A,, and more correct DOA estimates were obtained. Taking 
view of the results reported in this paper and in [30], we find 
that it is advisable to use weighted subspace smoothing for 
both signal-detection and DOA-estimation of coherent signals 
impinging on uniformly-spaced linear arrays. 

- 

ACKNOWLEDGMENT 

The authors would like to thank T.S. Lee, Y.-L. Su, and 
the anonymous reviewers for their valuable comments and 
suggestions. 

REFERENCES 

R. 0. Schmidt, “Multiple emitter location and signal parameter estima- 
tion,” in Proc., RADC Spectrum Estimat. Workshop, Griffiths AFB, NY, 
1979, pp. 243-258; also in IEEE Antennas Propagat., vol. AF-34, no. 
3, pp. 276-380, Mar. 1986. 
D. W. Tufts and R. Kumaresan, “Estimating the angle of arrival of 
multiple plane waves,’’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, 
pp. 135-139, Jan. 1983. 
R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameter via 
rotational invariance,” IEEE Trans. Acoust., Speech, Signal Processing, 
vol. 37, pp. 984-995, July 1989. 
I. Zisknd and M. Wax, “Maximum likelihood localization of multiple 
sources by alternating projection,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. 36, pp. 1553-1560, Oct. 1988. 
M. S .  Bartlett, “A note on the multiplying factors for various x2 
approximations,” J.  Roy. Stat. Soc., ser. B, vol. 16, pp. 296-298. 1954. 

G. Bienvenu and L. Kopp, “Optimality of high resolution array pro- 
cessing using the eigensystem approach,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. ASSP-31, pp. 1235-1247, Oct. 1983. 
H. Akaike, “A new look at the statistical model identification,’’ IEEE 
Trans. Automat. Contr., vol. AC-19, pp. 716-723, 1974. 
J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 
14, pp. 465471, 1978. 
M. Wax and T. Kailath, “Detection of the number of signals by 
information theoretic criterion,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. 33, pp. 387-392, 1984. 
L. C. Zhao, P. R. Krishnaiah, and 2. D. Bai, “On detection of the number 
of signals in presence of white noise,” J. Multivariable Anal., vol. 20, 
pp. 1-20, 1986. 
~, “Remarks on certain criteria for detection of number of signals,” 
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 
129-132, Feb. 1987. 
Y. Yin and P. Krishnaiah, “On some nonparametric methods for 
detection of the number of signals,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. ASSP-35, pp. 1533-1538, 1985. 
H. Wang and M. Kaveh, “On the performance of signal-subspace pro- 
cessing-Part I: Narrow-band systems,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. ASSP-34, no. 5, pp. 1201-1209, Oct. 1986. 
M. Kaveh, H. Wang, and H. Hung, “On the theoretical performance of a 
class of estimators of the number of narrow-band sources,” IEEE Trans. 
Acousi., Speech, Signal Processing, vol. ASSP-35, no. 9, pp. 1350-1352, 
Sept. 1987. 
Q. T. Zhang, K. M. Wong, P. C. Yip, and J. P. Reilly, “Statistical analysis 
of the performance of information theoretic criteria in the detection of 
the number of signals in array processing,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. 37, no. 10, pp. 1557-1567, Oct. 1989. 
K. M. Wong, Q. T. Zhang, J. P. Reilly, and P. C. Yip, “On information 
theoretic criteria for determining the number of signals in high resolution 
array processing,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 
38, no. 11, pp. 1959-1071, Nov. 1990. 
W. Chen, K. M. Wong, and J. P. Reilly, “Detection of the number 
of signal: A predicted eigen-threshold approach,” IEEE Trans. Acoust., 
Speech, Signal Processing, vol. 39, no. 5, pp. 1088-1098, May 1991. 
T. J. Shan, A. Paulraj, and T. Kailath, “On smoothed rank profile tests 
in eigenstructure methods for directions-of-arrival estimation,” IEEE 
Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, no. 10, pp. 
1377-1385, Oct. 1987. 
M. Wax and I. Ziskind, “Detection of the number of coherent signals by 
the MDL principle,” IEEE Trans. Acoust., Speech, Signal Processing, 
vol. 37, no. 8, pp. 1190-1196, Aug. 1989. 
M. Wax, “Detection and localization of multiple sources via the sto- 
chastic signals model,” IEEE Trans. Sigrzul Processing, vol. 39, no. 11, 
pp. 245CL2456, Nov. 1991. 
Q. Wu and D. R. Fuhrmann, “A parametric method for determining the 
number of signals in narrow-band direction finding,” IEEE Trans. Signal 
Processing, vol. 39, no. 8, pp. 1848-1857, Aug. 1991. 
C. M. Cho and P. M. DjuriC, “Detection and localization of multiple 
sources via Bayesian predictive densities,” in Proc. ICASSP ’93, 1993, 
vol. 4, pp. 57-60. 
J. E. Evans, J. R. Jognsom, and D. F. Sun, “Application of advanced 
signal processing techniques to angle of arrival estimate in ATC naviga- 
tion and surveillance system,’’ Rep. 582, MIT Lincoln Lab., Lexington, 
MA., 1982. 
T. J. Shan, M. Wax, and T. Kailath, “On spatial smoothing of estimation 
of coherent signals,” IEEE Trans. Acoust., Speech, Signal Processing, 
vol. ASSP-33, pp. 806811, Aug. 1985. 
S. U. Pillai and B. H. Kwon, “Forwardhackward spatial smoothing 
techniques for coherent signal identification,” IEEE Trans. Acoust., 
Speech, Signal Processing, vol. 37, no. 1, pp. 8-15, Jan. 1989. 
Y. Bresler and A. Macovski, “Exact maximum likelihood parameter 
estimation of superimposed exponential signals in noise,’’ IEEE Trans. 
Acoust., Speech, Signal Processing, vol. ASSP-34, no. 5, pp. 1081-1089, 
Oct. 1986. 
P. Stoica and K. C. Sharman, “Maximum likelihood methods for 
direction-of-arrival estimation,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. 38, no. 7, pp. 1132-1143, July 1990. 
M. Viberg and B. Ottersten, “Sensor array processing based on subspace 
fitting,” IEEE Trans. Signal Processing, vol. 39, no. 5 ,  pp. 1110-1121, 
May 1991. 
M. Viberg, B. Ottersten, and T. Kailath, “Detection and estimation 
in sensor arrays using weighted subspace fitting,” IEEE Trans. Signal 
Processing, vol. 39, no. 11, pp. 2436-2448, Nov. 1991. 
H. Krim and J. G. Proakis, “Smoothed eigenspaced-based parameter 
estimation,” Automatica, vol. 30, no. 1, pp. 27-38, 1994. 



MA AND TENG: DETECTION OF COHERENT SIGNALS USING WEIGHTED SUBSPACE SMOOTHING 187 

J. P. Reilly, K. M. Wong, and P. M. Reilly, “Direction of arrival 
estimation in the presence of noise with unknown, arbitrary covari- 
ance matrices,” in Proc. ICASSP ’89. Glasgow, Scotland, 1989, PP. 

L _ _  
2609-26 12. 
M. Wax. “Detection and localization of multiple sources in noise with 
unknown covariance,” IEEE Trans. Signal Processing, vol. 40, no. 1, 
pp. 245-249, Jan. 1992. 
P. Stoica, M. Viberg, and B. Ottersten, “Instrumental variable approach 
to array processing in spatially correlated noise fields,” IEEE Trans. 
Signal Processing, vol. 42, no. 1, pp. 121-133, Jan. 1994. 

Ching-Wen Ma (S’94) was born in Chia-Yi, Tai- 
wan, R.O.C., on May 24,1968. He received the B.S. 
degree in electrical engineering from the National 
Taiwan Ocean University, in 1990. In 1992, he 
received the M.S. degree in control engineering 
from the National Chiao-Tung University, Taiwan, 
where he is currently working toward the Ph.D. 
degree. 

His main research interests are array signal pro- 
cessing, adaptive signal processing, and neural net- 
works. 

Ching-Cheng Teng was born in Taiwan in 1938. He 
received the B.S. degree in electrical engineering 
from Nation Cheng-Kung University, Taiwan, in 
1961. 

He is currently a Professor and Chairman of 
the department of control engineering at National 
Chiao-Tung University. His research interests in- 
clude H m  optimal control, signal processing, and 
fuzzy neural systems. 


