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Andreev reflection in two-dimensional relativistic materials with realistic tunneling transparency
in normal-metal/superconductor junctions
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The Andreev conductance across realistic two-dimensional (2D) normal-metal (N)/superconductor (SC)
junctions with a relativistic Dirac spectrum is theoretically investigated within the Blonder-Tinkham-Klapwijk
formalism with tunable tunneling transparency. It is known that due to the effect of Klein tunneling, impurity
potentials at the interface of 2D relativistic materials will enhance (not suppress) the tunneling and therefore
are not suitable to model a realistic tunnel junction of these materials. Here, we propose a way to construct
a more realistic tunnel junction by adding a narrow, homogeneous local strain, which effectively generates a
δ-gauge potential and variations of electron hopping at the interface, to adjust the transparency of the N/SC
junction. Remarkable suppression of the Andreev conductance is indeed observed in the graphene N/SC junction
as the strength of the local strain increases. We also explore the Andreev conductance in a topological N/SC
junction at the two inequivalent Dirac points and predict the distinctive behaviors for the conductance across
the chiral-to-helical topological phase transition. The relevance of our results for the adatom-doped graphene is
discussed.
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I. INTRODUCTION

The Andreev reflection (AR) is a scattering process associ-
ated with the electron-hole conversion which occurs between
a normal metal (N) and a superconductor (SC) with the
excitation energy of the incident electrons being lower than
the superconducting gap energy [1].

Microscopically, an incident electron, upon hitting the
N/SC interface, is reflected back as a hole which follows the
same trajectory as the incident electron but carries opposite
spin, thus being called the retro Andreev reflection (RAR).
RAR has been extensively studied in conventional s-wave su-
perconductors within the Blonder-Tinkham-Klapwijk (BTK)
formalism [2]. In 2006, Beenakker unveiled a different type
of AR process for relativistic electrons in a graphene-based
N/SC junction, known as the specular Andreev reflection
(SAR) since the hole reflection, in this case, resembles the
mirrorlike reflection of light [3,4], and a transition between
retro-to-specular AR was also predicted.

SAR was also theoretically proposed to occur in a
two-dimensional (2D) semiconductor-superconductor junc-
tion with finite Rashba spin-orbit (SO) coupling [5]. To date,
AR has been studied extensively in a variety of 2D N/SC
junctions with underlying honeycomb-lattice structure and
different types of pairing symmetries [6–10].

More interestingly, it has been pointed out that the zero-bias
peak of the Andreev conductance spectroscopy could serve
as an experimental signature to identify the existence of
Majorana bound states [11,12]. Until recently, the SAR and the
specular-to-retro AR transition were experimentally confirmed
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on graphene-based superconducting junctions [13,14]. It is
therefore of great importance to investigate AR in the N/SC
junction on a honeycomb lattice.

Despite extensive studies on AR for 2D N/SC junctions
with a relativistic Dirac spectrum, theoretical approaches to
date based on BTK formalism are all under the (somewhat
unrealistic) assumption of the transparency of the junction.
It is therefore difficult to account for the recent experiments
where suppression of tunneling conductance has clearly been
observed due to a finite barrier at the interface [14].

It is also known that for relativistic materials due to
the “Klein tunneling” effect the impurity potentials tend to
enhance rather than suppress the tunneling current [15]. In this
paper, we propose a possible way to construct a more realistic
N/SC junction with tunable tunneling transparency.

Unlike the conventional BTK formalism [2] in which the
transparency of the tunnel junction is simulated by the impurity
potential across the junction, here, we provide an alternative
approach to control the transparency of a N/SC junction on a
honeycomb lattice by applying a homogeneous, narrow local
strain parallel to the interface of junctions. Our approach gener-
alizes the idea shown in Refs. [16,17] that adding narrow strain
effectively generates a δ-gauge potential at the N/SC interface,
which introduces variations of the electron hopping at the
interface and therefore changes the tunneling transparency. To
examine the effect of this tunable δ potential, we first compute
Andreev conductance of the graphene normal-metal/(d + id ′)-
wave superconductor junction in the presence of a δ-gauge
potential via BTK formalism [2]. Unlike the enhancement of
tunneling current due to the Klein tunneling in graphene, a
remarkable suppression of the Andreev conductance is indeed
observed with increasing the strength of the local strain.
The conductance suppression in this case is analogous to the
effect of a potential barrier at the interface of a conventional
one-dimensional (1D) N/s-wave-SC junction in the BTK
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framework [2] despite a different mechanism. Next, we apply
our theory to a 2D topological N/SC junction. Due to the
broken valley degeneracy [18,19], the Andreev conductance
from the incident electrons near the two Dirac points exhibits
entirely different behaviors. We make predictions by providing
profiles of the Andreev conductance within certain parameter
regimes for future experiments. The remaining parts of this
paper are organized as follows: In Sec. II, we apply our
approach to compute AR across a graphene-(d + id ′)-wave
N/SC junction in the presence of a δ-gauge field. In Sec. III,
we further compute AR in a different system made of the
Kane-Mele/(d + id ′)-wave N/SC junction on a honeycomb
lattice. In Sec. IV, we provide a discussion and conclusions.

II. AR ACROSS A GRAPHENE-(d + i d ′)-WAVE N/SC
JUNCTION IN THE PRESENCE OF A δ-GAUGE FIELD

In this section, we start by briefly reviewing the electron
motions in a graphene monolayer within the tight-binding for-
malism in Sec. II A. The configuration of the lattice structure
for a single-layer graphene sheet is schematically illustrated
in the unshaded region of Fig. 1(a). The derivations of the
effective δ-gauge potential via adding a narrow, homogeneous
local strain on graphene will be given in Sec. II B. Finally,
we apply the BTK formalism [2] to compute the Andreev
conductance across a graphene normal-metal/(d + id ′)-wave

FIG. 1. We consider a N/SC junction which is composed of
a normal metal (N) occupying the left side connected to the
superconducting (SC) region on the right (green shaded area) with
underlying honeycomb lattice structure as depicted in (a). The unit
length is chosen to be the nearest-neighbor lattice spacing a = 1
throughout this paper. The three phases for the bond-dependent
d + id ′ pairing are defined as ϕa=1,2,3 = 2(a − 1)π/3, as shown in
the SC region in (a). The thicker purple horizontal bonds which locate
at the N/SC interface represent the modified hopping strength t + δt

due to the local strain. The first Brillouin zone is shown in (b).

N/SC junction to examine the effect of the δ-gauge potential.
The results are provided in Sec. II C.

A. Electronic properties in a graphene monolayer

The electronic motion in a uniform undoped graphene
monolayer is often formulated by the nearest-neighbor tight-
binding model [17,20]:

H0 = − t
∑
〈i,j〉

(c†A,icB,j + H.c.)

=
∑

k∈BZ

(f (k)c†A,kcB,k + H.c.), (1)

where cα,i (c†α,i) annihilates (creates) an electron on the
α ∈ {A,B} sublattice in the ith unit cell. The electron operators
in momentum space are given by the Fourier transform of
cα,i : cα,k = (1/

√
Ns)

∑
i eik·Ri cα,i , with Ri being the position

vector of the ith unit cell and Ns being the total number
of unit cells. Nearest-neighbor lattice vectors are δ1,2,3 with
unit length a, as shown in Fig. 1(a). Here, we set a = 1 in
what follows. The constant prefactor t represents the hopping
strength between two nearest-neighbor electrons. f (k) ≡
−t

∑3
i=1 eik·δi is a k-dependent function which characterizes

the band structures. The undoped single-layer graphene based
on the tight-binding Hamiltonian in Eq. (1) features the
well-known Dirac band structure with linear spectrum on the
Dirac points, as shown in Fig. 1(b):

K+ =
(

0, − 4π

3
√

3

)
, K− =

(
0,

4π

3
√

3

)
. (2)

The linear dispersion is governed by the linearized Hamil-
tonian around the Dirac points, which is given by H =
H+ + H− = ∑

q,τ=± �†
τ (q)Hτ (q)�τ (q) subject to the con-

dition |q| � 1. In the momentum space, the 2 × 2 Dirac
Hamiltonians around the Dirac points take the form of

H+(q) = 3t

2

(
0 iqx − qy

−iqx − qy 0

)

= h̄vF (πy∗qx − πxqy) (3)

and

H−(q) = 3t

2

(
0 iqx + qy

−iqx + qy 0

)

= −h̄vF (πyqx − πxqy), (4)

which acts on a two-dimensional spinor �τ (q) =
(cAτ (q),cBτ (q))T . The valley indices τ = ± refer to the
electronic states �τ (q) near K±. vF ≡ 3t/2h̄ is defined as
the Fermi velocity for the tight-binding model of graphene.
Here, πx,y,z denote the Pauli matrices:

πx =
(

0 1
1 0

)
, πy =

(
0 −i

i 0

)
, πz =

(
1 0
0 −1

)
, (5)

which are used to label the sublattices. We also defined a 2 × 2
unit matrix,

π0 =
(

1 0
0 1

)
, (6)

for later use, which is also for the sublattices.
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B. The effective δ-gauge field

One possible way to introduce disorders in graphene is
to change the bond spacing between two different sites via
applying a local strain, which effectively varies the hopping
strength t as in Eq. (1) [16,17]. To account for the effect of
the local strain, we may change the hopping strength as t →
t + δt(Ri , δa) in the tight-binding Hamiltonian in Eq. (1). The
magnitude of δt(Ri , δa) can be, in general, bond dependent
and spatially inhomogeneous over one bond spacing. For
simplicity, δt(Ri , δa) here is assumed to be uniform over the
bond spacing; thus, it will not acquire Fourier components
in the Fourier transformation. Under these assumptions, the
linearized Hamiltonian for the change in the hopping strength
around the K+ valley takes the form

δH+ = −
∫

d r[A(r)c†A+(r)cB+(r) + A∗(r)c†B+(r)cA+(r)]

= −
∫

d r�†
+(r)

(
0 iAx − Ay

−iAx − Ay 0

)
�+(r)

= −
∫

d r�†
+(r)(πy∗Ax − πxAy) �+(r), (7)

where �τ (r) = (cAτ (r),cBτ (r))T denotes the field operator for
the K τ valley, while

A(r) ≡
3∑

a=1

δt(r,δa)ei K ·δa ≡ iAx(r) − Ay(r) (8)

is a complex function. Here,Ax and Ay are real functions. If we
assume that the effect of the local strain extends over only one
lattice spacing and influences only the horizontal bonds along
the y direction, as shown in Fig. 1(a), the complex function
A(r) in Eq. (8) can be reduced to the form of a δ function. In
units of h̄ = vF = 1, A(r) simply takes the form

A(r) = δt(r) = δt

t
δ(x). (9)

Consequently, only the real part of A(r) survives; the imagi-
nary part vanishes: Ax = 0, Ay = − δt

t
δ(x)

The linearized Hamiltonian for the change in the hopping
amplitude near the K− valley is related to the one for the
K+ valley by time-reversal transformation T , i.e., δH− =
T δH+T −1 :

δH− = −
∫

d2r �
†
−(r)(πyAx − πxAy) �−(r). (10)

Combining Eqs. (3), (4), (7), and (10), the linearized Hamil-
tonian in the presence of a homogeneous local strain in real
space is given by

H =
∫

d2r�†(r)

(
πy∗(q̂x − Ax) − πx(q̂y − Ay) 0

0 −[πy(q̂x + Ax) − πx(q̂y + Ay)]

)
�(r), (11)

where �(r) ≡ (�+(r),�−(r))T and the momentum operator
q̂i ≡ −i∂i . The reverse in the sign in the terms containing
the complex vector �A = (Ax,Ay) for different valleys in
Eq. (11) implies that �A can be viewed as a gauge field [16,17].
Combining Eqs. (8), (9), and Eq. (11), it is clear that the
effect of a homogeneous local strain in the distance over one
horizontal bond on graphene can be simply regarded as an
effective δ-gauge field of a series of localized impurities along
the y direction, which couples the electrons from sublattices
A and B.

C. Andreev conductance across a graphene (dx2−y2 + id′
xy)-wave

N/SC junction

In this section, we dedicate our efforts to investigating
the Andreev reflection through a graphene normal-metal/(d +
id ′)-wave spin-singlet superconductor N/SC junction with an
effective δ-gauge field lying on the N/SC interface via BTK
formalism.

Unlike the well-known case of superconductivity in
graphene via proximity to a superconducting electrode [21],
the (d + id ′)-wave spin-singlet superconducting order is
induced in graphene at finite doping by on-site electron-
electron Coulomb repulsion [22–24]. Due to the C6 point-
group symmetry of the underlying honeycomb lattice, the
(d + id ′)-wave superconducting order in the k space takes

the form

	k =
3∑

a=1

	δa
eik·δa , (12)

with the bond-dependent order parameter 	δa
= 	0e

iϕa , with
ϕa = 2(a − 1)π/3 [22–24].

As depicted in Fig. 1(a), the N/SC junction being considered
is composed of a sheet of graphene normal metal that occupies
the region of −∞ < x < 0 connected to a 2D superconducting
thin film which occupies 0 < x < ∞ with a sharp N/SC
interface in between (i.e., at the position of x = 0), which
implies that the translational invariance along the x direction
is broken. We assume that the N/SC junction is homogeneous
and infinitely extended in the y direction; therefore, the
translational symmetry is preserved in y. The sharp N/SC
junction signifies that the bulk value of the superconducting
pairing amplitude denoted as 	0 is reached at a negligibly
small distance from the interface, which can be achieved via
adjusting the doping or gate voltage in the SC region [3,4,7].

Due to the valley and spin degeneracy, the electronic
motions can be described by two sets of decoupled Dirac–
Bogoliubov–de Gennes (DBdG) equations [25,26] for the
K+ and K− valleys, each containing four equations. Thus,
it suffices to consider only the set for the K− valley:( H−(q) − μ 
(x)	−(q)


(x)	−(q)† μ − H−(q)

)(
u

v

)
= εq

t

(
u

v

)
, (13)
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where

H−(q) = −(πxqy − πyqx) − (U0/t)π0
(x) (14)

is the 2 × 2 linearized single-particle Hamiltonian of graphene
at the K− valley and μ denotes the chemical potential. Here,
u = (uA↑,uB↑) and v = (vA↓,vB↓) are the two-component q-
dependent wave functions for the electron (electronlike) and
hole (holelike) excitations at the excitation energy εq > 0,
which is measured relative to the chemical potential μ. Here,
we introduce a unit-step electrostatic potential

U0
(x) =
{
U0, x � 0,

0, x < 0,
(15)

to the SC region, where U0 can be tuned independently through
doping or the gate voltage. To justify the assumption of a
sharp N/SC junction as mentioned previously, the energy
scales must satisfy U0 � t � μ,	0, such that the Fermi
wavelength λ′

F = 2πh̄vF /(μ + U0) in SC is much shorter
than that in N, where λF = 2πh̄vF /μ [3,4,7]. The linearized
superconducting pairing matrix 	−(q) with dx2−y2 + id ′

xy

pairing symmetry at the K− valley is given by

	−(q) = 	0

t

(
0 − 3

2 (iqx − qy)

3 0

)
, (16)

which is related to the one for the K+ valley by 	+(q) =
	T

−(−q). Apparently, the (dx2−y2 + idxy)-wave superconduct-
ing pairing at low energy features the s- and (px + ipy)-pairing
symmetry [6,27].

To study the Andreev reflection across a N/SC junction,
we may imagine that an incident electron comes from x =
−∞ toward the N/SC junction and scatters by the potential
at the interface. While scattering with the potential, electrons
may reflect back to the N region as either normal electrons or
holes or may tunnel through the barrier into the SC region as
Dirac-Bogoliubov quasiparticles. For convenience, electrons
are assumed to go through elastic scattering processes at the
interface. Hence, the whole scattering basis for the incident,
reflected, and transmitted states inside the N and SC region,
which can be solved via Eq. (13), are characterized by the
same excitation energy ε.

The real-space eigenfunctions of Eq. (13) in general take
the form of plane-wave solutions, i.e.,

�(r) = eiqxx+iqyy

⎛
⎜⎝

uA↑
uB↑
vA↓
vB↓

⎞
⎟⎠. (17)

Note that the solutions of Eq. (13) in the SC region may
be either an evanescent mode which decays exponentially
with the increase in distance from the interface at an energy
ε of the incident electron smaller than the superconducting
gap, namely, ε < 	gap, or a propagating mode at ε > 	gap.
Furthermore, since the Hamiltonian in the normal metal is
diagonal in the spin subspace, here, we consider only the
incident electrons to be spin up in Eq. (17).

Here, we denote ψ(q) ≡ (u,v) = (uA↑,uB↑,vA↓,vB↓).
Therefore, the total wave function �N (�sc) in the N (SC)
region can be expressed as a superposition of various eigen-
states of Eq. (13) with positive excitation energy in the region
x < 0 (x > 0):

�N (r) = ψ
(e)
N (qx, qy)eiqxx+iqyy + reψ

(e)
N (−qx, qy)e−iqxx+iqyy

+ rhψ
(h)
N (q ′

x, qy)eiq ′
xx+iqyy,

�sc(r) = teψ
(e)
sc (q̄x,qy)eiq̄xx+iqyy+thψ

(h)
sc (−q̄ ′

x,qy)e−iq̄ ′
xx+iqyy,

(18)

with the incident state being normalized to unity. re, h and
te, h, which depend on the energy ε and the wave vector q
of the incident state, represent the reflection and transmission
coefficients for the electron branch (with subscript e) and hole
branch (with subscript h). Due to the assumption of elastic
scattering, ψ

(e), (h)
N, sc are the eigenstates of Eq. (13) with the

same excitation energy ε. Note that the transverse component
of the wave vector qy is a conserved quantity during the
scattering process due to the translational symmetry in y,
while the longitudinal components for the electron and hole
(electronlike and holelike) states qx,q

′
x (q̄x,q̄

′
x) can be deter-

mined via their (quasiparticle) dispersion relations at a given
ε and qy .

Due to the presence of a δ-gauge field as well as the
restriction that the DBdG equations are first order, the wave-
function continuity at the interface as widely used in various
studies under the assumption of ideal N/SC interfaces is not
an appropriate boundary condition. Detailed derivations for
the boundary condition for our theory are provided in the
following: the DBdG equations for the K− valley in the
presence of an effective δ-gauge field as shown in Eq. (9)
are given by

⎛
⎜⎜⎜⎜⎝

0 iq̂x+q̂y− δt
t
δ(x) − μ

t
0 − 3	0

2t
(iq̂x−q̂y)

−iq̂x+q̂y− δt
t
δ(x) − μ

t
0 3	0

t
0

0 3	0
t

0 μ

t
−iq̂x−q̂y+ δt

t
δ(x)

3	0
2t

(iq̂x+q̂y) 0 μ

t
+iq̂x−q̂y+ δt

t
δ(x) 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

fA↑
fB↑
gA↓
gB↓

⎞
⎟⎠ = ε

t

⎛
⎜⎝

fA↑
fB↑
gA↓
gB↓

⎞
⎟⎠. (19)
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Taking the momentum operator q̂i → −i∂i and integrating
along the x direction over a small distance across the interface,
Eq. (19) become[

f sc
B↑(0) − f N

B↑(0)
] − 3	0

2t

[
gsc

B↓(0) − gN
B↓(0)

] = δt

t
fB↑(0),

[
f N

A↑(0) − f sc
A↑(0)

] = δt

t
fA↑(0).

[
gsc

B↓(0) − gN
B↓(0)

] = δt

t
gB↓(0),

[
gN

A↓(0) − gsc
A↓(0)

] + 3	0

2t

[
f N

A↑(0) − f sc
A↑(0)

] = δt

t
gA↓(0).

(20)

In Eq. (B2), f (g)ασ (0+) ≡ f (g)scασ and f (g)ασ (0−) ≡
f (g)Nασ , where α denotes the A or B sublattice and σ denotes
the spin σ = ↑ , ↓. As we shall see in Eq. (B2), the boundary
condition results in an ambiguity of � at x = 0 which results
from the situation where the DBdG equations are first order.
We further impose the following conditions to resolve the
wave-function ambiguity: in the situation of 	0 = 0 and
δt = −t [16], we expect no tunneling current across the
N/SC junction. The conditions are quite straightforward: in
the case mentioned above, the original N/SC junction reduces
to two disconnected semiplanes of the graphene sheet; thus,
electron tunneling is forbidden, giving rise to no tunneling
current. The issue of wave-function ambiguity at the origin
now changes to the problem of electron tunneling across a
junction of two pure graphene semiplanes with a δ-gauge field
taking the form of Eq. (9) in between. Based on the condition
of current conservation and the requirement of no tunneling
current across the junction at t = −δt and 	0 = 0, we choose
the wave functions at the origin as

fAσ (0) = f sc
Aσ , fBσ (0) = f N

Bσ ,

gAσ (0) = gsc
Aσ , gBσ (0) = gN

Bσ , (21)

where σ = ↑ , ↓ denotes spin. Note that due to the relation of
the time-reversal partner between the incident electrons and
the reflected holes within the DBdG formalism [3,28] for AR
in a single-layer graphene, the hole wave functions g share the
same boundary conditions as the electrons wave functions f ,
as shown in Eq. (21), leading to

f sc
B↑(0) = ηf N

B↑(0) + 3	0

2t

[
gsc

B↓(0) − gN
B↓(0)

]
,

f sc
B↓(0) = ηf sc

A↑(0),

gsc
B↓(0) = ηgN

B↓(0),

gN
A↓(0) = ηgsc

A↓(0) + 3	0

2t

[
f sc

A↑(0) − f N
A↑(0)

]
, (22)

where η ≡ 1 + δt/t . For detailed derivations of the boundary
conditions in Eq. (21), we refer readers to Appendix A.
Once the reflection and transmission coefficients are obtained,
following the BTK formalism [2], the normalized differential
conductance can be computed by summing over all possible
incident states, leading to

G

G0
=

∫ π/2

0
dθ cos θ [1 − |re(eV, θ )|2 + |rh(eV, θ )|2], (23)

FIG. 2. Schematic plot of the band structure in the N and SC
regions at the N/SC interface. In the N region, the black solid line
indicates the band structure for particles, while the red and blue
solid lines show the conduction- and valence-band holes. The Dirac-
Bogoliubov quasiparticle dispersion is shown in the SC region The
direction of the arrows represents the direction of group velocity.
This figure describes a general electron-hole conversion process at
different biases eV .

where G0 is the ballistic conductance of graphene
[3,6].

In the absence of the local strain δt = 0, the Andreev
conductance for the graphene (d + id

′
)-wave superconductor

N/SC junction is reproduced [6], as shown in Figs. 3 and 4, and
the specular-AR to retro-AR transition marked by eV/t = μ

can be easily identified for the case of 	gap > μ. The behaviors
of the normalized differential conductance G/G0 in Figs. 3
and 4 can be qualitatively explained via the aspect of the linear
band structure of graphene normal metal and the electron-hole
conversion processes at different Fermi energies, as shown
in Fig. 2. For the case of μ < 	gap as in Fig. 3, at zero
bias eV = 0, the phase spaces for the incident electrons and
reflected holes are identical to each other, giving rise to
the maximum Andreev conductance. However, once eV is
increased but still lower than μ, it is clear that the phase space
of the hole band shrinks and results in a monotonic decline in
G/G0 until the bias reaches the Fermi energy eV = μ, where
there is no density of states for a reflected hole, leading to a
conductance dip, as shown in Fig. 4. In the regime eV < μ, a
conduction-band electron is reflected as a conduction-band
hole via the Andreev reflection; it is called the intraband
Andreev reflection (or Andreev retroreflection). Once the bias
exceeds the Fermi energy eV > μ, the incident electrons
from the conduction band are converted as valence-band
holes, leading to the interband Andreev reflection (or Andreev
specular reflection). For this case, G/G0 increases again with
increasing eV due to the increase in phase space in the
hole band. At eV � 	gap, the tunneling process returns to
the normal-metal-normal-metal tunneling, and the Andreev
conductance saturates. Apparently, the Fermi energy serves
as the “critical energy” for the transition between the intra-
to interband Andreev reflection. On the contrary, only the
Andreev retroreflection process exists as 	gap < μ, leading
to a monotonic decline of G/G0, as shown in Fig. 4.

In the following, we discuss the normalized conductance
for the situation of nonzero barrier δt �= 0. The vanishing of
G/G0 for the case of δt = −t signifies no electron tunneling,
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FIG. 3. The Andreev conductance of a graphene d + id ′ su-
perconducting junction with varying barrier heights δt/t and fixed
Fermi energy μ/t = 0.001 and superconducting pairing strength
	0/t = 0.01 and U0/t = 0.1. The superconducting gap energy is
around 	gap/t = 0.014.

FIG. 4. The normalized Andreev conductance G/G0 with vary-
ing barrier height δt/t and fixed Fermi level μ/t = 0.01 and super-
conducting pairing strength 	0/t = 0.001. The superconducting gap
energy is found to be 	gap/t = 0.0014.

as expected. For the situation of a finite-potential barrier, our
results qualitatively capture the most significant features of
Andreev conductance in the presence of the δ barrier: In
Figs. 3 and 4, as the barrier strength δt/t is increased, G/G0

dramatically decreases down to zero due to heavy scattering
of electrons by the potential barrier, in good agreement with
the previous results for the case of the 1D metal/s-wave N/SC
junction in Ref. [2]. The cusps for the normalized conductance
in Fig. 3 at eV < 	gap with nonzero δt can be simply
understood as the competition between the graphene density
of states and the effect of the δ barrier: The density of states for
graphene at low energy is linearly proportional to the excitation
energy, signifying that increasing the energy will enhance the
conductance. On the contrary, the effect of δt tends to suppress
the conductance. Therefore, the competition between the den-
sity of states and the δ barrier gives rise to the cusps in Fig. 3.

III. AR ACROSS A KANE-MELE/(d + i d ′)-WAVE
N/SC JUNCTION

In the past few decades, much effort has been devoted
to searching for novel topological states of matters. The
two examples of particular interest are topological insulators
[29,30], which have insulating bulk states while the edge or
surface supports time-reversal symmetry-protected conduct-
ing states, and topological superconductors, which support
gapless, charged neutral Majorana edge (or surface) states [31]
with superconducting bulk states.

Recently, the doped Kane-Mele (KM) model, which
was originally proposed in Refs. [32,33], with large on-
site electron-electron repulsive interaction on a 2D periodic
honeycomb lattice was theoretically shown to feature a time-
reversal-broken (dx2−y2 + idxy)-wave superconducting state
in the bulk via renormalized mean-field theory [22,23].
Moreover, it was also found that the system undergoes a
topological phase transition from the helical superconducting
to the chiral superconducting order as the strength of the
intrinsic spin-orbit coupling is decreased, and two pairs of
counterpropagating helical Majorana zero modes were found
theoretically at the edges of a finite-sized zigzag ribbon of
the tight-binding KM t-J model in spite of the time-reversal-
broken (dx2−y2 + idxy)-wave superconducting order [18,19].
Via the numerical simulation by density functional theory, the
KM t-J model may be realized via doping adatoms such as
indium or thallium on a graphene sheet, which generates an
effective Kane-Mele-type intrinsic SO coupling (∼20 meV)
[34], which is larger than the undoped graphene. Besides
graphene-based systems, our model is also applicable to other
compounds with an underlying honeycomb lattice such as
In3Cu2VO9 [24,35–37], β-Cu2V2O7 [38,39], MoS2 [40], and
silicene [41]. Those materials have been proposed to exhibit a
chiral d-wave superconducting state around half filling. These
exotic features discovered in the KM t-J model motivate us
to seek the corresponding experimental signatures.

In the following, we investigate the Andreev reflection
across a N/SC junction with the normal side being modeled
by the doped KM model while the SC region is a doped
correlated KM t-J model with (d + id ′)-wave spin-singlet
superconducting order. The Kane-Mele model, which can be
viewed as a spinful Haldane model [42], is composed of the
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nearest-neighbor (NN) tight-binding Hamiltonian H0 as in
Eq. (1) and the next-nearest-neighbor (NNN) hopping intrinsic
SO interaction HSO :

HKM = HO + HSO + Hμ,

HSO = iλSO

∑
� i, j�

∑
σ, σ ′=↑↓

νijσ
z
αα′ c

†
iαcjα′ ,

Hμ = −μ
∑
i,σ

c
†
iσ ciσ . (24)

Here, ciσ (c†iσ ) annihilates (creates) an electron on either the
A or B sublattice on the ith unit cell. � i,j � denotes the
NNN indices, λSO is the coupling strength of the intrinsic SO
interaction, and σ, σ ′ = ↑ , ↓ represent spins. νij = ±1 is an
orientation-dependent factor: νij = 1 for an electron making
a right turn while moving from the ith site to the j th NNN
site, and νij = −1 for a left turn. The doping is characterized
by Hμ, with μ being the value of the chemical potential. The
mean-field Hamiltonian on a periodic lattice in terms of the

basis �k = (c↑
A,k c

↑
B,k, c

↓
A,k c

↓
B,k, c

↑†
A,−k c

↑†
B,−k, c

↓†
A,−k c

↓†
B,−k)

T
is

given by the 8 × 8 matrix

Hk =

⎛
⎜⎜⎜⎜⎝

h+
k − μ 0 0 	k

0 h−
k − μ −	k 0

0 −	
†
k μ − h+∗

−k 0

	
†
k 0 0 μ − h−∗

−k

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

h+
k − μ 0 0 	k

0 h−
k − μ −	k 0

0 −	
†
k μ − h−

k 0

	
†
k 0 0 μ − h+

k

⎞
⎟⎟⎟⎟⎠, (25)

with

h±
k =

(±γ (k) f (k)

f ∗(k) ∓γ (k)

)
, (26)

γ (k) = 2λSO

[
2 cos

3kx

2
sin

√
3ky

2
− sin

√
3ky

]
. (27)

In the second line of Eq. (25), we have applied the relations of
γ (−k) = −γ (k) [43] and f ∗(k) = f (−k).

The electronic excitations near the K τ valley on the N and
SC sides are described by the linearized DBdG equations,
which take the form( Hτ (q) − μ 
(x)	̄τ (q)


(x)	̄τ (q)† μ − Hτ (q)

)(
uτ

vτ

)
= εq

t

(
uτ

vτ

)
. (28)

Here, (uτ ,vτ ) = (u↑
Aτ ,u

↑
Bτ ,u

↓
Aτ ,u

↓
Bτ ,v

↑
Aτ ,v

↑
Bτ ,v

↓
Aτ ,v

↓
Bτ )T is an

eight-component wave function in the momentum domain near
the K τ valley, with the first four components uτ being for
particles and the last four components vτ being for holes.

Hτ (q) = − σ0(πxqy + τπyqx) − 3
√

3 λ(x) τσ zπz

− (U0/t)σ 0π0
(x), (29)

where the 2 × 2 unit matrix σ 0 = diag(1,1) and the three Pauli
matrices σx,y,z are for the spin subspace in the Hilbert space,
while the matrices π are for the sublattices already defined in
Eqs. (5) and (6). Here, we assume the magnitudes of intrinsic
SO coupling in the N and the SC regions can be adjusted
independently; thus, we introduce

λ(x) =
{
λSO/t, x < 0,

λ′
SO/t, x > 0,

(30)

(a)

(b)

(c)

FIG. 5. (a) shows the average normalized Andreev conductance Ḡ/G0 across a KM d + id ′-wave N/SC junction in terms of varying the
intrinsic SO coupling λ′

SO in the SC side in the absence of local strain. Here, we fix the Fermi energy μ/t = 0.3, the intrinsic SO coupling
λSO/t = 0.05 in the N region, the electrostatic potential U0/t = 2 in the SC, and the value of SC pairing 	0/t = 0.01. The inset illustrates the
topological phase diagram for the bulk state in the SC region, showing that the bulk will undergo the chiral (green area) to helical (brown area)
topological transition as the ratio 	0/λ

′
SO or μ/λ′

SO is varied. The color bar represents the value of the spin-Chern number. (b) and (c) show
the normalized Andreev conductance G(K+)/G0 and G(K−)/G0 contributions from the electrons from the K+ and K− valleys, respectively.
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(a)

(b)

(c)

FIG. 6. (a) shows the average Andreev conductance Ḡ/G0 in the presence of a constant δ-gauge field with barrier strength δt/t = −0.6 at
the interface, while (b) and (c) show the Andreev conductance G(K±)/G0 from the K± valleys, respectively. All the remaining parameters are
the same as those in Fig. 5.

where λSO indicates the intrinsic SO coupling in N and λ′
SO

indicates that in SC. Here, 	̄τ (q) is a 4 × 4 matrix for the
linearized (d + id ′)-wave pairing near the K τ Dirac point,
which takes the form

	̄τ (q) ≡
(

0 	τ (q)
−	τ (q) 0

)
. (31)

Around K−, 	−(q) is given by Eq. (16) in the previous section,
which is related to the one for the K+ valley by 	+(q) =
	T

−(−q).
Because the KM t-J model exhibits an effective spin-

singlet p ± ip′ superconducting order near the two Dirac
points K± [19], the valley degeneracy no longer exists, and
we ought to consider the normalized Andreev conductance
contributed from K+ and K−. Here, we assume the electron
scattering occurs within only one valley; thus, the normalized
Andreev conductance can be simply evaluated by taking
the average of the individual contributions from K±. The

FIG. 7. The band structure in the left region is for the Kane-Mele
model near the Dirac points. Due to the intrinsic SO coupling, we can
see a band gap between the conduction (red solid line) and valence
(blue solid line) hole bands.

Andreev conductance contributed from one valley can be
similarly obtained via the BTK formalism. The average of
the normalized Andreev conductance is expressed as

Ḡ

G0
= 1

G0

G(K+) + G(K−)

2
, (32)

where G(K±) is the Andreev conductance from K±, respec-
tively. The results are illustrated in Figs. 5 and 6.

In the following, we qualitatively discuss the conductance
behaviors for Figs. 5 and 6. As the δ barrier is switched
off, the Andreev conductance G(K−) from the K− valley,
as shown in Fig. 5(c), monotonically decreases with the
increasing bias eV due to the shrinking of the phase space in
the hole band, as shown in Fig. 7. The resulting behavior of the
Andreev conductance G(K−) is similar to the case in Fig. 4;
hence, only the Andreev retroreflection process is involved.
Due to the inversion symmetry breaking in the KM t-J
model, the Andreev conductance G(K+) from K+ in Fig. 5(b)
behaves entirely different from G(K−). Averaging G(K+)
and G(K−) gives rise to distinctive Andreev conductance
behaviors for different values of λ′

SO . For small intrinsic
SO coupling, we find that the average Andreev conductance
Ḡ/G0 increases as the bias is increased at low bias, where
Ḡ/G0 behaves in a manner similar to the Andreev specular
reflection. On the contrary, for large intrinsic SO coupling
λ′

SO , Ḡ/G0 monotonically decreases with increasing bias. We
argue the Andreev retroreflection may dominate Ḡ/G0 in this
situation.

IV. DISCUSSION AND CONCLUSION

Before we conclude, the effect of electron scattering by
the edge states on the Andreev conductance deserves some
discussion here. As mentioned in the previous section, via
the bulk-edge correspondence [30,44], the KM t-J model
supports chiral or helical Majorana edge states depending
on the topological phase in the bulk. Accordingly, we
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anticipate that as the electron scattering by the quasiparticles
in the edge states at the N/SC interface is considered,
the Andreev conductance may exhibit distinctive behavior
rather than a relatively smooth crossover as the SC region
is tuned to undergo a chiral-to-helical topological phase
transition. We expect this distinctive behavior of the Andreev
conductance at the topological critical point could serve as
an experimental signature to probe the topological phase
transition.

In conclusion, we have investigated the Andreev reflection
based on Blonder-Tinkham- Klapwijk formalism in a graphene
normal-metal/(d + id ′)-wave superconducting junction with a
finite barrier on the N/SC interface. In order to investigate the
electron scatterings on a N/SC junction with different trans-
parencies, an effective Dirac δ-gauge potential is introduced by
adding a homogeneous local strain parallel to the interface. In
the absence of local strain, i.e., δt = 0, our results successfully
reproduce the normalized Andreev conductance G/G0 curves
in Ref. [6]. At the other extreme parameter regime of δt = −t ,
the Andreev conductance vanishes because the N/SC junction
is disconnected and therefore electron tunneling is forbidden.
For a finite barrier, the Andreev conductance dramatically
decreases down to zero as the barrier strength δt is increased.
Despite the different mechanisms of the barrier on the junction,
the qualitative behaviors of the conductance in our case
resemble the effect of a potential barrier at the interface of
a conventional 1D N/SC junction in the BTK framework,
indicating that a homogeneous narrow local strain on a junction
tends to suppress the Andreev conductance.

We further investigated the Andreev reflection across the
N/SC junction with the N region being described by the doped
Kane-Mele model, while the SC region features (d + id ′)-
wave spin-singlet pairing induced by strong electron correla-
tions. The normalized Andreev conductance contributed by the
K+ and K− valleys illustrates entirely different behaviors due
to the different effective superconducting pairing symmetries
near the two Dirac points. Our results provide spectra of the
normalized Andreev conductance within certain parameter
regimes for future experiments.
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APPENDIX A: BOUNDARY CONDITIONS FOR THE
GRAPHENE N/N JUNCTION WITH A δ-GAUGE FIELD

In this Appendix, we repeat the derivations of the boundary
conditions for the electronic transport through a graphene
normal-metal-normal-metal (N/N) junction in the low-energy
limit with an effective δ-gauge field in between. This issue was
originally addressed by Castro Neto et al. [16,17].

1. For the K− valley

Schrodinger’s equations for the graphene tight-binding
model in the low-energy limit near the K− valley read

− [πy(−i∂x) − πx(−i∂y + Ay)]�−(r) = (ε/t) �−(r)

⇒
[

0 −∂x+i∂y−Ay

∂x+i∂y−Ay 0

]
�−(r) = −(ε/t) �−(r).

(A1)

Expressing the two-component wave function as �−(r) =
(ψ ′

A(r),ψ ′
B(r))T and substituting the effective δ potential of

Ay in Eq. (A1) yields

⇒
{

[−∂x + i∂y + δt
t
δ(x)]ψ ′

B(r) = −(ε/t) ψ ′
A(r),

[∂x + i∂y + δt
t
δ(x)]ψ ′

A(r) = −(ε/t) ψ ′
B(r).

(A2)

Integrating Schrodinger’s equations in Eq. (A1) over an
infinitesimal region across the origin, i.e.,

∫ 0+
0− dx, we obtain

the boundary condition

⇒
{

ψ ′
B(0−) + δt

t
ψ ′

B(0) = ψ ′
B(0+),

ψ ′
A(0+) + δt

t
ψ ′

A(0) = ψ ′
A(0−).

(A3)

Since Schrodinger’s equations with a linear Dirac spectrum
are first order differential equations, we cannot require the
wave function to be continuous at the origin, giving rise to
the wave-function ambiguity, ψ ′

A(0) and ψ ′
B(0), as we see in

Eq. (A3). Here, we choose the undetermined wave functions
in following the way:

ψ ′
B(0) = ψ ′

B(0−), ψ ′
A(0) = ψ ′

A(0+), (A4)

and Eq. (A3) becomes

⇒
{
ψ ′

B(0+) = η ψ ′
B(0−),

ψ ′
A(0−) = η ψ ′

A(0+).
(A5)

Later, we will show that the choice of the undetermined wave
functions at x = 0 in Eq. (A4) leads to the conservation of the
probability current. Thus, current conservation justifies our
choice of the undetermined wave functions.

We may imagine that an incident electron far from the
interface in the graphene sheet in the region of x < 0 moves
toward the interface and gets scattered with the potential at the
origin. By solving Schrodinger’s equation, the right-moving
state in q space for the incident electron is given by

�̃−(qx, qy) = 1√
2

(
− iqx+qy

q

−1

)
= − eiφ

√
2

(
1

e−iφ

)
, (A6)

while the left-moving state for the reflected electron can be
obtained by simply reversing the sign of qx in Eq. (A6), which
is given by

�̃−(−qx, qy) = 1√
2

(
iqx−qy

q

−1

)
= −e−iφ

√
2

(
1

eiφ

)
. (A7)

The total wave functions with a normalized incident state on
the left and right sides of the graphene sheet are

�L
−(r) = eiqxx+iqyy �̃−(qx,qy) + R e−iqxx+iqyy �̃−(−qx,qy),

(A8)

�R
−(r) = T eiqxx+iqyy �̃−(qx,qy), (A9)
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with R and T being the reflection and transmission coeffi-
cients. Here, the superscripts L and R stand for left and right,
respectively. The boundary conditions are given by

T e−iφ = η(e−iφ + Reiφ), 1 + R = η T . (A10)

R and T are found to be

T = η
1 − e2iφ

1 − η2 e2iφ
, R = η2 − 1

1 − η2 e2iφ
. (A11)

Apparently, T = 0 when η = 0, as expected, and the proba-
bility current is conserved; that is, |R|2 + |T |2 = 1.

2. For the K+ valley

Likewise, the Schrodinger equations for the K+ = (0,

− 4π

3
√

3
) valley are given by

[πy ∗(−i∂x) − πx(−i∂y − Ay)]�+(r) = (ε/t) �+(r)

⇒
[

0 ∂x+i∂y+Ay

−∂x+i∂y+Ay 0

]
�+(r) = (ε/t) �+(r).

(A12)

Expressing �+(r) = (ψA(r),ψB(r))T , we have

⇒
{

(∂x + i∂y + Ay)ψB(r) = (ε/t) ψA(r),

(−∂x + i∂y + Ay)ψA(r) = (ε/t) ψB(r).
(A13)

Next, integrating from x = 0− to x = 0+ yields the boundary
conditions

⇒
{

ψB(0+) − ψB(0−) = δt
t

ψB(0),

ψA(0−) − ψA(0+) = δt
t

ψA(0).
(A14)

We can immediately see the undetermined wave functions
ψA(0) and ψB(0) appear on the right-hand side of Eq. (A14).
For the same reason of current conservation, we choose the
undetermined wave function to be

ψB(0) = ψB(0−), ψA(0) = ψA(0+). (A15)

Note that due to the relation of the time-reversal partner for
the states near the K+ and K− wave vectors, the choice of the
undetermined wave functions at x = 0 in Eq. (A15) is identical
to that in Eq. (A4).

To calculate the transmission and reflection coefficients,
we first prepare the normalized right-moving and left-moving
states for the incident and reflected electrons in the momentum
space:

�̃+(qx, qy) = 1√
2

(
iq

qx−iqy

1

)
= −e−iφ

√
2

(
1

−eiφ

)
,

�̃+(−qx, qy) = 1√
2

(
− iqx+qy

q

1

)
= − eiφ

√
2

(
1

−e−iφ

)
. (A16)

The phase φ is defined in the way shown in Fig. 8. The total
wave function on the left-hand side, denoted as �L

+(r), can be
expressed as a superposition of the incident and reflected wave
functions, namely,

�L
+(r) = eikxx+ikyy�̃+(qx, qy) + R e−ikxx+ikyy �̃+(−qx, qy).

(A17)

FIG. 8. The incident angle as a function of the quasimomentum
q for incident electrons.

The total wave function on the right-hand side �R
+(r) is given

by

�R
+(r) = T eikxx+ikyy�̃+(qx, qy). (A18)

In the above, we neglect the phase factor and prefactor 1/
√

2
since it will play no role in finding R and T . Written η =
1 + δt/t , the boundary conditions can be found to be

⇒
{
T eiφ = η(eiφ + R e−iφ),
1 + R = ηT .

(A19)

We can solve for the transmission and reflection coefficients:

T = η
1 − e−2iφ

1 − η2e−2iφ
, R = 1 − η2

η2e−2iφ − 1
. (A20)

We can immediately check that once η = 0 (δt = −t), there
are no transmitted particles since the graphene has been cut into
two separate pieces, and the probability current is conserved,
that is, |R|2 + |T |2 = 1.

APPENDIX B: THE BOUNDARY CONDITIONS FOR
THE KANE-MELE d + i d ′ N/SC JUNCTION

In this section, we derive the boundary conditions for
the electron scattering across the Kane-Mele (d + id ′)-wave
superconducting N/SC junction in the presence of a δ barrier
for the K± valleys.

The wave function for the DBdG Hamiltonian
for the K− valley can be written as �(x, y) =
(fA↑, fB↑, fA↓, fB↓, gA↑, gB↑, gA↓, gB↓). In real space, the
DBdG equations with eigenenergy ε are given by

∂xfB↑(x) − 3	0

2t
∂xgB↓(x) − δt

t
δ(x)fB↑(x) = (ε/t)fA↑(x),

−∂xfA↑(x) + 3	0

2t
gA↓(x) − δt

t
δ(x) fA↑(x) = (ε/t)fB↑(x),

∂xfB↓(x) + 3	0

2t
∂xgB↑(x) − δt

t
δ(x) fB↓(x) = (ε/t)fA↓(x),

−∂xfA↓(x) − δt

t
δ(x) fA↓(x) = (ε/t)fB↓(x),

−∂xgB↑(x) + δt

t
δ(x)gB↑(x) = (ε/t) gA↑(x),

∂xgA↑(x) − 3	0

2t
∂xfA↓(x) + δt

t
δ(x) gA↑(x) = (ε/t) gB↑(x),
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−∂xgB↓(x) + δt

t
δ(x)gB↓(x) = (ε/t) vA↓(x),

∂xgA↓(x) + 3	0

2t
∂xfA↑(x) + δt

t
δ(x) gA↓(x) = (ε/t) gB↓(x).

(B1)

We integrate the above equations over an infinitesimal
distance across the interface, and Eq. (B1) becomes[
f sc

B↑(0) − f N
B↑(0)

] − 3	0

2t

[
gsc

B↓(0) − gN
B↓(0)

] = δt

t
fB↑(0),

−[
f sc

A↑(0) − f N
A↑(0)

] = δt

t
fA↑(0),

[
f sc

B↓(0) − f N
B↓(0)

] + 3	0

2t

[
gsc

B↑(0) − gN
B↑(0)

] = δt

t
fB↓(0),

−[
f sc

A↓(0) − f N
A↓(0)

] = δt

t
fA↓(0),

[
gsc

B↑(0) − gN
B↑(0)

] = δt

t
gB↑(0),

[
gsc

A↑(0) − gN
A↑(0)

] − 3	0

2t

[
f sc

A↓(0) − f N
A↓(0)

] = −δt

t
gA↑(0),

[
gsc

B↓(0) − gN
B↓(0)

] = δt

t
gB↓(0),

[
gsc

A↓(0) − gN
A↓(0)

] + 3	0

2t

[
f sc

A↑(0) − f N
A↑(0)

] = δt

t
gA↓(0).

(B2)

In the above equations for the boundary conditions, fασ (0+) ≡
f sc

ασ and fασ (0−) ≡ f N
ασ , where α denotes the A or B sublattice

and σ denotes the spin σ = ↑ , ↓. Similarly, the wave-
function ambiguity at x = 0 also exists in Eq. (B2) because
the DBdG equations are first order differential equations.
Following a similar approach, we are able to determine �(0)
via the requirements of no tunneling current across the N/SC
junction as 	0 = 0 and δt = −t . Based on Eq. (21), the

boundary conditions at x = 0 can be written as

f sc
B↑(0) = η f N

B↑(0) + 3	0

2t

[
gsc

B↓(0) − gN
B↓(0)

]
,

f N
A↑(0) = η f sc

A↑(0),

f sc
B↓(0) = η f N

B↓(0) − 3	0

2t

[
gsc

B↑(0) − gN
B↑(0)

]
,

f N
A↓(0) = η f sc

A↓(0),

gsc
B↑(0) = η gN

B↑(0),

gN
A↑(0) = η gsc

A↑(0) − 3	0

2t

[
f sc

A↓(0) − f N
A↓(0)

]
,

gsc
B↓(0) = η gN

B↓(0),

gN
A↓(0) = η gsc

A↓(0) + 3	0

2t

[
f sc

A↑(0) − f N
A↑(0)

]
, (B3)

where η ≡ 1 + δt/t . Following the same procedures, the
boundary conditions for the K+ valley are given by

f sc
B↑(0) = η f N

B↑(0),

f N
A↑(0) = η f sc

A↑(0) − 3	0

2t

[
gsc

A↓(0) − gN
A↓(0)

]
,

f sc
B↓(0) = η f N

B↓(0),

f N
A↓(0) = η f sc

A↓(0) + 3	0

2t

[
gsc

A↑(0) − gN
A↑(0)

]
,

gsc
B↑(0) = η gN

B↑(0) + 3	0

2t

[
f sc

B↓(0) − f N
B↓(0)

]
,

gN
A↑(0) = η gsc

A↑(0),

gsc
B↓(0) = η gN

B↓(0) − 3	0

2t

[
f sc

B↑(0) − f N
B↑(0)

]
,

gN
A↓(0) = η gsc

A↓(0). (B4)
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