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For high-speed optical OFDM transmission applications, a comprehensive comparison of the 
homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting 
laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 
16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are 
demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest 
emission aperture of 11 μm reveals the highest differential quantum efficiency which 
provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth 
of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of 
only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat 
accumulation. After optimization, with the trade-off set between the receiving signal-to-noise 
ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM 
transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. 
Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is 
treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m 
OM4-MMF with same material structure but exhibits different oxide-layer confined gain 
cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 
dB. 
© 2017 Optical Society of America 

OCIS codes: (140.7260) Vertical cavity surface emitting lasers; (060.2390) Fiber optics, infrared; (200.4650) 
Optical interconnects. 
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1. Introduction 

High-speed data centers and optical interconnects [1] rely strictly on developing ultrafast 
optical transmitters to solve the heavy data traffic induced from data switching/routing in 
central offices, and add/drop among remote nodes, and so on. To fulfill such demands 
standardized by IEEE P802.bs [2], the transmission capacity of laser diode modules have 
been up-scaled from 100 Gbit/s/module to 400Gbit/s/module for constructing cloud data 
centers based on the use of 8-channel vertical cavity surface emitting laser (VCSEL) array 
transmitter with 50 Gbit/s/channel [3]. At current stage, the set of directly modulated 850-nm 
multi-mode (MM) VCSELs and multi-mode fiber (MMF) link between racks in data centers 
has emerged as a cost-effective solution [4–6]. The well-known advantages of such a link 
include the efficient coupling with low power consumption [7], the high power conversion 
efficiency with low threshold condition [8,9], which makes the VCSEL an irreplaceable 
candidate for the aforementioned applications. However, the allowable transmission data rate 
or distance is still limited by both the direct modulation bandwidth, and the inevitable modal 
dispersion among different transverse mode occurring during the transmission in MMF [10]. 
Disregarding the severe modal dispersion in the commercially available MMF, the limitation 
on encoding bandwidth of the MM VCSEL is an important issue considered to be solved via 
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study of few-mode VCSELs currently. In view of previous works, the shrinkage of the 
emission aperture confined via oxidation has emerged as the simplest approach for obtaining 
quasi-single-mode or single-mode (SM) VCSEL transmitter [11–16]. 

Since 2004, Haglund, et al. have demonstrated a high-power SM VCSEL transmitter by 
narrowing the oxide-confined aperture size to 3 μm [16]. By utilizing a quasi-single-mode 
VCSEL with a similar aperture size of ~3 μm, Szczerba, et al. successfully implemented the 
PAM-4 transmission link at 25-Gbit/s over 500-m OM3 MMF in 2012 [12]. Apart from 
shrinking the aperture size via oxidation confinement, Tan et al designed a photonic crystal 
structure to achieve SM emission in the VCSEL transmitter for carrying 25-Gbit/s data over 1 
km MMF in 2013 [17]. In 2014, Safaisini et al. integrated a mode filter generated with 
surface relief to realize a SM VCSEL transmitter for delivering 20-Gbit/s data through a 2-
km-long MMF link [18]. Obviously, minimizing the diameter of oxide-confined aperture can 
increase the transverse mode spacing [19] and reduce the optical field area of the VCSEL to 
rule out the lasing of other high-order transverse modes, which is essential for supporting 
few-mode (FM) or even SM lasing in the VCSEL. Nonetheless, the differential resistance of 
the VCSEL would increase as the oxide-confined aperture reduces, which enlarges the 
voltage standing-wave ratio to suppress the modulation depth when directly encoding the data 
onto the SM VCSEL [20]. Such a drawback of the SM VCSEL can effectively be solved by 
introducing heavy zinc dopants into the top distributed Bragg reflector (DBR) mirror via 
diffusion, which can achieve good ohmic contact and avoid free-carrier absorption [21–23]. 
Moreover, the thick benzocyclobutene passivation layer with low capacitance was considered 
to replace the traditional SiO2 passivation layer for improving the RC charging/discharging 
time [24] of the VCSEL [25]. 

For practical application, several studies of the VCSEL with various data formats for 
intra-data center links have been illustrated. Recently, Kuchta et al. used VCSEL to carry 
non-return-to-zero on-off-keying (NRZ-OOK) data at 71 Gbit/s over 7-m MMF [26]. A 
comparison of MM, FM and SM VCSELs on carrying NRZ-OOK data format for back-to-
back (BtB) transmission was reported [27]. However, the low spectral usage efficiency of the 
NRZ-OOK makes the VCSEL require large modulation bandwidth for encoding [28]. To 
achieve the same data rate, 4-level pulse amplitude modulation (PAM-4) data is an alternative 
approach for decoding the VCSEL, since it only needs half of modulation bandwidth when 
comparing with NRZ-OOK data [29, 30]. In 2016, encoding PAM-4 onto an unpackaged 
VCSEL to achieve 100 Gbit/s over 100-m MMF with a pre-emphasis filter technology was 
proposed [31]. Therein the pre-emphasis filter is a digital filter embedded in the arbitrary 
waveform generator (AWG), which can pre-distort the transmitted signal to compensate the 
signal degradation during channel transmission for improving the transmission performance. 
To further exceed the data rate by maintaining the same encoding bandwidth, the quadrature 
amplitude modulation orthogonal frequency division multiplexing (QAM-OFDM) enables to 
provide the highest spectral usage efficiency when comparing with other data formats [32,33]. 
In 2016, Puerta et al. demonstrated a carrierless amplitude phase (CAP) transmission link at 
107.5 Gbit/s by using an 850-nm multi-mode VCSEL over 10-m MMF [34]. Liu et al. 
demonstrated a zinc-diffused single-mode 850-nm VCSEL to provide a modulation 
bandwidth of 12 GHz for achieving the discrete multi-tone algorithm (DMT) up to 50 Gbit/s 
[35]. In 2017, Kottke et al. demonstrated a DMT link over 500-m MMF at the rate up to 135 
Gbit/s by using an 850nm VCSEL with the assistance of the Volterra based pre-equalizer 
[36]. However, the comparison among MM, FM and SM VCSELs on carrying QAM-OFDM 
data for MMF transmission in the intra-data center has not been discussed previously yet. 

In this work, the zinc-diffused VCSEL chips with MM, FM and SM output spectra at 850 
nm are fabricated to demonstrate the 16-QAM OFDM data transmission over 100-m OM4-
MMF. The basic characteristics including power-to-current-voltage (L-I-V) curve, differential 
resistance, small-signal analog modulation response, relative intensity noise (RIN) and the 
maximal allowable transmission capacity of the MM/FM/SM VCSEL chips are characterized 
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and compared with one another. For the practical application in data center, both the 
transmission performances under BtB and in 100-m-long OM4-MMF conditions are 
compared, and the key parameters including error vector magnitude (EVM), signal-to-noise 
ratio (SNR) and bit error ratio (BER) and receiving power penalty are determined and 
optimized in both cases. 

2. Experimental setup and analyzing technique 

2.1 Device fabrication 

The 2-D and 3-D device structures of three MM/FM/SM VCSEL chips were illustrated in 
Fig. 1. The insets in the middle row present the near-infrared microscopic image of the oxide 
confined cross-section area on the top of the active region. For MM VCSEL chip, an n-type 
mirror containing 38 pairs of Al0.15Ga0.85As/Al0.9Ga0.1As layers were grown to serve as the 
bottom DBR layer. The traditional MM VCSEL chip consists of an oxide-confined aperture 
of 11 μm, and 4 sets of strained In0.15Ga0.85As/Al0.37Ga0.63As quantum wells with thickness of 
3/6 nm for each layer are designed in the intrinsic active region. The oxide aperture size is 
exactly the same as the metal contact for the MM VCSEL chip. During the oxidation process, 
the scanning electron microscope is used to confirm the oxidation diameter and depth. Hence, 
the aperture underneath the metal edge can be precisely controlled. Finally, the 24 pairs of p-
type Al0.15Ga0.85As/Al0.9Ga0.1As layers were grown to complete the top DBR layer. In 
contrast, both FM and SM VCSEL chips exhibit 37 and 21 pairs of 
Al0.9Ga0.1As/Al0.12Ga0.88As layers in the bottom and top DBR structures, and their intrinsic 
active region only consists of three strained In0.08Ga0.92As quantum wells with well thickness 
of 5 nm. To achieve the few and single transverse mode operations, the designed oxide-
confined apertures in the VCSEL must respectively reduce their diameters to 5 μm and 3 μm 
for the FM and SM VCSEL chips. Finally, a 500 Å thick p-type GaAs heavily doped with 
zinc-diffusion was employed as the contact layer in the top DBR. The parameters of the layer 
structures for three devices were compared in the Table 1. 

 

Fig. 1. The 2-D, 3-D -structures and microscopic image of oxide confined cross-section area of 
MM/FM/SM VCSEL chips. 

In experiments, the MM VCSEL chip exhibits similar recipe with commercially available 
devices, which was fabricated to serve as a reference of commercial devices without zinc-
diffusion process. The FM/SM VCSELs are designed with incorporating zinc-diffusion 
process to further reduce the parasitic resistance of the VCSEL. The zinc-diffusion and 
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passivation material may help to slightly improve the modulation bandwidth but will not 
affect the number of transverse modes to affect the data transmission capabilities. Based on 
previous simulation and experience, the QW and DBR design of the VCSEL chips would not 
affect the number of transverse modes in VCSEL chip significantly. Indeed, the alteration of 
DBR periods, passivation layer, zinc-diffusion and number of quantum wells could somewhat 
modify the modulation response. However, the modal dispersion related to the mode number 
predominates the transmission performance and the oxidation aperture size mainly controls 
the mode number. That is, even the layer structures of these VCSEL chips are slightly 
different, the comparison between mode number and its effect on the transmission distance 
still validates when dispersion play important role on the distortion of the transmitted data. 

Table 1. Parameters for MM/FM/SM VCSEL chips 

Parameters MM FM SM 
Aperture (μm) 11 5 3 
Threshold current (mA) 1.7 0.22 0.18 
Maximal optical power (mW) 8.67 2.22 0.88 
Differential resistance (Ω) 30 112.5 215 
ηed 0.43 0.34 0.24 
RMS spectral width (nm) 1.04 0.443 0 
−3 dB bandwidth (GHz) 16 (@ 12Ith) 21.2 (@ 20Ith) 21.5 (@ 20Ith) 
RIN (dBc/Hz) noise background −163.1 (@ 20Ith) −163.05(@ 20Ith) 
RIN peak (GHz) - 15.75(@ 20Ith) 16.47(@ 20Ith) 
Quantum Well 4 In0.15Ga0.85As 3 In0.8Ga0.92As 
Zinc-diffusion   
DBR Layers Al0.15Ga0.85As/ 

Al0.9Ga0.1As 
Al0.9Ga0.1As / 
Al0.12Ga0.88As 

Top DBR # 24 pairs 21 pairs 
Bottom DBR # 38 pairs 37 pairs 
Passivation (RF permittivity) Polyimide (3.2) BCB (2.6) 

 

Fig. 2. The fabrication process of the VCSEL chip. (a) Epitaxial device structure on wafer. (b) 
p-type metal deposition and pattering. (c) Cylindrical mesa etching. (d) wet-oxidation for 
cross-section area confinement. (e) n-type metallic contact deposition. (f) Hole formation for 
contact pad finalization. 
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The process flow of our MM/FM/SM VCSEL chips is shown in Fig. 2. Firstly, the 
Ti/Pt/Au metallic films are deposited as the p-type contact by electron beam evaporation. 
Then, a mesa with outer diameter of 18 µm is defined by dry etching process using the 
inductively-coupled plasma reactive ion etching (RIE) equipment. The optical emission 
aperture is created and controlled by oxidation with hot water vapor and nitrogen at 420°C in 
the furnace. Afterwards, the Au/Ge/Ni/Au metallic films are then deposited as the n-type 
contact through e-beam evaporation followed by planarization with polyimide. The via holes 
are then opened using RIE. Finally, the Ti/Au metals are deposited as the contact pad of 
VCSEL chip to finish the device process, as shown in Fig. 2(f). Note that the process of the 
few-mode (FM) and single-mode (SM) VCSEL chips is similar except the additional zinc-
diffusion process, different oxidation depths, and passivation materials. The step of the zinc-
diffusion is carried out before the process of the p-type metal evaporation. In the zinc-
diffused region of the top DBR, the induced disordering of Al0.9Ga0.1As and Al0.12Ga0.88As 
can improve the continuity of bandgap and index of refraction to avoid the free carrier 
absorption. In this way, the resistance of the top DBR is effectively reduced, which is 
beneficial to the modulation bandwidth for FM and SM VCSEL chips. To improve the 
response and isolation, a benzocyclobutene is employed to replace polyimide as the 
passivation layer, which provide lower parasitic capacitance for better modulation 
performance of the FM and SM VCSEL chips. 

2.2 Device testing 

The experimental setup of the directly 16-QAM OFDM encoded 850-nm MM/FM/SM 
VCSEL chips for 100-m OM4-MMF transmission is shown in Fig. 3. A homemade probe 
station was established during experiments, which consists of a ground-signal-ground (GSG) 
probe (GGB, 40A-GSG-100-DP) with analog −3dB bandwidth of 40 GHz, a microwave cable 
(HUBER + SUHNER, M8041-61616), a segment of lensed fiber (SHUODA) and its probe 
holder (EverBeing), a 100-m-long OM4-MMF (POFC, MMF50002PB) and a water-cooled 
heat sink (Deryun, DFC-4PT03) were used for testing the VCSEL chips. To stabilize the 
output performance, the temperature of all VCSEL chips was precisely controlled at 22°C. A 
65-GHz bias-tee (Anritsu, V250) was employed for combining the DC bias current with 
transmitted 16-QAM OFDM. For data transmission test, the electrical 16-QAM OFDM data 
was generated by a homemade MATLAB program. At beginning, a serial pseudo-random bit 
sequence (PRBS) data stream with a length of 215-1 was mapped into QAM symbols, and the 
symbols were parallel distributed into 197 OFDM subcarriers in frequency domain. 
Subsequently, the 16-QAM OFDM waveform pattern in time domain was formed through the 
inverse Fourier transform (IFFT) with an FFT size of 512. To up-scale the carrier frequency 
of the 16-QAM OFDM, the electrical 16-QAM OFDM data was exported into an arbitrary 
waveform generator (AWG, Keysight M8195A) with a sampling rate of 65 GS/s. Afterwards, 
the 16-QAM OFDM data stream covering a bandwidth of up to 25 GHz is delivered from the 
AWG for directly encoding the VCSEL chips at a raw data rate of up to 100 Gbit/s. 
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Fig. 3. The experimental setup of propose VCSEL chips based on 16-QAM OFDM over 100-
m MMF. 

To optimize the encoding response, the MM, FM and SM VCSEL chips were biased at 
19.5 mA (11.5Ith), 4.5 mA (20.4Ith) and 3 mA (13.9Ith), respectively. For intra-data center 
application, the optical data was coupled into a lensed fiber connecting with a 100-m OM4-
MMF cable. After propagating through 100-m MMF, a high-speed photodetector (PD, New 
Focus 1484-A-50) with −3dB bandwidth of 22 GHz was employed to convert the 16-QAM 
OFDM from optical to electrical data stream. To compensate the power attenuation induced 
during MMF transmission, a 35-GHz wideband microwave amplifier (AMP, Picosecond 
5882) with a power gain of 16 dB and a noise figure of 6 dB was employed before waveform 
extraction. Then, the amplified 16-QAM OFDM data was sent into a digital serial analyzer 
(DSA, Tektronix DPO77002SX) with a sampling rate of 100 GS/s. After grabbing the 
waveform in time domain, the 16-QAM OFDM data was resampled and decoded by an off-
line homemade MATLAB program to analyze the constellation plot, ratio, SNR, and BER of 
the received data. 

3. Results and discussions 

3.1 Basic characteristics of MM/FM/SM VCSEL chips 

The lasing spectra, power-current-voltage (L-I-V) responses, and biased dependent 
differential resistances of the MM/FM/SM VCSEL chips at wavelengths around 850 nm are 
shown in Fig. 4, in which the black, red and blue colors represent the MM, FM and SM 
VCSEL chips, respectively. Note that the MM VCSEL chip exhibits more than 15 transverse 
modes at wavelengths ranging from 856 nm to 863 nm. The FM VCSEL chip has only 3-4 
transverse modes within 838-840 nm, and the peak mode was centered at wavelength of 
839.44 nm. In contrast, the SM VCSEL exhibits a single transverse mode located at 841.86 
nm. The labels “X” shown in the Fig. 4(a) are employed to describe the optical signal-to-
noise ratios (OSNR) for MM, FM, and SM VCSEL chips. The MM, FM, and SM VCSEL 
chips reveal the OSNRs of 28.8, 37.42, and 37.54 dB at the bias current of 10Ith, 15Ith, and 
15Ith mA, respectively. The RMS spectral width is employed to describe the intensity 
distribution for the output optical spectrum of the VCSEL chip in the revised manuscript. In 
principle, the RMS spectral width (ΔλRMS) of the VCSEL chip can be expressed as [37, 38]: 
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where Pi and λi denote the peak power and wavelength of ith modes of the VCSEL chip, 
respectively. The RMS spectral widths of 1.02, 0.443, and 0 nm are calculated according to 
the Eq. (1) for MM, FM, and SM VCSEL chips, respectively. As the RMS spectral width of 
the SM VCSEL chip obtained from the Eq. (1) is 0 nm, the full width at half maximum 
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(FWHM) of the transverse mode of 0.026 nm is also quoted for the transverse mode of the 
SM VCSEL chip. In comparison, the RMS spectral width of 0.52 nm for FM VCSEL chip 
was previously reported [39], and our proposed FM VCSEL chip can provide the reduced 
RMS spectral width of 0.443 nm. Due to the high OSNR characteristic, our proposed SM 
VCSEL chip only exhibits a small FWHM as its RMS spectral width is 0 nm. 

 

Fig. 4. The (a) optical spectra, (b) L-I curve, (c) V-I curve and corresponding differential 
resistance of MM, FM and SM VCSELs. 

In viewing the L-I curves, the VCSEL with smaller oxide-confined aperture ensures 
higher injection current density to induce lower threshold current [14]. In comparison, the SM 
VCSEL chip with an aperture size of only 3 μm exhibits a threshold current as small as 0.18 
mA, which is significantly lower than those of 0.22 mA and 1.7 mA for the FM and MM 
VCSEL chips, respectively. To obtain the differential quantum efficiency (ηed) of the VCSEL 
chip, the dPout/dIbias slope of the whole L-I curve is calculated, and only the value obtained 
from the linear region at bias beyond the threshold current of the VCSEL chip are employed 
for further calculation afterwards. As extracted from Fig. 4(b), the differential quantum 
efficiencies defined as ηed = (q/hν)(dPout/dIbias) for the MM, FM and SM VCSEL chips are 
calculated as 0.43, 0.34 and 0.24, respectively. Theoretically, the SM VCSEL chip should 
provide the highest emission quantum efficiency due to its rigorous control on the overlap 
between gain and waveguide regions. Nevertheless, the heat dissipation became a serious 
problem in the FM/SM VCSEL devices with smaller aperture, which cause the optical power 
saturation behavior at smaller bias currents. Such a phenomenon not only degrades the 
differential quantum efficiency of emission via non-radiative process, but also shrink the 
dynamic range for linear modulation to increase the differential resistance and to limit the 
maximal output power at same bias. As the VCSEL chip with larger oxide coverage easily 
accumulates heat to induce Auger effect, the SM VCSEL chip exhibits the fastest output 
power saturation trend at the lowest bias current as compared to the MM and the FM VCSEL 
chips. As a result, the large-area oxidation confinement inevitably decreases the modulation 
depth of the VCSEL chip. In contrast, the MM VCSEL chip exhibits the highest L-I slope to 
provide the highest optical power of 8.67 mW among three VCSEL chips. When three 
VCSEL chips are operated at the same bias current before output saturation, the one with 
smaller oxide-confined aperture represents the higher injection current density and exhibits 
the larger differential resistance. The electrical reflection coefficient (Γ), electrical return loss 
(RL), and electrical voltage standing wave ratio (VSWR) are defined as following: Γ = (Zi-
Z0)/(Zi + Z0), RL = 10log(Γ)2 and VSWR = (1 + Γ)/(1-Γ) with Zi and Z0 denoting impedance 
of the VCSEL and all the components used for driving the VCSEL chip in experiments, 
including microwave probe, coaxial cables, and bias-tee. Among the MM/FM/SM VCSEL 
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chips, the MM VCSEL chip exhibits the lowest differential resistance of 30 Ω with an 
electrical return loss of −12.04 dB and the electrical VSWR of 1.67 at an optimized bias 
current of 19.5 mA (equivalent to 11.7Ith). The smallest differential resistance of 112.5 Ω and 
the electrical VSWR of 2.25 with corresponding electrical return loss of −8.3 dB are obtained 
for the FM VCSEL chip operated at 4.5 mA (equivalent to 20Ith), whereas the SM VCSEL 
chip has its differential resistance as high as 215 Ω with the smallest electrical return loss of 
−4.1 dB and the electrical VSWR of 4.3 at optimized bias of 2.5 mA (equivalent to 14Ith). 
When the compliance voltage enlarges beyond 2.5 V for these VCSEL chips, the differential 
resistances of FM and MM VCSEL chips show a fluctuation trend because of the instability 
of zinc atom. 

Next, the power-to-frequency throughput responses of MM, FM and SM VCSEL chips 
under small-signal analog modulation are illustrated in Fig. 5(a), in which the 0 dB defines 
the normalized optical response at the first measuring point. At the same bias current ratio of 
5Ith, the MM VCSEL chip exhibits a relaxation oscillation peak at frequency of 7.6 GHz and a 
−3dB analog modulation bandwidth of 11.2 GHz. In practice, the largest direct modulation 
bandwidth can be enhanced to 16 GHz by enlarging the bias current ratio up to 12Ith; 
however, the overdriven operation beyond 12Ith induces the thermal roller-over effect [40] to 
limit the output power with reduced radiative emission efficiency. In discussion of the 
improvement on thermal, in the previous literatures, the heat transfer improvement [41] and 
the AlAs/GaAs DBR [42] were introduced to release the thermal effect. The method for the 
improvement will be considered in the future work. By increasing the bias current ratio from 
5Ith to 10Ith, the analog modulation responses of the FM and SM VCSEL chips can enlarge 
their −3dB bandwidth from 15.7 to 19.5 GHz and from 15.2 to 18.5 GHz, respectively. 
Further enlarging the bias current to 20Ith also extends the −3dB modulation bandwidths to 
21.2 GHz for the FM VCSEL and 21.5 GHz for the SM VCSEL chips, respectively. The 
capability of such a bandwidth enhancement originates from the superior conductivity of the 
p-type top-DBR mirror, as the zinc-diffusion process effectively reduces the top-DBR layer 
resistance to provide improved modulation bandwidth for the FM and SM VCSEL chips. In 
detail, the smaller oxide-confined aperture induces lower capacitance to improve the 
modulation bandwidth of the SM VCSEL chip more than that of the FM VCSEL chip at the 
same bias current ratio. In addition, the optimization on zinc-diffusion recipe will be 
considered to further improve the resistance of the VCSEL chip. 

 

Fig. 5. (a) The small-signal frequency responses of MM, FM and SM VCSEL chips at different 
bias current ratios; (b) The comparison in dependence of the applied bias current on RIN 
response. 

The noise figure of the VCSEL is another important parameter that could degrade the 
SNR of the data directly encoded onto the VCSEL carrier. Therefore, the bias-dependent RIN 
spectra of the MM/FM/SM VCSEL chips are compared in Fig. 5(b), which are measured by 
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using a lightwave signal analyzer (HP, 71300C). Note that the broadband peak noise observed 
in RIN spectrum is correlated with the relaxation oscillation feature of the VCSEL [43]. For 
the MM VCSEL chip, its RIN peak can upshift from 7.6 to 11.1 GHz with corresponding 
power level reduced from −153.33 to −161.17 dBc/Hz, respectively, by increasing the bias 
current from 8.5 mA (5Ith) to 17 mA (10Ith). Increasing the bias current up to 20.4 mA (12 Ith) 
effectively makes the RIN power level merged into the noise background, in which the 
shot/thermal noises of the PD and the intensity noise trans-impedance amplifiers are 
contributed to the noise level. For the FM/SM VCSEL chip, their RIN peaks are upshifted 
from 7.92/12.9 to 15.75/16.47 GHz such that the noise power levels are suppressed from 
−154.4/-160.5 to −163.1/-163.05 dBc/Hz, respectively. With decreasing oxide-confined 
aperture size, the reduced volume increases the optical photon density Sb owing to the gain 
confinement in the VCSEL chip. In principle, the relaxation frequencies fr are directly 
proportional to the optical photon density Sb, and the damping factor γ is a function of the 
relaxation frequency with γ∝fr 

2 [44]. As the SM VCSEL chip is made with a small oxide-
confined aperture, the relatively high relaxation oscillation frequency and large damping 
factor result in low RIN power level when comparing with the MM VCSEL chips at the same 
bias current ratio of 5Ith. At even larger biased condition, such an excellent noise suppression 
feature can be observed in the VCSELs with few- or single mode, which guarantees the 
enhancement on the SNR of delivered data after receiving by the PD at remote node. 

3.2 BtB-16-QAM OFDM transmission 

After BtB transmission, the MM/FM/SM VCSEL chips provide different allowable encoding 
bandwidths at their optimized bias currents. At their maximal data rates of transmission, the 
subcarrier SNR response of three VCSEL chip directly encoded by 16-QAM OFDM data 
with the same peak-to-peak amplitude of 1 V are shown in Fig. 6 for comparison. For OFDM 
data analysis, the forward error correction (FEC) criterion is introduced, which is a correction 
process that pre-embeds the FEC codes into the data stream to be delivered and uses it to 
correct the received data stream at the receiving end. According to the ITU-T 
Recommendation G.975.1 [45], the BER of the received signal can be greatly corrected to 
less than 1 × 10−15 for an input data stream with a BER of 3.8 × 10−3. This is achieved by 
employing two interleaved extended Bose-Chaudhuri-Hocquengham (1020,988) super FEC 
codes with an erasure algorithm. Without any signal processing or pre-emphasis, the SM 
VCSEL chip biased at 1.5 mA can carry 16-QAM OFDM data covering a bandwidth of 17 
GHz, and the average SNR of 16.18 dB and BER of 1.5 × 10−3 are obtained at a raw data rate 
of 68 Gbit/s. Because of the enhancement on analog modulation bandwidth, enlarging the 
bias current to 2.5 mA can further improve the average SNR and BER to 17.95 dB and 1.5 × 
10−4, respectively. 
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Fig. 6. The SNR and BER responses of MM/FM/SM VCSEL chips carried and BtB 
transmitted 16/20/17-GHz 16-QAM OFDM data. 

However, the overdriven VCSEL at bias beyond 3.5 mA conversely shows slight 
degradation with the SNR decreased by 0.5 dB and the BER increased by two times. These 
results from the inevitably induced modulation roll-off effect of the SM VCSEL under over-
bias condition, which significantly deteriorate the SNR of data carried by the low-frequency 
OFDM subcarriers [46]. Therefore, the SM VCSEL chip biased at optimized current of 2.5 
mA (13.9Ith) makes a compromise between the enhanced modulation bandwidth and the 
gradually enlarged roll-off on the modulation throughput. Similarly, optimizing the bias 
currents of the MM and FM VCSEL chips at 19.5 (11.5Ith) and 4.5 mA (20.4Ith) allow the 
delivery of 16-QAM OFDM data with corresponding bandwidths of 16 GHz and 20 GHz at 
raw data rates of 64 and 80 Gbit/s, respectively. The related average SNRs of 19.5 and 17.17 
dB and BERs of 9.17 × 10−6 and 4.65 × 10−4 are also observed for the received data from FM 
and MM VCSEL chips, respectively. Although the used OFDM data bandwidths are different 
for three VCSEL chips, they exhibit similar trend on the bias current dependent optimization 
as dominated by the modulation roll-off degradation. In comparison with the FM and SM 
VCSEL chips, the MM VCSEL chip with its differential resistance closest to 50 Ω results in 
the lowest return loss, which somewhat allows the encoding of data with the largest peak-to-
peak voltage. In spite of the impedance matching, the rapid decay on the throughput within 
finite bandwidth still predominates the overall modulation performance. That is why the MM 
VCSEL chip requires the highest bias current even with the highest modulation depth among 
all VCSELs. 

To perform a fair comparison at same raw data rate of 80 Gbit/s, Fig. 7 illustrates the RF 
spectra, SNRs responses and corresponding constellation plots of the 16-QAM OFDM data 
delivered by the MM, FM and SM VCSEL chips after BtB transmission. The electrical signal 
before encoding the VCSEL chip with corresponding parameters are also presented as a 
reference. The electrical signal exhibits the clearest constellation plot with the highest average 
SNR of 22.58 dB among all cases. To achieve successful 80-Gbit/s encoding, three VCSEL 
chips are individually operated at their optimized bias currents (19.5/4.5/2.5 mA for the 
MM/FM/SM VCSEL chips). When comparing with the FM and SM VCSEL chips, the MM 
VCSEL chip carrying 80-Gbit/s data shows the largely declined throughput with a significant 
delay at frequency >14 GHz. In addition, the relaxation oscillation related RIN peak at 21.4 
GHz is observed outside the OFDM encoding bandwidth of 20 GHz. In contrast, the SM 
VCSEL chips exhibit a flat throughput in the RF spectrum of the received OFDM data due to 
its wide and even modulation response within −3dB bandwidth. Although the three VCSEL 
chips can ensure the FEC qualified performance at 80-Gbit/s BtB transmission, the MM 
VCSEL chip carried data provides the lowest SNR of 15.9 dB with the largest BER of 2 × 
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10−3 and the highest EVM of 16% among all cases. Undoubtedly, the FM and SM VCSEL 
chips reveal the higher SNRs of 17.2 and 17 dB to give the larger BERs/EVMs of 4.6 × 
10−4/13.9% and 6.6 × 10−4/14.3%, respectively. 

 

Fig. 7. The RF spectra, subcarrier SNRs responses and constellation plots of the electrical, 
MM, FM, and SM VCSEL chips carried 80 Gbit/s 16-QAM OFDM data after BtB 
transmission. 

Note that the SM VCSEL show overall performance less comparable with the FM VCSEL 
chip, which is due to its relatively high differential resistance and large interior heat 
accumulation. As a result, the SM VCSEL shows the larger VSWR and the higher return loss 
to give a lower modulation throughput. Furthermore, the severer power saturation of caused 
by Auger effect under heat accumulation in the SM VCSEL somewhat degrades the linear 
modulation response, which distorts the OFDM waveform in the time domain and results in 
spectral reshaping in frequency domain to give a less stabilized output as compared to the FM 
VCSEL. Such a result can also be verified from the decoded constellation plots. The degraded 
uneven throughput of the MM-VCSEL delivered data also reveals the blurriest constellation 
plot. After performing the ultimate encoding performance with adequate pre-leveling on the 
16-QAM-OFDM data, Fig. 8(a) illustrates the received BERs of BtB transmitted data streams 
carried by three VCSEL chips all achieve their highest allowable data rate at related 
bandwidths. For the MM VCSEL chip, the maximal allowable OFDM data bandwidth is 21 
GHz at raw data rate of 84 Gbit/s, and the related BER, SNR and EVM are 3.5 × 10−3, 15.3 
dB and 17.1%, respectively. 

 

Fig. 8. (a) The BtB transmitted BERs of the MM, FM, SM VCSEL chips carried 16-QAM 
OFDM data at different bandwidths; (b) The SNRs responses of MM/FM/SM VCSEL chip 
carried 84/96/92-Gbit/s 16-QAM OFDM data and related constellation plots. 
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The SNR responses and related constellation plots of three VCSEL chips encoded by 16-
QAM OFDM data at maximal transmission capacities are shown in Fig. 8(b). With the use of 
SM and FM VCSEL chips, the significant progress on enlarging the maximal allowable 
bandwidths to 23 and 24 GHz with data rate of 92 and 96 Gbit/s has been realized, enabling 
the receiving of OFDM data with corresponding BER/SNR/EVM of 2.8 × 10−3/15.5dB/16.7% 
and 3.3 × 10−3/15.4dB/17%, respectively. Note that the FM VCSEL chip carrying 96-Gbit/s 
data spectrum shows dramatic attenuation at subcarrier frequency >23.5 GHz is due to the PD 
with a limited cutoff frequency at 22 GHz. As elucidated, the difference on transmission 
capacity among three VCSEL chips is mainly attributed to the combined effect by differential 
resistance, heat accumulation, −3dB modulation bandwidth, and modulation throughput 
declination. The performance of the MM VCSEL chip is dominated by its small modulation 
bandwidth and declined throughput. The SM VCSEL suffers from insufficient thermal 
dissipation in the active region due to its larger oxidation layer as compared to the FM 
VCSEL. It is no wonder that the FM VCSEL with larger output power and stronger 
modulation throughput than others can offer the higher OFDM bandwidth available for 
transmission. In addition, if the ion-implanted layer could provide better heat dissipation, it is 
an alternative for confining the current aperture. 

3.3 100-m OM4-MMF-16-QAM OFDM transmission 

For data center applications, the transmission distance is lengthened to 100 m by connecting 
the lensed fiber patchcord with an OM4-MMF cable. By setting the raw data rate at 80 Gbit/s 
initially, the RF spectra, SNR responses and related constellation plots of the 100-m OM4-
MMF transmitted QAM data carried by MM, FM and SM VCSEL chips are displayed in Fig. 
9. Except for the SM-VCSEL carried data, the transmitted data in the other two cases would 
concurrently suffer from the optical modal dispersion and microwave power fading to distort 
its waveform. As expected, the constellation plots of the MM/FM/SM VCSEL delivered 80-
Gbit/s data become blurred with the EVMs degraded from 16.0%/13.9%/14.3% to 
27.9%/17.8%/18.3%, the average SNRs reduced from 15.9/17.2/16.9 to 11.4/15.0/14.8 dB, 
and the BERs increased from 2.2 × 10−3/4.6 × 10−4/6.6 × 10−4 to 3.6 × 10−2/4.4 × 10−3/5.4 × 
10−3. In fact, the dispersion induced delay and distortion cannot be easily distinguished as the 
off-line extracted QAM-OFDM data stream in time domain is a relatively complicated 
waveform. In the on-off-keying PRBS-NRZ data stream with a TTL-like bit shape, the data 
waveform distortion induced by modal/chromatic dispersion can be easily distinguished from 
the original data waveform in time domain. Typically, the rising/falling time and the duty-
cycle of the bit shape would be enlarged due to the deviated modal velocity induced 
propagation delay among the transverse modes. However, such a sub-nanosecond shape 
distortion is relatively difficult to be monitored in the QAM-OFDM data stream with a 
complicated waveform shape. The only way to check the dispersion induced distortion in a 
QAM-OFDM data waveform is to compare the SNR spectral responses of the received QAM-
OFDM data streams, as which could suffer from different scales of modal/chromatic 
dispersion when delivered by different transverse modes and OFDM subcarriers to cause a 
power attenuation, spectral reshaping as well as SNR degradation in the frequency domain. 
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Fig. 9. The RF spectra, SNRs responses and constellation plots of the 100-m MMF transmitted 
80-Gbit/s data carried by the MM, FM and SM VCSEL chips. 

When comparing the BtB and MMF transmitted OFDM data, the constant power 
attenuation caused by propagation loss can be ruled out as it only results in an equivalent 
down offset on the SNR spectrum. Obviously, the declined subcarrier SNR degradation is not 
caused by the optical power attenuation but originates from the modal/chromatic dispersion 
induced RF fading effect. The QAM data carried by OFDM subcarrier at higher frequency 
would suffer from the larger shape distortion in time domain and higher SNR degradation in 
frequency domain. To compare, the SNR difference before and after 100-m OM4-MMF 
transmitted data are shown as the yellow bar chart in the middle column of Fig. 9. For MM 
and FM VCSEL chips, the modal dispersion dominate the waveform distortion in time 
domain and SNR degradation in frequency domain which induced the larger degradations of 
4.5 and 2.2 dB on SNR. For the SM VCSEL chip, the single transverse mode rules out the 
modal dispersion effect during MMF transmission. Only the chromatic dispersion induced 
distortion and degradation is left with the delivered QAM-OFDM data stream. As a result, the 
SM VCSEL chip reveals a lowest SNR degradation of 2.1 dB compared with MM and FM 
VCSEL chips. 

To improve the average SNR of the 100-m MMF transmitted data, the pre-leveled QAM-
OFDM data that slightly sacrifices the low-frequency SNR to compensate the high-frequency 
SNR degradation is employed. Figure 10 compares the constellation plots, subcarrier SNRs, 
and received BERs of the MM/FM/SM-VCSEL carrying 64/80/80-Gbit/s data without and 
with OFDM subcarrier pre-leveling. In view of the 80-Gbit/s OFDM data carried by the MM 
VCSEL, most of the subcarrier SNR falls below the FEC criterion regardless of the pre-
leveling or not. For a practical application, the allowable OFDM data bandwidth of the MM 
VCSEL chip is decreased to 16 GHz with corresponding raw data rate of 64 Gbit/s. With an 
OFDM pre-leveling slope of 0.4 dB/GHz, the BER and SNR are respectively observed as 3.3 
× 10−3 and 15.4 dB, which meet the FEC required BER of 3.8 × 10−3 and SNR of 15.2 dB. For 
the FM-VCSEL carrying 80-Gibt/s data with subcarrier power pre-leveling at a slope of 0.3 
dB/GHz, the BER and SNR are improved to 3.7 × 10−3 and 15.2 dB, respectively. Over pre-
leveling with a slope beyond 0.4 dB/GHz excessively sacrifices the low-frequency SNR 
without favoring the high-frequency SNR. Note that the SM VCSEL chip also allows 80-
Gbit/s 16-QAM OFDM transmission in 100-m OM4-MMF with a pre-leveling at a slope of 
0.2 dB/GHz, which achieves BER of 3.5 × 10−3 and SNR of 15.3 dB that are better than those 
of the FM VCSEL. In particular, the optimized pre-leveling slope of QAM-OFDM data for 
the SM VCSEL chip is much lower than those required for FM and MM VCSEL chips, as the 
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SM VCSEL carrying QAM-OFDM data does not suffer from serious modal dispersion during 
MMF transmission. 

Fig. 10. The SNRs, constellation plots and BERs of the 100-m OM4-MMF transmitted 
64/80/80-Gbit/s data carried by the MM/FM/SM VCSEL chip before and after pre-leveling. 

Fig. 11. BER versus receiving power of the MM/FM/SM VCSEL chip output with and without 
pre-leveling under BtB and 100-m OM4-MMF transmissions. 

In more detail, the receiving power sensitivity of the MM/FM/SM VCSEL chips carried 
64/80/80-Gbit/s 16-QAM OFDM data are compared in Fig. 11. The receiving power 
dependent BERs for all cases without and with pre-leveling are analyzed before and after 
100-m MMF transmissions. No matter the OFDM data with and without pre-leveling, the
MM-VCSEL carrying 64-Gbit/s data suffers from serious modal dispersion to show the
highest power penalty of 9 and 8.5 dB before and after 100-m OM4-MMF transmissions,
respectively. Without OFDM pre-leveling, the receiving power sensitivities of 80-Gbit/s data
carried by FM and SM VCSEL chips before 100-m OM4-MMF transmission are −3.7 and
−6.4 dBm, which are slightly increased to −1.5 and −4.3 dBm with power penalties of 2.2 and
2.1 dB, respectively, after propagating over 100-m OM4-MMF. Experimental results reveal
that the SM VCSEL chip exhibits the lowest power penalty among three VCSEL chips due to
its modal-dispersion-free transmission in the OM4-MMF. With utilizing the pre-leveling
technique, the receiving power penalties before and after 100-m MMF transmissions can be
efficiently suppressed to 2 and 1.8 dB for the FM- and SM-VCSEL carrying 80-Gbit/s data.
These results have already declared the trade-off and comparability between FM and SM
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VCSELs for their future usage on transmitting the high-spectral-density QAM-OFDM data 
formats in data centers. 

4. Conclusion

The parametric comparisons of MM, FM and SM VCSEL chips at wavelength around 850 nm 
on their performance for carrying the pre-leveled 16-QAM OFDM data for BtB and 100-m 
OM4 MMF transmissions are performed. The MM/FM/SM VCSEL chips provide 15/3/1 
transverse modes with corresponding aperture sizes of 11/5/3 μm to result in respective 
threshold currents of 1.7/0.22/0.18 mA. The MM VCSEL chip exhibits the highest 
differential quantum efficiency to provide the highest optical power of 8.67 mW and the 
lowest return loss of −12.04 dB. Nevertheless, the MM VCSEL provides the slowest 
modulation response among all devices in addition to its largest throughput and highest SNR. 
In contrast, the zinc-diffusion process provides the improved modulation bandwidths of 22 
and 23 GHz for the FM and SM VCSEL chips, respectively, as compared to the MM VCSEL 
chip at the same bias current ratio. As compared to the MM and the FM VCSEL chips, the 
SM VCSEL chip has the highest differential resistance of 215 Ω to result in a return loss as 
high as −4.1 dB. The smallest aperture of the SM VCSEL chip not only provides the larger 
differential resistance but also induces the optical power saturation and Auger effect, which 
leads to the fastest output saturation trend at the lowest bias current. The SM VCSEL chip still 
exhibits the highest relaxation oscillation frequency and the largest damping factor that result 
in the lowest RIN power level. 

The difference on transmission capacity in BtB transmission among three VCSEL chips is 
dominated by the combination of differential resistance, heat accumulation, −3dB modulation 
bandwidth, and modulation throughput declination. Among them, the MM VCSEL exhibits 
the lowest transmission capacity of 84-Gbit/s due to its small modulation bandwidth of 16 
GHz and reduced throughput. The FM VCSEL chip with larger output power and stronger 
modulation throughput enables to carry the highest data rate of 96-Gbit/s 16-QAM OFDM 
data. In contrast, the SM VCSEL chip exhibits a comparable −3dB modulation bandwidth, and 
its transmission capacity at 92-Gbit/s is limited by the high differential resistance and induced 
Auger effect from heat accumulation. After transmitting over a 100-m OM4 MMF link, the 
MM VCSEL chip carried 16-QAM OFDM data experiences the most serious modal 
dispersion to decrease its maximal allowable data rate to 64-Gbit/s with BER and SNR of 3.3 
× 10−3 and 15.4 dB, respectively. To meet the FEC criterion, a receiving power penalty of 8.5 
dB is observed for the MM VCSEL chip. Although the FM VCSEL chip exhibits stronger 
modulation throughput, it carried 16-QAM OFDM data suffers from more modal dispersion 
than the SM VCSEL chip carried one after 100-m OM4 MMF transmission, which achieves a 
data rate of 80-Gbit/s with a power penalty of 2.08 dB. The characteristic of modal dispersion 
free makes the SM VCSEL chip exhibit the smallest data-rate degradation during transmission 
in OM4 MMF when comparing with other VCSEL chips. As a result, the SM VCSEL chip 
supports 80-Gbit/s data rate with BER and SNR 3.5 × 10−3 and 15.3 dB, respectively, and a 
receiving power penalty of only 1.8 dB is obtained after 100-m OM4 MMF transmission. This 
work declares the ability of MM/FM/SM VCSEL chips for high-speed intra-data center 
application, in which the SM VCSEL chip reveals the best performance as compared to other 
competitors. The optimization of the on zinc-diffusion recipe will be considered to further 
improve the thermal and resistance for SM VCSEL chip in the future. 
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