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Exciton-polariton Josephson 
junctions at finite temperatures
M. E. Lebedev1, D. A. Dolinina1, Kuo-Bin Hong2, Tien-Chang Lu   2, A. V. Kavokin3,4,5 &  
A. P. Alodjants1,6

We consider finite temperature effects in a non-standard Bose-Hubbard model for an exciton- 
polariton Josephson junction (JJ) that is characterised by complicated potential energy landscapes 
(PEL) consisting of sets of barriers and wells. We show that the transition between thermal activation 
(classical) and tunneling (quantum) regimes exhibits universal features of the first and second order 
phase transition (PT) depending on the PEL for two polariton condensates that might be described 
as transition from the thermal to the quantum annealing regime. In the presence of dissipation the 
relative phase of two condensates exhibits non-equilibrium PT from the quantum regime characterized 
by efficient tunneling of polaritons to the regime of permanent Josephson or Rabi oscillations, where 
the tunneling is suppressed, respectively. This analysis paves the way for the application of coupled 
polariton condensates for the realisation of a quantum annealing algorithm in presently experimentally 
accessible semiconductor microcavities possessing high (105 and more) Q-factors.

In the XXI century, the studies of exciton-polariton Bose-Einstein condensates (BEC) in various type of semicon-
ductor microstructures have become an important area of research in photonics and semiconductor physics1, 2. 
Microcavity exciton polaritons are quasiparticles representing admixtures of quantized cavity photons and quan-
tum well excitons. Semiconductor microcavities are promising for various optoelectronic applications where the 
quantum matter-field interface plays an essential role. In in such systems low branch polaritons can be treated as 
a 2D weakly interacting bosonic gas.

The polariton lasers are currently available optoelectronic devices for which coherent emission (“lasing”) 
occurs due to BEC of low branch exciton-polaritons. Bosonic condensates of exciton-polaritons have been 
observed at elevated temperatures ranging from a few tens of Kelvin in GaAs and CdTe based microcavities 
to the room temperature in GaN, ZnO and organic microcavities. Polariton lasing is a spectacular example of 
the formation of a bosonic condensate of exciton-polaritons in a driven-dissipative system. Among the recent 
achievements of polaritonics it is worth to mention experimental demonstrations of polariton lasers with elec-
trical injection3, 4, polariton amplifiers5, switches6, transistors7, polariton circuits and optical logic elements8, 9. 
Although exciton-polariton condensates exhibit the Bose-Einstein statistics above the lasing threshold and are 
characterized by a macroscopic occupation of the ground state at certain pumping rate that is less than the thresh-
old pumping for convenient lasers, they are not in a true thermodynamic equilibrium state10, 11. Non-equilibrium 
features of exciton polariton condensates play an important role in various manifestations of their collective 
(many body) states such as superfluidity12, 13, quantized vortices14, 15, soliton formation16, Josephson oscillations 
and macroscopic self-trapping17, 18.

The problem of distinguishability of statistically classical (thermal) and quantum regimes for exciton- polari-
ton condensates is very important in view of the possible exciton-polaritons applications in quantum information 
technologies19. Fast switching properties (the typical switching time of a few picoseconds), relatively strong non-
linear response and flexibility to external optical and/or electrical pumping spin degrees of freedom made micro-
cavity polaritons potentially promising for quantum computation and quantum information processing19–23.

Here we specifically focus on the quantum annealing problem that is relevant to the searching algorithm for 
the global minimum of the potential energy landscape (PEL) consisting of a set of barriers and wells24, 25. In a 
purely classical (thermal) regime the bosonic quasipartcles cross barriers stochastically at finite temperature with 
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the help of thermal activation process if the thermal energy is large enough, see Fig. 1. Contrary, in a quantum 
limit the same system undergoes quantum tunneling through the barrier. Obviously, the shape (height and thick-
ness) of the barrier plays an essential role in this case25, 26. It has been shown recently in ref. 26 that the annealing 
algorithm relies in general case on the combination of thermal annealing and quantum tunneling. The collective 
(bosonic) character of polariton condensation could be used for the acceleration of the physical implementation 
of the search algorithm27. The authors of refs 28, 29. propose polariton graphs as an analog platform for minimiz-
ing the XY–Hamiltonian by exploring the non-equilibrium character of exciton-polariton condensates and mim-
icking various magnetic phases with them. An original technique of nonresonant spatially modulated pumping 
beam have been used to imprint two-dimensional polariton graphs with different topology and different heights 
of potential barriers. Importantly, the phase-locking between arbitrary neighboring vertices might be practically 
achieved in this case.

In the present paper we study the effect of a finite effective temperature on the coupling of quasi-equilibrium 
exciton-polariton condensates accounting for the competing thermal and quantum annealing effects. To be more 
specific, here we examine an exciton-polariton Josephson junction (JJ) as a toy model for the classical or quantum 
annealing problem.

The Josephson effect initially discovered in superconductors30 then has been studied in weakly coupled atomic 
BEC’s31–35. Since the temperature of atomic Bose-Einstein condensation is extremely low (μK’s and below) it is 
usually possible to consider dynamical effects occurring with two atomic condensates confined in a W-shape 
potential using the mean field approach in zero temperature approximation. Josephson and Rabi oscillations, 
self-strapping of atoms and the population imbalance between potential traps have been reported36, 37.

JJ of exciton-polariton condensates is a relatively young Josephson coupled system that is being studied in 
many experimental laboratories around the Globe17, 18, 38–43. It is important to underline that the polariton system 
is strongly different from superconducting and atomic JJs for several reasons, namely:

	 (i)	 In superconducting JJ the tunnelling of electrically charged Cooper pairs is at the origin of coupling, while 
in the case of exciton-polariton condensates, electrically neutral exciton-polaritons tunnel.

	(ii)	 The mechanisms of dissipation are dramatically different in the systems. While Cooper pairs (or atomic 
BEC’s) are stable below critical temperature, exciton-polaritons are characterised by a radiative life-time: 
the features of the junctions essentially depend on the Q-factor of the cavity, which is why the exciton-po-
lariton system needs to be considered as a driven-dissipative system by its origin

	(iii)	 All the most essential parameters of exciton-polariton JJ and superconductor/atomic systems: masses, 
characteristic length- and time-scales are dramatically different, see refs 12, 40–42.

Recently Yongbao Sun et al. reported44 the observation of a quasi-equilibrium low branch exciton polariton 
condensate in a high Q-factor microcavity characterised by a remarkably long photon lifetime of 135 ps. Clearly, 
exciton-polaritons with long lifetime are promising candidates especially for quantum technologies20.

One of the advantages of exciton-polaritons over cold atoms consists in a perspective of room temperature 
operation of polariton devices. In this context, it is very important to reveal the impact of temperature on the 
physics of interacting polariton condensates. It should be also noted that the effective temperature of a polariton 
gas may be introduced in the quasi-equilibrium approximation, which is not necessarily valid in all cases but 
constitutes an important starting point of any analysis. Further steps would involve a full kinetic modeling for a 
non-equilibrium polariton gas. We study the interplay of two mechanisms of coupling between the condensates 
in order to reveal the cross-over from the quantum tunneling to the incoherent coupling regime that may occur 
at finite temperatures38, 40, 43. In particular, we are interested in a generic problem of the quantum-classical phase 
transition (PT) applied to macroscopic two-level systems45–49.

Figure 1.  Sketch of two tunnel coupled exciton-polariton condensates. The two minima of the trapping 
potential U are situated at the points +x0 and −x0. At thermal equilibrium the interplay between thermal 
and quantum annealing effects is governed by the blue shift of condensates, effective temperature of exciton-
polaritons and the shape of the potential.
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Traditionally, studies in this field are limited by consideration of superconductor devices50 where macroscopic 
quantum tunneling phenomena plays an essential role. In particular, it is worth to mention here the Schrödinger 
cat state formation51 and the design of quantum gates with superconductor qubits for quantum computing where 
a macroscopic quantum coherence for the phase is important52.

In this manuscript we specifically consider a couple of trapped exciton-polariton condensates in a high-Q 
GaAs microcavity. We take into account the driven-dissipative nature of the system, as well as the high tem-
perature of the exciton-polariton gas. We go beyond the mean-field approximation adopted in the most part of 
theoretical works on exciton-polariton quantum fluids, and present the full phase diagram of the system. We shall 
consider a generalised model of exciton-polariton JJ that relates to so-called non-standard Bose-Hubbard models 
(see e.g refs 33, 53.) where the energy of polariton-polariton scattering contributes to the tunneling parame-
ter matrix elements38–41, 43. In order, we pay attention to the temperature dependent quantum critical phenom-
ena occurring in the presence of macroscopic tunneling. We aim at formulation of the criteria for realisation of 
the quantum tunneling regime that is important for the realisation of the quantum annealing algorithms and 
exciton-polariton quantum gates. The influence of non-equilibrium effects involving the microcavity exciton 
polaritons possessing a finite lifetime is discussed as well.

The Quantum Phase Model
We consider a system of two spinless exciton-polariton condensates localised in lateral potential traps created in 
a planar semiconductor microcavity. The condensates are confined by a W-shape potential U(x) possessing two 
minima at the points ±x0, see Fig. 1. Polaritons are pumped to the condensates from a reservoir of incoherent 
excitons. In this and next Section, we shall neglect the finite polariton lifetime and assume that the polariton gas 
is at the thermal equilibrium. We account for the polariton-polariton repulsion. In analogy to many body spin 
problems we introduce macroscopic pseudospins descrbing the polariton condensates54. We note that a similar 
approach has been applied for the description of coherent phenomena in atomic gases55.

We shall use the pseudo-spin operator representation for the Hamiltonian describing our exciton-polariton JJ 
model system that has a form (the details of the model are presented in the Supplementary Material):

α β= + − .ˆ ˆ ˆ ˆH S S BS (1)z x x
2 2

The coefficients in Eq. (1) characterize the tunnel coupling of two trapped condensates: the parameters α and 
β are proportional to the overlap integrals of real symmetric (Φ+) and anti-symmetric (Φ−) wavefunctions of two 
condensates that are ∫γ = Φ Φ ∈ + −dx i j, , { , }ij i j

2 2 –see Fig. 2 and Suppl. Materials; B is determined by difference 
of chemical potentials which obey stationary Gross-Pitaevskii (GP) equations for two trapped condensates.

It is important to note that the last term in Eq. (1) characterizes the familiar XY–model Hamiltonian consid-
ered in refs 28, 29. The second term in (1) introduces an additional part that has no analogy in the 
XY-Hamiltonian; it is proportional to cos(2φ), where φ is the phase difference between two polariton conden-
sates. This term vanishes in the limit x a/ 10 , see Fig. 2 and Suppl. Materials31, 33, 35.

It is convenient to introduce the pseudo-spin operators in a form

φ φ
φ

= −Ŝ s d
d

cos sin ,
(2a)x

φ φ
φ

= +Ŝ s d
d

sin cos ,
(2b)y

φ
= −Ŝ i d

d
,

(2c)z

Figure 2.  Dependences of the normalized matrix elements γij i,j ∈ {+, −} on the normalized half inter-well 
distance x0/a; a is a characteristic size of the condensate wavefunction.
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The operators  def ined in Eq.  (2)  obey famil iar  SU(2)  a lgebra commutation relat ions 
ε



 = =ˆ ˆ ˆS S i S i j k x y z, , , , , ,i j ijk k . After some straightforward calculations from (1) one can obtain
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Thereafter we assume that both condensates are composed by macroscopically large numbers of particles, i.e. 
the = s N /2 1 is C - number. The general stationary Schrödinger equation with a Hamiltonian (3) writes:

α β φ
φ

β φ φ
φ

ϕ β φ

−
Φ

+ −
Φ

+ + + Φ =

d
d

s B d
d

E Bs s

( sin ) ( sin2 sin ))

( cos sin ) 0, (4)

2
2

2

2 2

where Φ ≡ Φ(φ) is some 2π-periodic wavefunction that characterizes quantum phase properties56. It is possible 
to eliminate the term with first derivative in Eq. (4). In order to find the explicit form of the function Φ, it is con-
venient to substitute it by:

φ
λ λ

λ
λ

Φ = Ψ





−
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2 (1 )
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(5)

where ∫ φ= = λ
φ ξ

λ ξ−
z F( , )d

0 1 sin2
 is a new phase variable; F(φ, λ) is the incomplete elliptic integral of the first 

kind. In (5) we have introduced dimension-less parameters Λ =
α
B
s
, λ = β

α
. Inserting (5) into (4) we arrive to the 

familiar form of a Schrödinger equation

α Ψ
+ − Ψ = .

d
dz

E V z( ( )) 0
(6)

2

2

This equation describes an effective particle with the mass =
α

m
2

2  and energy E, that is confined by the poten-
tial V(z) = αs2V0(z) with

λ λ
=

Λ − − − Λ
.

( )
V z

z z
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The dependences of the trapping potential V0(z) on the phase variable z are shown in Fig. 3. The period of the 
functions is 4K(λ). The dependence of the λ–parameter on normalized half of the inter-well distance x

a
0  can be 

approximated by λ = .



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2
 by using variational approach, see Suppl. Materials. The well-known 

behaviour of the quantum phase mesoscopic JJ (that map to the XY–model28, 29) can be recovered from (1), (7) at 
λ = 0 and shown by red curves in Fig. 3. This limit corresponds to infinitely large inter-well distances, with x0 → 
∞, Fig. 2. On the other hand, the λ–parameter exhibits a sharp increase at 

 1x
a

0 . Obviously, in this limit our 
exciton polariton JJ model based on the assumption of a relatively weak coupling between trapped condensates 
breaks down. Below we are focusing on λ–parameters which belong to the range of 0 < λ < 1 and correspond to 

Figure 3.  Effective dimension-less potential V0(z) for (a) Λ = 100, (b) Λ = 0.5, and (c) Λ = 0.01 as a function 
of the elliptic integral phase coordinate z. Points ±zmin and ±zmax in (b) correspond to global minima and 
maxima of the potential, respectively; E is the energy of the particle that experiences either quantum tunneling 
or thermal activation.
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the moderate values of x
a

0  such as ≥ .0 45x
a

0 . The analysis of the quantum phase can be performed in three 
domains determined by vital Λ–parameter values56.

Rabi regime Λ  1. In this limit the trapping potential can be approximated by = ΛV z z( ) sdR
1
4

2 2 . Physically, 
for any value of λ–parameter belonging to the domain 0 < λ < 1 the system exhibits (Rabi) oscillations for the 
phase. In particular, small amplitude oscillations which are inherent to familiar Rabi regime can be achieved for 
negligable λ–see Fig. 3a and ref. 56.

Fock regime Λ  N1/ 2. In purely quantum limit Φ(φ) → (2π)−1/2. In this regime, when inequality λΛ < 1 
is held, Eq. (6) transforms to the Mathieu equation that is characterised by the set of eignen states consisting of all 
Mathieu functions.

Josephson regime Λ <N1/ 12 . This regime corresponds to the intermediate case between Rabi and Fock 
limits–see Fig. 3b. The behavior of the phase depends on the ratio between the parameters Λ and λ. If Λ ≥ 2λ the 
potential V0(z) possesses only one minimum at z = 0 and V(0) = −Λ.

In the opposite limit, for Λ < 2λ, the effective quantum “particle” described by Eq. (6) is trapped at the two 
minima of V0(z) that correspond to the W–like potential with coordinates = ±

λ
− Λz cnmin

1
2

 and appearing for 
both of Josephson and Fock regimes, see Fig. 3b,c. The depth of the potential minima depends on the λ parameter. 
It is interesting to note that for Λ > 2(1 − λ) the potential V0(z) possesses a local minimum at ±2K(λ), see Fig. 1b.

Annealing problem versus Quantum-classical PT’s
Quantum-classical PT’s.  Experimentally, exciton-polariton condensates are being observed at elevated 
temperatures, up to the room temperature in wide-gap semiconductor microcavities1, 2. At high temperatures the 
validity of the quantum coherent treatment of the Josephson problem is limited. In this section, we study the lim-
its of validity of the quantum approach which also set the limits of the system suitability for quantum annealing25.

To be more specific we consider the tunneling in an effective W–like potential shown in Fig. 3b. We assume 
the thermal equilibrium condition to be fulfilled for an ensemble of exciton-polaritons at finite temperatures T, 
that would correspond to a hypothetic case of polaritons with the infinite life-time. We note in this connection 
that in the recent experiments44 the measured polariton lifetime was as long as 275 ps, which would be sufficient 
to justify the above approximation.

A transition between two stable states (say, between points −zmin and +zmin in Fig. 3b) can happen either 
through the quantum tunneling or, in classical way, due to the thermal activation. Below we show that the cross-
over between this two regimes may possess features of either a first (1st)- or second (2nd)-order phase transition. 
Obviously, at high temperatures such as kBT ≥ ΔV (ΔV is the height of the barrier between two states with mini-
mum of potential energy) the particle jumps over the barrier governed by the thermoactivation (Arrhenius) 
escape rate Γ −∆~ eT

V k T/ B 47. This process is inherent to the classical (thermal) annealing problem25. In the “low 
temperature” limit ∆k T VB  polaritons undergo quantum tunneling through the barrier with a vanishing rate

Γ −~ e , (8)S /min 

where Smin is minimal value of the action, that excludes realisation of the quantum annealing scheme. At the 
crossover temperature Tc = ħΔV/kBSmin the matching condition for the tunelling rates may be anticipated.

Our description is based on imaginary time path integral approach50. The imaginary-time action obtained 
within the WKB method approaches as

τ= + .∮ ( )S E mz V z d( ) ( ) (9)
1
2

2

At the temperatures below the barrier height ΔV Eq. (9) enables one finding the escape rate ΓT
45

∫ ∫Γ =
∆ − + ∆ −~ e dE e dE, (10)T

V E k TS E k T V F k T

0

( ( )/ )/

0

/B B B

where

= +F E k TS E( )/ (11)B 

plays role of the free energy of the system. The trajectories which minimize the action ST obey the classical equa-
tion of motion =̈mz dV

dz
 written for the thermon “particle” that oscillates within the inverted potential −V(z). 

Periodic solutions of this equation satisfy

τ= −mz V z E( ) ( ), (12)p
1
2

2

where τp = ħ/kBT is a thermon period corresponding to the energy E(τp) and shown in Fig. 3b;

∫τ =
−

.E m dz
V z E

( ) 2
( ) (13)

p
z E

z E

( )

( )

1

2

In (13) the z1,2(E) are the turning points, see Fig. 3b. Equations (12,13) taken at the energy E = 0 and temper-
ature T = 0 characterize the instanton solution with an infinite period. Remarkably in this case from (10) one can 
immediately obtain Eq. (8) that yields the escape rate in the quantum domain.

Combining (9) with (12) we arrive to
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∫ τ= − + .S m V z E dz E E2 2 ( ) ( )
(14)T

z E

z E
p

( )

( )

1

2

To reveal the thermodynamic properties of the system it is necessary to consider small amplitude oscillations 
at the bottom, z = 0, of the inverted potential −V(z). The action in this case reads:

τ= ∆ .S V E( ) (15)p0

The expansion of the potential V(z) into a series and excluding the constant value V(0) gives:

α= + +V z s c z c z o z( ) ( ( )), (16)2
2

2
4

4 4

where c2 and c4 are coefficients defined as

λ λ λ= Λ −
−

Λ − −c 1
4

2 1
2

(1 ), (17)2
2

λ λ λ λ λ λ
=

−
Λ −

− +
Λ −

− −
.c 2 1

12
16 16 1

24
(1 )(2 1)

3 (18)4
2

2

In particular, if the inverted potential −V(z) has the form z2 − z4 (c2 < 0, c4 > 0) the 2nd order phase transition 
occurs. If −V(z) behaves as z2 + z4 (c2 < 0, c4 < 0) the 1st order phase transition take place. The phase boundary 
between the 1st and 2nd order phase transitions is determined by the relation

λ λ λ λ
λ

Λ =
− + + + −

−
.

1 16 16 1 32 32
4(2 1) (19)

2 2

We summarize our results in Fig. 4. An inset demonstrates various types of phase potentials V0(z) inherent to 
our exciton-polariton JJ model. The 1st order PT occurs for two type of potentials in the shaded region bounded 
by bold (red) curve. Second order PT’s appear for the potential landscapes taken from the dark area. The crosso-
ver temperature ω π=T k/2c B

(2)
0  of 2nd-order PT transition is

λ λ λ= − + − − ΛΛT T (1 ) (2 1) , (20)c
(2)

0 2
1
4

2

where 


ω λ λ λ= − + − Λ − Λα (1 ) (2 1)s
0

2 1
2

1
4

2  is a frequency of small oscillations of the thermon “particle” 
near the bottom of inverted potential, T0 = αN/2πkB is a characteristic temperature that inherent to exciton polar-
iton system. The T0 implies important time scale τ0 = 2πħ/αN that can be understood as thermon particle “life-
time”. Notably, as it is follows from (20) there is no barrier at z = 0 for Λ ≥ 2λ–see the white domain in Fig. 4.

In Fig. 5a we represent the results exhibiting 1st-order PT inherent to narrow shadow domain in Fig. 4 where 
discontinuity of the derivative dS/dT occurs. It is clearly seen that the first derivative of Smin is discontinuous in 
this case and the dependence of the normalized thermon period τp/τ0 on the energy E is non-monotonic, see the 
inset in Fig. 5a. The critical temperature Tc

(1) belongs to the temperature domain < <T T Tmin c max
(1)  and it can be 

found out numerically by solving Eqs (13–15) in the particular case of ST = S0.
Analytically, the critical temperature Tc

(1) may be estimated from ∆=T V k S/c B inst
(1)  , where Sinst is an instan-

ton action that can be represented as Sinst = S(Emin). After some straightforward calculations for Sinst we obtain

Figure 4.  Diagram of the phase boundary for the 1st- and 2nd-order PT’s in Λ, λ–parameters plane. The PEL’s 
are shown in the windows.
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

Figure 5b displays 2nd-order PT from quantum (solid bold line of ST) to thermal (classical) regimes–dashed 
bold line of S0. The crossover occurs at the critical temperature Tc

(2) where ST = S0 and E = E0. The inset demon-
strates a monotonic dependence of the normalized thermon period τp/τ0 on energy E that is inherent to 
second-order phase transition. Closest to the critical point with energy E = E0 the thermon undergoes small 
amplitude oscillations.

Remarkably, form Fig. 5 it is clearly seen that at the temperatures sufficiently below the critical temperatures 
Tc the action Smin is temperature independent that corresponds to the quantum regime of macroscopic tunne-
ling. The connection with phenomenological Landau theory of PT’s57 can be obtained by introducing the “order 
parameter” P that is45

=
−

∆
.P V E

V
(0)

(22)

Taking into account Eq. (11) for normalized free energy F(P) one can obtain

θ θη
∆

= + − + +
F P

V
P P O P( ) 1 ( 1) ( ), (23)

2 4 6

where η λ λ= Λ −c c3 ( 2 ) /324
2

2
2  and θ = T T/ c

(2) is normalised temperature parameter. It is important that sign of 
second term in Eq. (23) is completely determined by sign of c4 -coefficient, see (18), that implies whether 1st-, or 
2nd-order PT occurs in the system.

Thus, P–parameter describes features of potential shape for the “particle” possessing energy E and character-
izing PT in the system according to Landau theory57–see Fig. 3b. Figure 6 shows the behaviour of the introduced 
order parameter. One can see that the phases corresponding to the quantum tunneling and classical thermal 
activations are separated by the second order phase transition.

In the optical experiments one usually has a better control of the exciton-polariton density than their effective 
temperature, see e.g. refs 1, 2. For instance, the density of polariton gas can be changed by varying the optical 
pump intensity. In Fig. 7 we plot a numerically calculated critical temperature of the 1st and 2nd order PTs as a 
function of the Λ-parameter for experimentally accessible semiconductor JJ samples. The bold (green) line cor-
responds to the analytical solution obtained with Eq. (21). Since the Λ-parameter is inversely proportional to the 
density of the exciton-polariton gas (and the blue-shift of the energy of the corresponding photoluminescence 
peak) Fig. 7 establishes an important relation between the critical temperatures discussed in the paper and the 
relevant exciton polariton densities.

Now let us consider the decay of the state of the system that corresponds to the upper minimum of the poten-
tial V(z) located at ±2K(λ) in Fig. 3b and exists for Λ > 2(1 − λ). Physically, the decay takes place because of the 
tunneling of our effective particle through the barrier located at one of the points = ± − λ− −

Λ( )z cnmax
1 2(1 ) . By 

expanding the potential V(z) in the vicinity of zmax it is possible to show that only the 2nd-order PT with a tem-
perature λ= − −

λ
Λ
−

T T( /2) 4(1 )c
(2)

0 1

2
 may take place in this case.

Figure 5.  Dependences of the minimal action Smin (ABC-(blue) curve) taken in sħ units as a function of the 
normalized temperature T/T0 for (a) 1st-order PT, λ = 0.9, Λ = 0.1; and, (b) 2nd-order PT, λ = 0.5, Λ = 0.5; the 
solid (bold) line corresponds to the thermon action, ST; the dashed line corresponds to the thermodynamic 
action, S0 = ħΔV/kBT, Smin = min{S0, ST}. The inset shows the dependences of normalized thermon period τp/τ0 
on energy E expressed in αs2 units.
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Annealing.  Nowadays simulated annealing (SA) algorithm is at the heart of the optimization problem in 
computer science, see e.g. ref. 58. In particular, it enables to solve so-called NP-hard optimization problems that 
is met in our life frequently; an example, we refer here to the traveling salesman problem, see e.g. ref. 59. From the 
point of view of the physical implementation, the optimization algorithm implies searching of a global minimum 
for PEL that relays to N particle spin system oriented randomly25. According to the SA approach the minimum 
can be achieved by physical system as a result of the deep cooling. Apart from SA, quantum annealing (QA) uses 
the quantum tunneling option to achieve a global minimum. In some aspects QA algorithm is relevant to the 
so-called adiabatic quantum computing scheme60. Although in this paper we are not aiming at detail investigation 
of various annealing schemes, some of their features become evident from our previous analysis.

Actually, at high enough temperatures, the system may visit the higher-energy eigen states by means of the 
thermal activation and due to thermal fluctuations, see Fig. 1. Certainly, at zero temperature, being at the full 
thermodynamic equilibrium state, one can find the configuration of the spin system at PEL minimum possessing 
also minimum of it free energy F and action Smin, respectively, see Eqs (11,23). Clearly, the last one corresponds to 
the implementation of QA algorithm when system undergoes quantum tunneling instead of thermal activation. 
The transition between this two scenario, in fact, reflects the nature of SA scheme that lies in the crossover from 
the thermal (classical) to the quantum annealing regime.

From the practical point of view, it is instructive to estimate the time that is required for the system to perform 
the computation. Obviously this time is limited by characteristic tunneling time, or by the characteristic hopping 
time. Here we estimate this time simply as

= Γ .t / (24)T T

Obviously, the characteristic time scale tT depends on the temperature of the system. At T = 0, where only the 
QA is possible, from (24) we obtain

= .t e (25)S
0

/min 

One can see that the parameter t0 defines limiting (minimal) time required to perform QA for our toy optimi-
zation model. Notably, this time depends on the number of particles as t0 = eNγ′, where γ′ is some constant. Since 
relation ST > Smin is still valid up to the temperatures of PT we have tT > t0 in the same limit. Thus, from (24) and 
(25) immediately follows that improvement of the annealing algorithm in the quantum domain strongly depends 

Figure 6.  The dependence of the P–parameter on the normalized temperature T/T0. The parameters λ, Λ are 
the same as in Fig. 5b.

Figure 7.  The dependence of the normalized critical temperature Tc/T0 as a function of the parameter Λ. The 
bold (green) line corresponds to the analytical expression for Tc

(1) given by Eq. (21).
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on the particle number N and governed by the ratio = −t t e/T
S S

0
( )/T min  which depends on the effective action 

difference taken at a given temperature T; this difference clearly seen from Fig. 5a for the 1st order PT problem 
where thermal and quantum regimes coexist.

Slightly above the critical temperature Tc the thermal (classical) SA algorithm is realised in our system. At 
relatively high temperatures it does not guarantee the system relaxation to the global minimum. Moreover, 
some non-equilibrium processes can occur in this case and the model used here may be no more valid (see next 
Section). The predictions of the present model must be valid in the vicinity of critical point and below.

Let us briefly discuss methods of the experimental study of the quantum-classical PT for the polariton JJ’s. 
Our estimations show that, for the experimentally accessible polariton interaction strength of αN = 0.6 meV, 
characteristic of narrow-band semiconductor samples, T0 is about 1.1 K that corresponds to the thermon effective 
lifetime of τ0 ≈ 7 ps. The value of T0 is comparable with a typical temperature of a BEC, or, with temperature of the 
Berezinsky-Kosterlitz-Thouless PT predicted for the dilute weakly interacting exciton-polariton gas at thermal 
equilibrium1, 2. Some further enhancement of T0 may be achieved by the increase of the optical pumping intensity 
and varying the detuning of exciton and photon modes in a microcavity44.

PT’s in the presence of dissipation
Now let us consider the exciton polariton JJ accounting for the finite exciton polariton lifetime τpol. The finite radi-
ative lifetime is a important characteristic of any polariton system and, strictly speaking, can never be ignored. 
Obviously, in order to allow for the Josephson oscillations, the characteristic time τ0 that is responsible for quan-
tum tunneling effects should be shorter than all characteristic times describing non-equilibrium processes in the 
exciton-polariton gas, including the radiative decay. Hence,

τ τ . (26)pol0

The condition (26) is fulfilled in the experimental work44, in particular. Here we examine a different situation 
namely, the case where the exciton polariton lifetime τpol is comparable with τ0. Note that this situation is realized 
the multiple experiments dealing with non-equilibrium exciton polariton condensates, see e.g. refs 1, 2, 16–18.

To be more specific in what follows we shall consider the influence of the dissipation on the exciton polariton 
JJ quantum phase properties in the adiabatic limit61. We start from GP equations obtained from (see 
Supplementary equation (S5)) for the mean fields ψ ψ= ˆ

1,2 1,2  at Γ = 0 (B = G), which read as

ψ κψ ψ ψ ψ ψ ψ ψ= − + + − − .

⁎i i A C B C( 2 ) ( /2 ) (27)1,2 1,2 1,2
2

2,1
2

1,2 1,2 2,1 2,1

In (27) we have introduced the dissipation term with κ τ / pol . Defining new variables Ψ1,2 as 
ψ1,2 = Ψ1,2exp(−κt/ħ) for the mean field pseudo-spin components (see Supplementary equation (S6)). We obtain 
from (27)

α

α β

β

= − ′

= ′ − ′ + .

= ′ −







S t S S

S t t S S S

S t S S S

2 ( ) ;

2( ( ) ( ))

2 ( ) ; (28)

x z y

y z x z

z x y y

Here we have introduced the dimensionless time t′ = tB/ħ.
Set of Eq. (28) describes the dynamics of normalized mean field pseudo-spin parameters on the Bloch sphere 

with + + =S S S 1x y z
2 2 2 . Equation (28) look similar to those written for a non-dissipative system but with the time 

dependent parameters α′(t) = (1/Λ)exp(−2κ′t′), β′(t) = (λ/Λ)exp(−2κ′t′), κ′ = κ/B62. Taken out the dissipation, 
Eq. (28) possesses a bifurcation point λ/Λ = 1/2 that corresponds to the solid black curve in Fig. 3b.

In Fig. 8a we plot the phase difference between the condensates φ = arctan(−Sy/Sx) as a function on time. 
A non-dissipative system has two different regimes depending on the values of the β–parameter, that are blue 
(labeled as 1) and red (labeled as 3) curves in Fig. 8, respectively. The blue curve is plotted for the case of β′ > 1/2 
and it corresponds to the quantum regime–see Fig. 8b. Contrary, the red curve describes the phase between two 
condensates below the threshold (β′ < 1/2) that corresponds to the absence of the barrier.

In the presence of dissipation (solid black curve in Fig. 8a) the phase of exciton-polariton JJ starts from one of 
the potential minima. We assume here that the temperature of the system is not sufficient for thermal activation 
and the quantum tunneling is possible. The system evolves adiabatically and then crosses the critical value β = 1/2 
due to the decrease of the total number of particles caused by the radiative decay. The final (temporal) state repre-
sents the Josephson or, Rabi oscillation regime.

Figure 8b and c demonstrate the suppression of W–like potential and the relevant enhancement of the reduced 
thermon period τp/τ0 which occurs at switching time tsw = 11.5ps for τ κ =~ ps/ 10pol , respectively.

Thus, behavior of the phase in the presence of dissipation showed in Fig. 8 is characteristic of a established 
non-equilibrium PT from the regime where tunneling is possible to the regime where tunneling is suppressed. 
However, this regime found at t > tsw cannot be interpreted immediately as the classical one. Actually, the adiaba-
ticity condition reads61:

ω
ω

.

t
d
dt

1
( )

1
(29)2

where ω β β α= − ′ − ′ + ′t B t t t( ) (1 2 ( ))(1 2 ( ) 2 ( )) /  is the frequency of small oscillations slowly depending on 
time62. The solution for the phase in this case can be approximated by

http://S5)
http://S6)
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φ τ
ω τ

ω τ τ≈
A( )
( )

cos( ( ) ),
(30)

where τ is the time elapsed after the oscillation sets in, and A is the amplitude of oscillations at τ = 0. At large 
enough times, ω(t) ≈ B/ħ and permanent Rabi oscillations for the JJ phase φ are established, see Fig. 8a and ref. 
63. To distinguish between the quantum and classical character of these oscillations, a purely quantum approache 
to the problem should be considered. It will be in the scope of our further research.

Conclusion
We have studied theoretically the coupling of two spatially separated trapped exciton-polariton condensates at 
finite temperatures and accounting for the dissipation. We demonstrate the crossover from thermal to quantum 
annealing regime for a model system of two condensates localised by a W-shape potential. Second regime is 
classical one and characterizes thermal activation. The transition between these two regimes exhibits universal 
features of the 1st or 2nd order PTs which can be interpreted as PT between classical and quantum regimes. It 
is important that critical temperature of transition depends on some characteristic temperature parameter T0 
(see e.g. (20)) that that is governed by the polariton-polariton interaction length (so-called blue shift) αN. It is 
expected that at the temperatures sufficiently higher than T0 the exciton-polariton JJ device operates in classical 
way. In this case the simulated thermal annealing algorithm might be implemented.

The influence of dissipation effects originating from the radiative decay of polaritons by photon tunneling 
through the Bragg mirrors is revealed by our analysis. The observation of quantum tunneling processes only 
becomes possible within short time intervals where the dissipation cannot essentially affected to the system. 
Otherwise, after some time interval the dissipation leads to crossover in the phase dynamics and it damages the 
W–potential as a whole, see Fig. 8. In this case permanent Rabi oscillations of JJ phase occurs within the adiabatic 
approach. To reveal either quantum of classical nature of these oscillations it is necessary to study the fluctuations 
of the exciton-polariton system beyond the semiclassical approach. For moderate dissipation rates and at temper-
atures (or relevant polariton gas densities) sufficiently below the temperature of T0 the exciton-polariton JJ device 
is suitable for various applications where the quantum tunneling effect is crucial.

We note that the quantum tunneling effect may be used for designing exciton polariton phase qubits similar to 
superconductor devices, but in the optical wavelength domain52. Actually, two minima located at the points −zmin 
and +zmax of W-shape quantum phase potential in Fig. 3b can be used for setting the exciton polariton qubit 
states | 0> and | 1> similarly to superconductor flux qubits. However, in our case such qubits may be tailored 
by the external optical or electrical pump. As a result, QA problem can be experimentally solved with use of the 
polariton-based qubits64.
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