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Abetract 

A one-dimensional groundwater transport equation with two uncertain parameters, groundwater 
velocity and longitudinal dispersivity, is investigated in this paper. The analytical uncertainty of the 
predicted contaminant concentration is derived by the first-order mean-centered uncertainty analysis. 
The risk of the contaminant transport is defined as the probability that the concentration exceeds a 
maximum acceptable upper limit. Five probability density functions including the normal, log- 
normal, gamma, Gumbel, and Weibull distributions are chosen as the models for predicting the 
concentration distribution. The risk for each distribution is derived analytically based on the con- 
ditional probability. The mean risk and confidence interval are then computed by Monte Carlo 
simulation where the groundwater velocity and longitudinal dispersivity are assumed to be lognor- 
mally and normally distributed, respectively. Results from the conditional expectation of an assumed 
damage function show that the unconditional expectation generally underestimates the damage for 
low risk events. It is found from the sensitivity analysis that the mean longitudinal dispersivity is the 
most sensitive parameter and the variance of longitudinal dispersivity is the least sensitive one 
among those distribution models except the gamma and Weibull distributions. Q 1997 Elsevier 
Science B.V. 
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a constant in the damage function + 
concentration of sample contaminant, (M/L’) 
source constant concentration at x = 0, (M/L3) 
random variable of the contaminant concentration 
maximum acceptable upper limit of contaminant concentration, (h4/L3) 
lower bound of concentration for each distribution of the predicted concentration, (M/L3) 
dispersion coefficient, (L’/T) 
sensitivity of functional output, Y, to the ith random variable, Xi 
sensitivity of C with respect to V 
sensitivity of C with respect to aL 
probability density function (pdf) of C 
cumulative distribution function (CDF) of C 
pdfofthedamagec 
CDFofthedamageG 
pdfoftheloadingL 
CDF of the loading L 
pdf of strength S 
CDF of strength S 
random variable of the damage 
conditional expectation of damage 
unconditional expectation of the damage 
loading 
number of Monte Cat40 runs 
number of generated data or sampling points 
probability of a partitioning points on the probability axis of G 
sample mean risk 
risk 
reliability 
sensitivity of the risk with respect to the parameter 6 
strength 
deterministic upper limit of strength 
sensitivity coefficient of the risk with respect to the parameter 8 
sample standard deviation of risk 
time* 0 
variate of the students’ tdisuibution with the degree of freedom n - I 
uniform groundwater velocity, (UT) 
sample variate of the velocity used in the Monte Carlo simulation, (IA) 
distance from the source of contaminant, (L) 
log-transformed sensitivity coefficient 
longitudinal dispersivity. (L) 
sample variate of oL used in the Monte Carlo simulation, (L) 
significance level 
the risk that C > c*, and corresponds to the point gi on the. probability axis of G 
dimensionless concentration of sample contaminant, (hWL3) 
mean value of UL, (L) 
mean value of contaminant concentration C 
mean value of dimensionless concentration N in terms of r and p 
mean value of V, (LA) 
dimensionless distance 
standard error of the predicted concentration C 
standard deviation of V 
standard deviation of aL 
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standarden’orofKintermsofrandp 
dimensionless time 
damage function 

P general function of the risk R 

1. lntroductlon 

Uncertainties arc involved in any engineering planning and design as well as ground- 
water contamination problems. Generally, uncertainties involved in a water-resources 
project include hydrologic, hydraulic, structural and economic uncertainties (Tung and 
Mays, 1980). Yet only hydrological and hydraulic uncertainties are considered in this 
paper for the problem of groundwater contamination. Hydrologic uncertainties originate 
from the inherent randomness of natural hydrologic processes, the selection of the prob- 
ability model, and the evaluation of the corresponding parameters used in the probability 
model; however, hydraulic uncertainties are attributed to the simplification of mathe- 
matical models in describing natural physical phenomena, imprecise dimensions of 
hydraulic structures, non-uniformity of construction materials, and various operational 
conditions (Lee and Mays, 1983). Uncertainty, commonly analyzed by the concept of 
random variable, is represented by the variance or standard error of the variable. 

Full distribution analyses and first and second moment analyses are the two primary 
groups for uncertainty analysis (Dettinger and Wilson, 1981). Monte Carlo simulation and 
the method of derived distribution are the two most important procedures for full distribu- 
tion analyses. Freeze (1975) and Smith and Freeze (1979) used Monte Carlo simulation to 
investigate the uncertainty of one-dimensional groundwater flow field in non-uniform 
homogeneous media. Perturbation and Taylor series expansion methods are the funda- 
mental approaches for the first and second moment analyses. Bakr et al. (1978) and 
Gutjahr et al. (1978) used the perturbation approach to analyze the groundwater flow 
field by taking the spatial variability of the hydraulic conductivity into consideration. 
Method of Taylor series expansion is more straightforward than the perturbation 
method. Dettinger and Wilson (198 1) used the first-order uncertainty analysis to evaluate 
the uncertainty in numerical models of groundwater flow. Applications of this method on 
the flood levee design and groundwater management problems can be found respectively 
in Tung and Mays (1981) and Tung (1986, 1987). 

Probability concepts were introduced into engineering projects because of the existence 
of uncertainties in the natural environment or simply because of lack of data. Reliability 
analysis or, in its reverse sense, risk analysis has, therefore, made prominent progress in 
recent years among various fields. Definition of risk or reliability in terms of probability 
associated with the concept of loading and strength can be found in many books (e.g. Ang 
and Tang, 1984; Chow et al., 1988; Kapur and Lamberson, 1977). First-order reliability 
analysis was applied by Shinozuka (1983) and Der Kiureghian and Lin (1986) in structural 
reliability analysis. Expanding the Taylor series at a specific linearization point instead of 
the mean value is the primary feature of this approach. The general procedures in risk and 
reliability analyses using an example of culvert design have previously been described by 
Yen (1987). Furthermore, risk analysis was applied by Tung and Mays (1981) and Lee and 
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Mays (1983) towards the design of levees. Sitar et al. (1987) applied the tit-order 
reliability approach to the analysis of groundwater flow and contaminant transport. How- 
ever, the example provided in their work only considered the advection dominant effect in 
the transport equation. 

Evaluating the relationship between unconditional and conditional expectations for 
risk-based decision-making problems is of recent interest (Asbeck and Haimes, 1984; 
Petrakian et al., 1987; Ksrlsson and Haimes, 1988a, b). In general, mathematical uncondi- 
tional expectation was applied in the conventional decision-making processes. However, 
this approach may possibly conceal some information regarding extreme events as verified 
by Karlsson and Haimes (1988a). Therefore, conditional expectation was introduced to 
account for this deficiency. Conditional expectation could be calculated through partition- 
ing the probability axis of the dependent random variable (Asbeck and Haimes, 1984). 
One of the capabilities of this approach is being able to consider events with different 
levels of significance. This approach could also be introduced into groundwater contam- 
ination problems if one is interested in estimating the damage caused by an extreme event. 

An analytical solution of a one-dimensional transport equation is used here to investi- 
gate the risk owing to groundwater contamination. The uncertainty of the predicted con- 
taminant concentration is calculated by the first-order mean-centered uncertainty analysis. 
Risk is derived from the concept of the conditional probability of failure for five prob- 
ability distribution models of the predicted concentration. A conceptually hypothesized 
relationship between risk and damage is then assumed. Finally, sensitivities of the risk 
with respect to various model parameters are evaluated. 

2. Mathematical background 

A saturated groundwater system with a uniform flow field is considered. The one- 
dimensional tmnsport equation if the chemical reaction and adsorption are absent is 

ac a2c 
at- - -V$+Ds 

where C is the concentration of a contaminant; V is the uniform groundwater velocity; and 
D is the dispersion coefficient and is assumed to be a constant. The dispersion coefficient 
may be expressed as the product of the longitudinal dispersivity (cut) and the uniform 
groundwater velocity, that is D = cq,V, when neglecting the molecular diffusion. The first 
term on the right-hand side of Eq. (1) represents the advection component and the second 
term represents the dispersion component. The initial and boundary conditions related to 
Es. (1) am 

C(x, 0) = 0 (2) 

C(0, t) = co 

C@, t) = 0 

where co, a fixed value, represents the source concentration at x = O. The solution of ~q. ( 1) 
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subjected to the initial and boundary conditions of Eq. (2) is (Freeze and Cherry, 1979) 

c=~{erfc[$$]+exp(~)erfc[~]} (3) 

where erfc() is the complementary error function. 

3. uncertainty analysis 

Consider a general function, Y, which is assumed tobe composed of n random variables 
XI, x2, -em, X,:Expanding Y at the mean of each random .variables ~1, ~2, . . . . c(” and 
neglecting the second-order and higher-order terms, the first-order mean-centered Taylor 
series approximation of Y is 

The first-order mean of Y derived from Eq. (4) is (Ang and Tang, 1984) 

E(Y)=Pv S Y(Pi, &..., /&) 

and, the first-order variance of Y is 

(5) 

var(y)= i$ $~[(Xi-~i>‘] + ;$ jf @jCOv(xi9xj) 0% 

where di and dj respectively represent the partial derivatives aY/aXi and aY/?IXj evaluated 
at PI, ~2, . . . . p,,. These partial derivatives are specifically defined as the sensitivities of Y 
with respect to Xi. Assuming that the random variables XI, X2, . . . . X, are statistically 
independent of each other, then Eq. (6) can then be reduced to 

vU(Y) a ii, d~Val(Xi)=aZv (7) 

Eqs. (5) and (7) are the first-order mean and variance, respectively of the random variable 
Y. The square root of Var(Y) is, thus, the first-order mean-centered uncertainty Y. 
Following the rule of notation adopted in this section, a capital letter refers to a random 
variable and a lower-case letter refers to the realization of that random variable. For 
example, C refers to the random variable of the contaminant concentration and c refers 
to the realization of C. 

3:I. Application to transport equation 

Two random variables, velocity and longitudinal dispersivity, are involved in Eq. (3). 
The velocity is linearly related to the hydraulic conductivity on the basis of Darcy’s law. 
Freeze (1975) pointed out that the hydraulic conductivity is a lognormally distributed 
random variable. Therefore, the velocity is also considered as a random variable. 
Dispersivity was traditionally treated as a constant. Yet, uncertainties of up to 20% are 
very likely inmeasuring field dispersivity (Bedient et al., 1994, p. 147). Therefore, the 
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longitudinal dispersivity is considered as another uncertain parameter in .Eq. (3). The first- 
order mean kc) and standard deviation (ac) of contaminant concentrations can be derived 
from Eqs. (5), (6) and (7) as 

pc=?{erfc[ i&J +exp(k)erfc[ is]} 

where 

(8) 

(9) 

3 t - I 
Define the dimensionless variables of time, distance, and concentration respectively as 

r=~vr/~(~~, P=x/c(~, and K = C/CO. Then, Eqs. (8) and (9) can be rewritten in dimension- 
less forms as 

(10) 

a,= JM (11) 

where 

b= !$LL_@~p[_~] 

6,, = d,Lk -=&{&exp[-$I-ex&)erfc[s]} 
CO 

4. Evaluation of risk and damage 

Reliability (or risk) problems are usually formulated as the relationship between two 
random variables: loading (or stress) and strength (or capacity). The reliability is defined 
as the probability that the loading is less than the strength. The risk, however, is the 
complement of reliability and is defined as the probability that the. strength is less than 
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fig. 1. Robability density function of the loading fL(r) and strength f&) (source: Ang and Tang, t984). 

the loading. Let the random variables S and L refer respectively to the strength and the 
loading, the reliability (Re) and the risk (Z?) can be defined as Re = Pr(L < S) and R = Pr 
(S < L). Alternatively, the risk can be expressed by the conditional probability as 

R=Pr(S<L)= &,,Pr(S<l)Pr(L=l) (12) 

R = Pr(L > S) = dEs Pr(L > s)P@ = s) 

if the loading and strength are statistically independent. Furthermore, the risk can be 
written as the following formulas if the probability density functions (pdfs) of S and L 
are known (Ang and Tang, 1984; Kapur and Lamb-et-son, 1977): 

R= Fs(l)f&)dl or R= [l -FLM~~(W (13) 

wherefs() and Fs() are respectively the pdf and cumulative distribution function (CDF) of 
S, as are fL() and FL() for L. The shaded area under the pdf of S shown in Fig. 1 is the 
probability or risk, for S < I, that is, Fs(Z). If the strength is a deterministic value, Eq. (13) 
reduces to 

R=Pr(L>s*)= 
r S' 

fL(W 

where S* is the deterministic strength as indicated in Fig. 2. 
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Fig. 2. Alternative dfdinition of risk for deterministic strength s*. 

4.1. Risk of groundwater contamination 

Since Eq. (3) involves two random variables cry and V, the predicted concentration, C, is 
also a random variable and has the mean and standard deviation respectively expressed in 
Eqs. (8) and (9). Consider the loading as the predicted concentration C, and the strength as 
the maximum acceptable upper limit of contaminant concentration, c*, the risk then 
becomes 

R=Pr(C>c*) (14) 

If the probability distribution of C is known, the risk can be directly calculated by Eq. (14). 
Yet, specifying a precise distribution of C is generally impossible owing to finite sampling 
data available for most contamination cases. Thus, the distribution for sample concentra- 
tion data may be represented by a chosen probability distribution based on the results of 
goodness of fit tests and/or the graphical plot of data. 

4.2. Choice of probability model for predicted concentration 

The probability distribution for the contaminant concentration has to be known prior to 
computing the risk. However, the sampling data and probability information concerning 
the contamination are usually limited. Therefore, the adopted probability model is gen- 
erally not able to completely describe the natural randomness. The method of x2 statistics 
and sample likelihood were previously used by Castano et al. (1978) for choosing. suitable 
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probability models. They suggested that a composite model could be used such that 
different weights can be given to models with different ranks. A composite model was 
also employed by Tung and Mays (198 1) towards the evaluation of flood levee design. All 
the techniques, however, require sample data. Yet, collecting a representative set of 
sample data may requires a great effort in engineering practice. 

Contamination caused by multiple sources with variable release concentration and 
pattern which frequently happens in the real world, makes the distribution of the con- 
taminant concentration hard to predict. Therefore, five probability distribution models are 
considered here to represent the possible distributions of the contaminant concentrations. 
These models include the normal, lognormal, gamma, Gumbel, and Weibull. The normal 
distribution (N) is the most widely used and most important probability distribution func- 
tion (Harm, 1977, p. 84). It is symmetrically distributed and the magnitude of the variate 
can range from negative infinity to positive infinity. However, hydrologic quantities and 
environmental data are usually positive. Also, as the adverse effects of environmental 
pollution usually are associated with very high concentration, interest customarily focuses 
on the tails of the probability distributions (Ott, 1995). The lognormal distribution (LN) 
which considers only the positive. random variables is, therefore, more realistic. The 
concentration of contaminants in environmental media is usually lognormally distributed 
(Ott, 1990). It has been used to model many kinds of environment contaminant data, for 
example, air quality data (Mage, 1974). radionuclide data sets (Horton et al., 1980), and 
dissolved solids in groundwater (David, 1966). The gamma distribution (GA) has been 
used to fit total suspended particulate data (Lynn, 1974). Sherwani and Moreau (1975) 
analyzed water quality data from monitoring stations to determine the best fits of three 
probability models: the normal, lognormal, and gamma, to the observed frequency dis- 
tributions. Both the Gumbel and Weibull distributions are extreme value distributions. The 
Gumbel distribution is the largest extreme value type I and the Weibull distribution is the 
smallest extreme type III distribution (Ang and, Tang, 1984). The Gumbel distribution 
(GB) was first used to analyze the frequencies by Gumbel (1954). It is often used for 
maximum type events and results from any initially unlimited distribution of exponential 
type which converges to an exponential function (Rite, 1977). Roberts (1979) reviewed 
extreme value theory for its applicability to air pollution problems, and Kinnison (1985) 
applied it to a variety of problems such as environmental pollution and forecasting floods. 
The Weibull distribution (WB) was found to be well suited for describing spatial and 
temporal distributions of atmospheric radioactivity (Apt, 1976). Furthermore, Georgopoulos 
and Seinfeld (1982) discussed the applications of the gamma and Weibull distributions to 
air pollution concentrations. Derived formulas to compute the risk based on these five 
probability distribution models are given in Appendix A. The method of moments is used 
in this paper to estimate the parameters of those distribution models. 

4.3. Conditionul probability 

Physically interesting values of the contaminant concentration are in the range between 
zero and CO. Yet, the predicted concentration by a chosen probability distribution model 
may attain. values beyond that range. It is, therefore, necessary to truncate the infeasible 
values from the original distribution. Mood et al. (1988) introduced a method for deriving 
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a truncated distribution. The truncation of the pdf of the predicted contaminant concen- 
tration should add more weight to the remaining distribution if the random variable is out 
of the range of (cl, CO) where cI represents the lower bound of each distribution. Thus, the 
truncated pdf can be expressed as 

fc(C) = fC(~z(wo) 1 if c/ 5 C d co 

Wco) -F&c,) 
where I(,,,,) = 

0 otherwise 
(1% 

Furthermore, Eq. (14) can be rewritten through usage of the conditional probability. 
Define two events A and B such that A = (ClC > c’) and B = (Clc, 5 C I co), where 
event A accounts for the original risk region and event B stands for the physically possible 
region of the predicted concentration. The risk can then be expressed as the conditional 
probability of event A given event B, that is 

R=Pr(AIB)= Pr(A n B)) = k(c)-wC*) 

MB) ~c(co) -k(q) 
(16) 

where Fc() is the CDF of C. 

4.4. Confidence interval of the mean risk 

Random variables are generally represented by point estimators or interval estimation. 
The most commonly seen point estimators are mean and variance. Since the true mean and 
true variance of the risk are actually unknown, the interval estimation, or the confidence 
interval, is, therefore, used for representing the true mean risk. By assigning the signifi- 
cance level &, the confidence interval of the mean risk is (Devote, 1987) 

L R-t 8 
2,n-1 

.sR R+tL.SR 
fi 2,n-1 ) fi 

(17) 

where n is the sample size, I? is the sample mean of risk, sx is the Sample standard error of 
risk, and t8c12,n_l is the variate of the students’ t-distribution given that the significance 
level is P, and- the degree of freedom is n - 1. 

4.5. Conditional expectation of the damage 

The conventional approach in risk analysis uses mathematical expectation as an index 
for evaluating the damage. Many practical problems, however, are essentially multi- 
objective. In addition, some probabilistic information such as extreme events which are 
of great concern may have been lost by using only one expected value. In other words, the 
mathematical expectation may either underestimate the low probability events or over- 
estimate the high probability events. A new approach with the capability of consider&g 
extreme events is, therefore, necessary. 

The definition of damage can be different inmany aspects. Five categories of damage 
are commonly reported in flood damage estimation: direct damages, indirect damages, 
secondary damages, intangible damages, and uncertainty damages (Mays and Tung, 



388 T.-S. Lieu, H.-D. YeWJoumal of Hyddogy 199 (1997) 378-402 

1992). They indicated that the empirical depth-damage curve is the most common method 
in estimating flood damage. However, it requires a property survey which is usually 
insufficient or difficult in most cases. Empirical or hypothesized damage function are, 
therefore, necessary. In analysing a flood levee reliability problem, Wood (1977) used a 
hypothesized damage function which indicated that the damage increased quadratically 
with exceedance discharge. Asbeck and Haimes (1984) assumed a power series damage 
function for considering the resource damage and the emission level of sulfur dioxide. 
Based on a data set of damage and the predicted concentration, Petrakian et al. (1987) 
showed that the discrete probability density function of damage can be derived from the 
CDF of the predicted concentration. Therefore, the damage function, or the pdf of damage, 
may be derived from past experience, curve fitting, or a given relationship between the 
predicted concentration and damage. 

Because of the scarcity of data relating the predicted concentration to the damage, a 
hypothesized damage function is assumed herein. The function is subject to the following 
three constraints: (1) the damage increases with higher values of the predicted concentra- 
tion; (2) the rate of increase of damage is ai least linear: (3) a lower limit of damage exists 
when the predicted concentration is zero. One can, then, propose the following hypo- 
thetical damage function, 4, as 

G=+(C)=b ef-1 
( > 

(18) 

where G is the damage and b is a constant that converts the value of concentration into a 
measurement of damage in monetary units. The value of b here is assumed to be 100. The 
lower bound of Eq. (18) is zero if C is equal to zero. The damage G in Eq. (18) is a random 
variable because of the randomness of the predicted concentration C. In addition, the pdf 
of G can be related to the pdf of C by a derived distribution. If two random variables, Q and 
W, have a functional relationship, W = h(Q) and the pdf of Q is known asf,$q), the pdf of 
W may be expressed as (Ang and Tang, 1975) 

where h-’ is the inverse function of the function h(Q). The notation of the absolute value in 
ISI. (19) cm be dropped if the function h is monotonically increasing. Substituting Eq. (18) 
into Bq. (19) gives&(g) =fc(~-‘(g))id~-‘(g)/dgl =fc(4-‘(g))lb. Having derived the pdf 
of damage, the conditional expectation can be defined as (Karlsson and Haimes, 1988b) 

-- l&(&d8 (20) 

,wherefo is the pdf of G, p, and pkl are the probabilities of the two partitioning points on 
the probability axis of G. Choosing these two partitioning points such that pi corresponds 
to the case where the risk, ri, equals to the mean risk ii, and pi+l corresponds to the case 
where the risk, yi+l = 1. That is, 

Pi=FG~~)=FG[~(s)l=FG(~[F~l(rr)l) (21) 

Pi+l=FG{~[~~‘(~i+I)]} 
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and ‘yi =R and ybl = 1. The CDF of damage, FG, can be related to the CDF of the random 
variable C by Fe(c) = Pr(C I c) = Pr(G 5 g) = Pr[G I 9(c)] = F&(c)]. The point with 
the cumulative probability of pi on tire axis of the random variable G, which corresponds to 
the risk ri on the aXis of C, is gi = +[@(l - n)]. Substituting IQ. (21) into Es. (20) yields 

(22) 

The unconditional expectation of the damage can be derived in a way similar to that used 
for deriving the mean of concentration. The damage function can be expanded to the 
second-order as 

(23) 

Taking the expectation of Eq. (23) then yields the mean of damage as 
G=bfl(l+&2)-b. 

5. sensitivity analysis 

Sensitivity is a measurement of the influence of a system input onto the system output. 
Kabala and Milly (1990) declared that three commonly used approaches for sensitivity 
analysis are perturbation, direct and adjoint methods. The perturbation method is simple 
but may be limited by the choice of perturbation and the computational effort The direct 
approach examines sensitivity by partially differentiating system equations with respect to 
parameters. The adjoint approach can be employed for solving the system output and 
sensitivities simultaneously by describing the system and its sensitivities by means of 
the governing equation and its adjoint. Sykes et al. (1985) used the adjoint operators to 
analyze the sensitivities of piexometric head and velocity in groundwater flow. McElwee 
and Yukler (1978) calculated the sensitivity of drawdown with respect to transmissivity 
and storage coefficient with the direct method. The sensitivity coefficients in this paper are 
obtained through combining tire concepts of the perturbation method and differentiation. 

5. I. Sensitivify coefficient 

The risk can be expressed in a general function, q, for each predicted distribution of the 
contaminant concentration as R = &, t, pv, c(_, uv, a_, c’) whete the four statistics and 
c* compose the input parameters of the system. The sensitivity coefficient of the system 
output to a parameter 8, in a dimensionless form, can be defined as 

dR/R aR 0 
sb=delB=asR (24) 

which is a measure of the change of system output owing to the change of system input. 
Besides, the partial derivative in Eq. (24) is defined as tire sensitivity. Rd where Ro = aR/&?X 

The magnitude of the sensitivity coefficients varies depending on the considered 
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distribution of the contaminant concentration and the model parameters. Sensitivity coef- 
ficients can otherwise be expressed in terms of log-transformed values, that is: 

i 

u=l if 0 < S, I 1 

&=sgn(x~)log,o(lxeI) xe= - 1 if - 1 5 So < 0 (25) 

xe=S if I&l > 1 

where Se and ZB are respectively the original and transformed sensitivity coefficient and 
sgn(xd) = 1 if Se > 0; otherwise, sgn(x0) = -1. In other words, Fq. (25) implies that ZB will 
be zero if the value of SB is between -1 and 1, and Z,r will be the log-transformed counter- 
part of So if it is located beyond the range (-1, 1). 

Sensitivity coefficients and sensitivities have the same sign because the parameter, 8, 
and the risk, R, are always positive. If Rd is positive, the risk will increase while 0 increases 
or vice versa. If Ro is negative, the risk will increases if 0 decreases. 

5.2. Second-order analysis 

Results of the first-order uncertainty analysis of C, S,, , and Sk contain respectively the 
terms aa&~v and au,-/+_ which involve the second-order derivatives with respect to V 
and cq_. However, only first-order derivatives with respect to V and q_ are contained in the 
sensitivity coefficients of the risk to uncertainties of velocity and dispersivity, i.e. aR/aaV 
and aR/au,, . Since the sensitivity coefficients of the risk with respect to mean values of V 
and (r~ are generally larger than that with respect to the uncertainties of V and aL, the 
influence of the second-order derivatives on the values of sensitivity coefficients may be 
significant. If one expands the mean concentration to the second order, that is, 

wheref(~v~c,) refers to the right-hand side of Eq. (8). The derivative of pc with respect to 
QV and c,, is then no longer zero and the second-order derivatives also appear in the 
sensitivity coefficients with respect to uv and a,_. In short, large deviations among these 
sensitivity coefficients may result from truncating the second-order and higher order 
derivatives in uncertainty analysis. 

6. An example and discussion 

A random and contaminated subsurface field is given herein as an example to demon- 
strate the calculation of the mean risk, confidence interval, and conditional expectation of 
damage and sensitivity coefficients. Assume that the groundwater velocity V is log- 
normally distributed with the mean pu and standard deviation uu while U = In V and 
the longitudinal dispersivity aL is normally distributed with cc,. Data of pu = 0.7 m s-l, 
UIJ = 0.14 m s-‘. pLcrL = 10.0 m, and a,, = 1.2 m are assumed to be obtained from N sampling 
points by ‘a hydrogeologic site investigation. The value of the maximum acceptable upper 
limit of dimensionless concentration is taken as 0.77. 
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Fig. 3. Algorithm for computing the mean risk and confidence interval for a specific distribution model where M is 
the number of Monte Carlo runs and N is the number of generated data. 
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6.1. Monte Carlo simulation 

Monte Carlo simulation is employed here to calculate the sample risk. Firstly, a set of Vi 
and qi, with i = 1, 2 ,..., N for the random field is generated by: 

vi=exP(zi~U+Pu) (27) 
and 

where 7.i is the standard normal variate. Sample mean and standard error of V and (IIL are 
calculated using those N-generated data. Then, estimated mean and standard deviation of 
the predicted concentration can be obtained by plugging the sample statistics of V and q, 
into Eqs. (8) and (9). Parameters of each concentration distribution model can be com- 
puted according to the estimated statistics of the predicted concentration. Hence, different 
sample risks can be calculated based on Eqs. (Al) to (A5) in Appendix A for different 
concentration model. The same procedures descr&ed above are carried out M times. The 
mean risk can then be estimated by M sample risks and the confidence interval of the mean 

0.90 

0.88 

0.85 

0.80 

0.78 

0.75 
4.0 

. 
??

-2.0 0.0 2.0 4.0 

Standard normal variate 

Fig. 4. Probability plot of sample t-i& from normally distributed concentration for a sample with sample size Of 
100. Where the c0rrehtion coefficient is 0.99. 
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Fig. 5. Risk versus 7 at different values of p for normally distributed concentration. 

risk can be computed by Eq. (17). Fig. 3 presents a flow chart to illustrate the calculation 
procedures of the mean risk and confidence interval when using the Monte Carlo 
simulation. 

The number of sampling points, N, and the number of Monte Carlo runs M are deter- 
mined herein by numerical experiments. By trying the values of 100,500, and 1000 for N, 
it was found that the computed sample risk approaches to a constant for N 2 500. Eq. (17) 
requires that the underlying distribution of the sample risk should be approximately 
normal. Fig. 4 shows that the sample risk data is approximately linearly distributed 
with respect to the standard normal variate with the correlation coefficient value of 0.99 
when M is equal to one hundred. Accordingly, the numbers of N and M am respectively 
chosen as 500 and 100 for each distribution model. 

6.2. Simulation results 

Fig. 5 shows the values of the risk versus dimensionless time T at dimensionless 
distances of p = 10, 15, and 20, respectively, calculated by Eq. (Al) for the case of 
normally distributed concentration model. This figure indicates that the risk increases as 
r increases from T = 0 and decreases with increasing p. Similar trends predicted by 
distribution models represented by Eqs. (A2) to (A5) are also exhibited, although not 
shownin this paper. 
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Fig. 6. Illustration for normlly distributed pdf of dimensionless concentration K when T = 9.8 and 14 at p = 10. 

Fig. 6 illustrates the normally distributed distributions of dimensionless concentration K 

for r = 9.8 and 14, respectively, at p = 10. Obviously, the distribution of K for r = 14 is more 
peaked than for 7 = 9.8. Therefore, the area under the pdf curve to the right of K* while K’ = 

c*/c, for r = 14 is significantly greater than the area for r = 9.8. This indicates that the risk 
increases for increasing T at a constant p. On the other hand the first-order mean con- 
centration becomes smaller as p increases at a constant 7. 

Fig. 7 manifests the confidence intervals of the mean risk for the Weibull and Gumbel 
distribution models at p = 10. It has been found that the width of the confidence interval is 
largest in the case of Weibull distribution and smallest in the case of Gumbel distribution 
among these five distribution models. 

6.3. Conditional expectation of the damage 

The conditional expectation of damage with respect to the risk is shown in Fig. 8 for 
those five contaminant distribution models. The unconditional expectation of damage, 
indicated by the solid line, is also shown in the figure. Note that the unconditional expecta- 
tion of damage, having the upper and lower limits of 0 and 172 respectively if the 
coefficient 6 is 100 in Eq. (18), is independent of the concentration distribution. Interest- 
ingly, the conditional expectation of damage for each contaminant distribution is signifi- 
cantly greater than the unconditional one if the risk is less than 0.1. This is due to the fact 
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Fig. 7. Confidence interval (CI) of the mean risk for Weibull and Gumbel distribution models at p = 10. 

that these two approaches give different weights to the first moments of the damage. Yet, 
the limiting case of the conditional expectation of damage, i.e. the risk approaching 1, will 
approach the unconditional one as indicated in Fig. 8. 

The area under a pdf curve between two neighboring values of the random variable is 
defined as “probability mass”. The expected value of a random variable can then be 
defined as a weighted sum of the probability mass of that random variable. In the case 
of unconditional expectation, a constant weight, 1, is applied to each probability mass. 
However, a weight depending on the level of significance is given to the probability mass 
in the case of conditional expectation. The probability mass in the case of conditional 
expectation corresponds to the mass under the pdf curve between two pre-defined points 
expressed in EGq. (21). Accordingly, the weight for the conditional expectation is the 
inverse of the cumulative probability between these two points. That is, the smaller the 
risk, the larger the weight and the larger the conditional expectation of damage. The 
conditional expectation will obviously approach the conditional expectation if the risk 
approaches 1. 

In short, the critical drawback of the unconditional expectation is that it fails to evaluate 
the importance of events with low risks. It is also unable to provide different weights to 
events with different levels of significance. The overall effect of evaluating damage could 
be underestimated if the unconditional approach is implemented by a decision maker. The 
convetional unconditional approach which treats the probability mass as a whole may, 
therefore, be inadequate to describe the low risk events. 
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Fig. 8. Comlitiond and unconditional expectations of damage with respect to the risk for normally distributed 
concentrdn at p = 10. 

6.4. Sensitivity coefticients of the risk 

Sensitivity coefficients for the case of p = 10 are considered herein. However, conclu- 
sions drawn from this case also apply to other values of p. Figs. 9 and 10 show the 
sensitivity coefficients versus the risk for different concentration distributions models. 
Fig. 9 demonstrates that the Weibull distribution has the largest absolute sensitivity coef- 
ficients with respect to the parameter c*. For the other four parameters, however, gamma 
distribution has the largest sensitivity coefficients. The sensitivity coefficient of the risk to 
pv shown in Fig. 10 indicates that the gamma distribution has the largest sensitivity 
coefficient. It is found that the risk is most sensitive to pR for all distribution models, 
and least sensitive to 0% for each concentration distribution except the gamma distribu- 
tion, which is least sensitive to c*. This is illustrated in Fig. 11, where the sensitivity 
coefficients of the risk to the five parameters for normally distributed concentration at p = 
10 are shown. Therefore, it can be concluded from above observations that the risk is most 
sensitive to paL, but least sensitive to upL. 

7. ConcIuaIon and recommendations 

The following conclusions can be drawn from this study: 
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Fig. 9. Log-tmnsfomd sensitivity co&Cents of the risk to c* for fin concentration distribution mod& at 
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1. 
2. 

3. 

The risk increases with r for constant p and decreases with p for constant T. 
Conditional expectation of damage is signiticantly greater than the unconditional one 
for events with small risks. The conventional unconditional expectation could possibly 
underestimate the damage. 
Mean dispersivity, p_, is the most sensitive parameter among the five distribution 
models of the predicted concentration. The uncertainty of dispersivity, uaL is the least 
sensitive parameter among all the distribution models except for the Gamma and 
Weibull distributions. 

One can make the following recommendations: 

The conventional unconditional expectation has been shown to be unable to adequately 
describe the low probability events. The conditional expectation for various levels of 
significance should be considered in the decision-making process. 
Each distribution model of the predicted concentration contributes positively in the 
calculation of risk Using a composite probability model which combines possible 
concentration distribution models and gives different weights to each alternative 
depending on its importance is recommended. This would particularly be suitable 
for conditional expectation of damage. 
The mean dispersivity has been shown to be the most sensitive parameter because of 
the truncation of high-order terms in uncertainty analysis. Second-order uncertainty 
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Fig. 10. Log-W&formed sensitivity coefficients of the risk to cv for five concentration distribution models af 
p= 10. 

analysis is suggested for application in uncertainty analysis owing to the obtained 
remarkable differences in sensitive coefficients. 
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Appendix. A. Formulas of the risk for different distribution models 

Appendix A. 1. Normal diskibution 

where pc .and ai: are the mean-and standard deviation of C. 
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Appendix A.2. L.ognonnal distribution 

/ 

0.8 1.0 

for nommlly distributed concen- 

where y = ln c, 4 = ln(1 + &&), and py = ln pc - &2. 

Appendix A.3. Gamma distribution 

RGA = p(@A, AAc> -p(&, &c*) 
p(lpA, AACO) 

(~43) 

where ,$, = &t& A A = &a~ and P(,) is the incomplete gamma function. 
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Appendix A.4. Gumbel distribution 

,,a=exp[-ex~(-~)]-exp[-exp(-~)] 
exp[-exp(- y)] -.xp[-exP(z)] 644) 

where ~0 = ccc - 0.5772~ and (IIG = &a&. 

Appendix AS. Weibull distribution 

(A51 

where QW and &,t are the solutions.of the following equations: 

and 

where I’() is the gamma function. 
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