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We study the confinement-deconfinement phase transition in a holographic soft-wall QCD model.
By solving the Einstein-Maxwell-scalar system analytically, we obtain the phase structure of the black
hole backgrounds. We then impose probe open strings in such a background to investigate the
confinement-deconfinement phase transition from different open string configurations under various
temperatures and chemical potentials. Furthermore, we study the Wilson loop by calculating the
minimal surface of the probing open string world sheet and obtain the Cornell potential in the
confinement phase analytically.
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I. INTRODUCTION

There are various phase structure phenomena in quantum
chromodynamics (QCD) theory. The confinement-
deconfinement phase transition is one of the most important
phenomena in the QCD phase diagram. It is widely believed
that the system is in the confinement phase in the low
temperature T and small chemical potential μ (low quark
density) region, in which quarks are confined to hadronic
bound states, e.g., mesons and baryons. On the other hand, it
is in the deconfinement phase in the high temperature and
large chemical potential (high quark density) region, in
which free quarks exist, e.g., the quark gluon plasma. It is
natural to conjecture that there exists a phase transition
between the two phases, as shown in Fig. 1(a) (carton phase
diagram at m ¼ 0).
Understanding the confinement-deconfinement phase

transition in QCD is a very important but extremely difficult
task. The interaction becomes strong around the phase
transition region, so that the conventional perturbation
method in quantum field theory does not work. For a long
time, lattice QCDwas the only method to attack the problem
of phase transitions in QCD [2,3]. According to the calcu-
lation in lattice QCD, the confinement-deconfinement phase
transition is first order in the zero-quark-mass limit mq ¼ 0.
However, with a finite quark mass a part of the phase
transition line would become a crossover. For small and
large quarkmasses, the behaviors of the phase transformation
at zero chemical potential (μ ¼ 0) have been calculated using
lattice QCD. The phase diagrams are conjectured and shown
(carton phase diagrams at finite m) for a light quark and a
heavy quark in Figs. 1(b) and 1(c), respectively.

However, lattice QCD faces the so-called sign problem at
finite chemical potential. To study the full phase structure in
QCD, we need new methods. During the last 15 years, the
AdS=CFT duality has been developed in string theory [4].
Using this duality, the quantum properties in a conformal
field theory can be investigated by studying its dual string
theory in an anti–de Sitter (AdS) background. Lately, the
AdS=CFT duality has been generalized and applied to
nonconformal field theory including QCD, namely,
AdS/QCD or holographic QCD [5–26]. Holographic
QCD offers a suitable frame to study phase transitions
in QCD at all temperatures and chemical potentials. There
are two types of holographic QCD models, i.e., top-down
and bottom-up models. In this work, we will study a
bottom-up model based on the soft-wall model [11], which
is the first holographic QCD model realizing the linear
Regge spectrum of mesons [27]. The holographic QCD
model to describe heavy quarks was constructed in
Ref. [24]. The meson Regge spectrum and phase structure
in QCD were studied by analytically solving the full
backreacted Einstein equation. In Refs. [28–40], a probe
open string in an AdS background was studied. In
Ref. [26], probe open strings were added to the holographic
QCD model for heavy quarks and the behavior of open
strings was studied in the black hole background. By
combining the various open string configurations and the
phase structure of the black hole background, a new
physical picture of the phase diagram for the confine-
ment-deconfinement phase transition in holographic QCD
was suggested. A holographic QCDmodel to describe light
quarks was also studied in Ref. [25]; however, the scalar
field becomes complex, which causes some problems.
In this work, we construct a bottom-up holographic QCD

model by studying its dual five-dimensional gravity theory
coupled to an Abelian gauge field and a neutral scalar
field, i.e., the Einstein-Maxwell-scalar system (EMS). We
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analytically solve the equations of motion to obtain a
family of black hole backgrounds which depend on two
arbitrary functions fðzÞ and AðzÞ. Since one of the crucial
properties for soft-wall holographic QCD models is that the
vector-meson spectrum satisfies the linear Regge trajecto-
ries at zero temperature and zero density, we are able to fix
the function fðzÞ by requiring the linear meson spectrum.
Then, by choosing a suitable function AðzÞ, we obtain a
black hole background which appropriately describes
many important properties in QCD. We explore the phase
structure of the black hole background by studying its
thermodynamic quantities under different temperatures and
chemical potentials. In addition, we study the Wilson loop
[41] and the light quark potential in our holographic QCD
model by putting a probe open string in the black hole
background and studying the dynamics of the open string.
We find three configurations for the open string in a black
hole, as in Fig. 2. Combining the background phase
structure and the open string breaking effect, we obtain

the phase diagram for the confinement-deconfinement
transition.
The paper is organized as follows. In Sec. II, we review

the EMS system and obtain a family of analytic black hole
background solutions. We study the thermodynamics of
the black hole backgrounds to get their phase structure in
Sec. III. We add a probe open string to the black hole
background to study their various configurations. We
calculate the expectation value of the Wilson loop and
study the quark potential in Sec. IV. By combining the
background phase structure and the open string breaking
effect, we obtain the phase diagram for the confinement-
deconfinement transition in Sec. V. We conclude with our
results in Sec. VI.

II. EINSTEIN-MAXWELL-SCALAR SYSTEM

The EMS system has been widely studied in constructing
bottom-up holographic QCD models. In this section, we

(a) (c)(b)

FIG. 2. Three configurations for open strings in a black hole background. When the black hole is absent (a), open strings are always
connected with two ends attached on the AdS boundary. In the small black hole case (b), the strings cannot exceed a certain depth from
the boundary and are still connected, with their two ends on the AdS boundary. For the large black hole case (c), the open strings with
their two ends separated enough will break into two open strings where one end stays on the AdS boundary and the other falls into the
black hole horizon.

(a) (b) (c)

FIG. 1. (a) The first schematic QCD phase diagram of hadronic matter claimed by Cabibbo and Parisi in 1975, where ρB labels the
baryon density. The transition line divided the phase space into two phases. Quarks are bounded in phase I and unconfined in phase II
[1]. (b) Nowadays, lattice simulations have convinced people that the QCD phase diagram behaves as (a) in the chiral limit, but a
crossover regime exists for massive cases. A light-quark phase transition should look similar to panel (b); otherwise, it would resemble
panel (c) when considering heavy quarks even the pure gauge limit.
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briefly review the EMS and, by solving the equations of
motion analytically, we obtain a family of black hole
solutions which we have previously studied in
Refs. [24–26].

A. String frame and Einstein frame

We consider a five-dimensional EMS system with probe
matter fields. The system can be described by an action
with two parts: a background sector SB and a matter
sector Sm,

S ¼ SB þ Sm: ð2:1Þ

In the string frame (labeled by a subindex s), the back-
ground part SB includes a gravity field gsμν, a Maxwell
field Aμ, and a neutral scalar field ϕs,

SB ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffiffiffi
−gs

p
e−2ϕ

s

×

�
Rs −

fsBðϕsÞ
4

F2 þ 4∂μϕ
s∂μϕs − VsðϕsÞ

�
; ð2:2Þ

where G5 is the five-dimensional Newtonian constant,
Fμν ¼ ∂μAν − ∂νAμ is the gauge field strength correspond-
ing to the Maxwell field, fsBðϕsÞ is the gauge kinetic
function associated to the Maxwell field, and VsðϕsÞ is the
potential of the scalar field. The matter part Sm of the EMS
system includes massless gauge fields AV

μ and A ~V
μ , which

are treated as probes in the background, describing the
degrees of freedom of vector mesons and pseudovector
mesons on the four-dimensional boundary,

Sm ¼ −
1

16πG5

Z
d5x

ffiffiffiffiffiffiffiffi
−gs

p
e−2ϕ

s

�
fsmðϕsÞ

4
ðF2

V þ F2
~V
Þ
�
;

ð2:3Þ

where fsmðϕsÞ is the gauge kinetic function of the gauge
fields AV

μ and A ~V
μ . It is worth mentioning that the gauge

kinetic functions fsB and fsm are positive-defined and are not
necessary to be the same. For simplicity, in this paper we
set fsB ¼ fsm ¼ fs. We have constructed the EMS system
in the string frame, in which it is natural to impose the
physical boundary conditions when solving the back-
ground solution according to the AdS=CFT dictionary.
However, it is more convenient to solve the equations of
motion and study the thermodynamical properties of QCD
in the Einstein frame.
The string frame action is characterized by the expo-

nential dilaton factor in front of the Einstein term, i.e.,
e−2ϕ

s
Rs. To transform the action from string frame to

Einstein frame, in which the Einstein term is expressed in
the conventional form, we make the following Weyl
transformations,

ϕs ¼
ffiffiffi
3

8

r
ϕ; gsμν ¼ gμνe

ffiffi
2
3

p
ϕ; fsðϕsÞ ¼ fðϕÞe

ffiffi
2
3

p
ϕ;

VsðϕsÞ ¼ e−
ffiffi
2
3

p
ϕVðϕÞ: ð2:4Þ

Thus, in the Einstein frame, the actions in Eqs. (2.2)–(2.3)
become

SB ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p

×

�
R −

fðϕÞ
4

F2 −
1

2
∂μϕ∂μϕ − VðϕÞ

�
; ð2:5Þ

Sm ¼ −
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
fðϕÞ
4

ðF2
V þ F2

~V
Þ
�
: ð2:6Þ

B. Black hole solution

Now we are able to derive the equations of motion of our
EMS system from Eqs. (2.5)–(2.6). We first study the
background by turning off the probe matter of the vector
field AV

μ and pseudovector field A ~V
μ . The equations of

motion can be derived as

∇2ϕ ¼ ∂V
∂ϕ þ F2

4

∂f
∂ϕ ; ð2:7Þ

∇μ½fðϕÞFμν� ¼ 0; ð2:8Þ

Rμν −
1

2
gμνR ¼ fðϕÞ

2

�
FμρF

ρ
ν −

1

4
gμνF2

�

þ 1

2

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2 − gμνVðϕÞ

�
:

ð2:9Þ

Since we are going to study the thermodynamical proper-
ties of QCD at finite temperature using the gauge/gravity
correspondence, we consider the following blackening
ansatz of the background metric in the Einstein frame:

ds2 ¼ e2AðzÞ

z2

�
−gðzÞdt2 þ dx⃗2 þ dz2

gðzÞ
�
; ð2:10Þ

ϕ ¼ ϕðzÞ; Aμ ¼ ðAtðzÞ; 0⃗; 0Þ; ð2:11Þ

where z ¼ 0 corresponds to the conformal boundary of the
five-dimensional spacetime and gðzÞ stands for the black-
ening factor. Here we have set the radius of AdS5 to be
unity by scale invariance.
Plugging the ansatz in Eqs. (2.10)–(2.11) into the

equations of motion (2.7)–(2.9) leads to the following
equations of motion for the background fields:
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ϕ00 þ
�
g0

g
þ 3A0 −

3

z

�
ϕ0 þ

�
z2e−2AA02

t fϕ
2g

−
e2AVϕ

z2g

�
¼ 0;

ð2:12Þ

A00
t þ

�
f0

f
þ A0 −

1

z

�
A0
t ¼ 0; ð2:13Þ

A00 − A02 þ 2

z
A0 þ ϕ02

6
¼ 0; ð2:14Þ

g00 þ
�
3A0 −

3

z

�
g0 − e−2Az2fA02

t ¼ 0; ð2:15Þ

A00 þ 3A02 þ
�
3g0

2g
−
6

z

�
A0 −

1

z

�
3g0

2g
−
4

z

�
þ g00

6g
þ e2AV

3z2g
¼ 0:

ð2:16Þ
Next, we specify the physical boundary conditions to solve
Eqs. (2.12)–(2.16). We impose the conditions that the
metric in the string frame is asymptotic to AdS5 at the
boundary z ¼ 0 and the black hole solutions are regular at
the horizon z ¼ zH.

(i) z → 0:

Að0Þ þ
ffiffiffi
1

6

r
ϕð0Þ ¼ 0; gð0Þ ¼ 1: ð2:17Þ

(ii) z ¼ zH:

AtðzHÞ ¼ gðzHÞ ¼ 0: ð2:18Þ

It is natural to introduce the concepts of chemical
potential μ and baryon density ρ in QCD from the temporal
component of the gauge field At using the holographic
dictionary of the gauge/gravity correspondence,

AtðzÞ ¼ μþ ρz2 þOðz4Þ: ð2:19Þ

As mentioned in the Introduction, one of the crucial
properties of soft-wall holographic QCD models is that
the vector-meson spectrum satisfies the linear Regge
trajectories at zero temperature and zero density, i.e.,
μ ¼ ρ ¼ 0. This issue was first addressed in the soft-wall
model [11] using the method of AdS/QCD duality.
We consider the five-dimensional probe vector field V

in the action (2.3). The equation of motion for the vector
field reads

∇μ½fðϕÞFμν
V � ¼ 0: ð2:20Þ

Following Ref. [11], we first use the gauge invariance to
fix the gauge Vz ¼ 0; then, the equation of motion of the
transverse vector field Vμ ð∂μVμ ¼ 0Þ in the background
(2.10) reduces to

−ψ 00
i þ UðzÞψ i ¼

�
ω2

g2
−
p2

g

�
ψ i; ð2:21Þ

where we have Fourier transformed the vector field Vi as

Viðx; zÞ ¼
Z

d4k
ð2πÞ4 e

ik·xviðzÞ; ð2:22Þ

and further redefined the functions viðzÞ with

vi ¼
�

z
eAfg

�
1=2

ψ i ≡ Xψ i; ð2:23Þ

with the potential function

UðzÞ ¼ 2X02

X2
−
X00

X
: ð2:24Þ

In the case of zero temperature and zero chemical potential,
we expect that the discrete spectrum of the vector mesons
obeys the linear Regge trajectories. Equation (2.21) reduces
to a Schrödinger equation,

−ψ 00
i þUðzÞψ i ¼ m2ψ i; ð2:25Þ

where −m2 ¼ k2 ¼ −ω2 þ p2. To produce the discrete
mass spectrum with the linear Regge trajectories, the
potential UðzÞ should be in a certain form. A simple
choice is to fix the gauge kinetic function as

fðzÞ ¼ e�cz2−AðzÞ; ð2:26Þ

which causes the potential to be

UðzÞ ¼ −
3

4z2
− c2z2: ð2:27Þ

The Schrödinger equation (2.25) with the potential in
Eq. (2.27) has the discrete eigenvalues

m2
n ¼ 4cn; ð2:28Þ

which is linear in the energy level n, which is expected
for a vector spectrum at zero temperature and zero density
(known as the linear Regge trajectories) [27].
Once we fix the gauge kinetic function fðzÞ, the

equations of motion (2.13)–(2.16) can be analytically
solved as

ϕ0ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6

�
A00 − A02 þ 2

z
A0
�s
; ð2:29Þ

AtðzÞ ¼ μ
ecz

2 − ecz
2
H

1 − ecz
2
H

; ð2:30Þ
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gðzÞ ¼ 1 −
1R zH

0 y3e−3Ady

"Z
z

0

y3e−3Ady −
2cμ2

ð1 − ecz
2
HÞ2

�����
R zH
0 y3e−3Ady

R zH
0 y3e−3Aecy

2

dyR
z
zH
y3e−3Ady

R
z
zH
y3e−3Aecy

2

dy

�����
#
; ð2:31Þ

VðzÞ ¼ −3z2ge−2A
�
A00 þ 3A02 þ

�
3g0

2g
−
6

z

�
A0 −

1

z

�
3g0

2g
−
4

z

�
þ g00

6g

�
: ð2:32Þ

Equation (2.29)–(2.32) represent a family of solutions for
the black hole background depending on the warp factor
AðzÞ, which could be an arbitrary function which satisfies
the boundary condition in Eq. (2.17). Furthermore, we also
need to ensure that the expression under the square root in
Eq. (2.29) is positive for z ∈ ðz; zHÞ to guarantee a real
scalar field ϕðzÞ. The simple choice AðzÞ ¼ az2 þ bz4 with
a; b < 0 was used to study the phase structure of heavy
quarks in holographic QCD in Ref. [24]. In Ref. [25], a
similar form was used to study the phase structure of light
quarks in holographic QCD, but the scalar field ϕðzÞ
becomes complex for some z. In this work, we choose
the warp factor AðzÞ as

AðzÞ ¼ −a lnðbz2 þ 1Þ: ð2:33Þ

Plugging Eq. (2.33) into Eq. (2.29), it is easy to show that
the scalar field ϕðzÞ is always real for positive a and b, as
shown in Fig. 3(a). By fitting the mass spectrum of the ρ
meson with its excitations (as in Ref. [25]) and comparing
the phase transition temperature with the lattice calculation,
we can determine the parameter in Eq. (2.28) as c ¼ 0.227.
The parameters a and b in Eq. (2.33) can be determined
by fitting the confinement-deconfinement phase transition
temperature at zero chemical potential with a ¼ 4.046 and
b ¼ 0.01613.

III. PHASE STRUCTURE OF THE BLACK
HOLE BACKGROUND

In this section, we will explore the phase structure of the
black hole background in Eqs. (2.29)–(2.32) that we
obtained in the last section. The entropy density and the
Hawking temperature can be calculated as

s ¼
ffiffiffiffiffiffiffiffiffi
gðx⃗Þp
4

����
zH

; T ¼ g0ðzHÞ
4π

; ð3:1Þ

where gðx⃗Þ represents the metric of the internal space along
x⃗. The free energy in the grand canonical ensemble can be
obtained from the first law of thermodynamics,

F ¼ ϵ − Ts − μρ; ð3:2Þ
where ϵ labels the internal energy density. Comparing
the free energies between different sizes of black holes at
the same temperature with a certain finite value for the
chemical potential, we are able to obtain the phase structure
of black holes which corresponds to the phase structure in
holographic QCD due to the AdS=CFT correspondence.

A. Black hole thermodynamics

The entropy density, defined in Eq. (3.1), can be
easily obtained for our black hole background in
Eqs. (2.29)–(2.32),

(b)(a)

FIG. 3. (a) The neutral scalar field ϕ is a positive, well-defined function of z for a suitable choice of the parameters of the warp factor A.
(b) The black hole entropy monotonously decreases as the horizon increases.
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s ¼ e3AðzHÞ

4z3H
; ð3:3Þ

which is plotted in Fig. 3(b). We see that the entropy
density monotonously decreases function as the horizon
increases. Based on the second law of thermodynamics,
this implies that our black hole background prefers a
smaller size with a larger entropy. It is worth mentioning
that a smaller value for the horizon is related to a larger size
for the black hole.
Another crucial thermal quantity in studying phase

transitions is the black hole temperature, also defined in
Eq. (3.1), which can be calculated for our black hole
background as

T ¼ z3He
−3AðzHÞ

4π
R zH
0 y3e−3Ady

×

�
1 −

2cμ2ðecz2H R zH
0 y3e−3Ady −

R zH
0 y3e−3Aecy

2

dyÞ
ð1 − ecz

2
HÞ2

�
:

ð3:4Þ

The temperature as a function of the horizon, at various
chemical potentials, is plotted in Fig. 4. At small chemical
potential, 0 ≤ μ < μc, the temperature behaves as a
monotonous function of the horizon and decreases to zero
as the horizon goes to infinity. It is clear that there is
no phase transition because of the monotonous behavior
of the temperature. At large chemical potential, μ ≥ μc, the
temperature becomes multivalued. At each fixed temper-
ature, there are three possible states of black holes. The
middle one is thermodynamically unstable due to its
negative specific heat [see Eq. (3.9) and Fig. 7(c)]. The
other two black holes with different sizes are both thermo-
dynamically stable. To determine which one is dynamically
favored, we need to compare their free energies at every

temperature and chemical potential. This implies that
there could be a phase transition between the two
black holes.
In order to determine the transition temperatures at each

chemical potential TBBðμÞ between the large black holes
and the small black hole, we have to compute the free
energy in the grand canonical ensemble from the first law of
thermodynamics. At fixed volume, we have

dF ¼ −sdT − ρdμ: ð3:5Þ

Thus, the free energy for a given chemical potential μ can
be evaluated by an integral,

F ¼ −
Z

sdT ¼
Z

∞

zH
sðzHÞT 0ðzHÞdzH; ð3:6Þ

where we have normalized the free energy of the black
holes to vanish at zH → ∞, i.e., T ¼ 0, which is equal to
the free energy of the thermal gas. The free energy vs the
temperature at various chemical potentials is plotted in
Fig. 5(a). The intersection of the free energy implies that
there exists a phase transition between two black holes with
different sizes at the temperature T ¼ TBB.
For μ > μc, the free energy has a swallow-tail shape

and shrinks to a singular point at μ ¼ μc, then disappears
for μ < μc. The behavior of the free energy implies that
the system undergoes a first-order phase transition at each
fixed chemical potential μ > μc and ends at the critical
end point ðμc; TcÞ where the phase transition becomes
second order. For μ < μc, the phase transition reduces to
a crossover. The phase diagram of the black hole to black
hole phase transition is plotted in Fig. 5(b), which is
consistent with the phase diagram for light quarks
obtained in lattice QCD simulations [2].

(b)(a)

FIG. 4. (a) The black hole temperature vs the horizon at different chemical potentials, where μc ¼ 0.04779 GeV. The phase transition
region is enlarged in panel (b) to display structural details.
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B. Susceptibility and equations of state

To justify the phase transition, we consider the suscep-
tibility and equations of state in the following. The
susceptibility is defined as

χ ¼
�∂ρ
∂μ

�
T
: ð3:7Þ

We plot the baryon density ρ vs the chemical potential μ in
Fig. 6. When T < Tc, the multivalued behavior indicates
that there is a phase transition at certain values of the
chemical potential. However, there is no transition for
T > Tc, since ρ is a single-valued function of μ. At the
critical temperature Tc, the position where the slope

becomes infinity is located at the critical point ðμc; TcÞ
for the second phase transition, which is consistent with our
previous result by comparing free energies between black
holes with different sizes.
The normalized entropy density s=T3 vs the temperature

T is plotted in Fig. 7(a). The normalized entropy density
becomes large in the high-temperature limit. The enlarged
plot shows that the normalized entropy density is monoto-
nous for μ < μc and multivalued for μ > μc.
In the grand canonical ensemble with fixed chemical

potential, the squared speed of sound can be calculated as

c2s ¼
s

Tð∂s∂TÞμ þ μð∂ρ∂TÞμ
; ð3:8Þ

which is plotted in Fig. 7(b). The positive/negative part
of c2s corresponds to the dynamical stable/unstable black
hole. More precisely, the imaginary part of cs indicates the
Gregory-Laflamme instability [42,43], which is closely
related to the Gubser-Mitra conjecture that the dynamical
stability of a horizon is equivalent to the thermodynamic
stability [44–46]. c2s is always positive for 0 ≤ μ < μc, and
reaches zero at the critical point μc, Tc. It is worth noticing
that c2s approaches the conformal limit 1=3 in the high-
temperature limit for every chemical potential μ.
One of the important quantities to realize the thermo-

dynamic stability is the specific heat capacity, which is
defined as

Cv ¼ T

�∂s
∂T

�
¼ s

c2s
: ð3:9Þ

The normalized specific heat capacity Cv=T3 vs the
temperature T is plotted in Fig. 7(c). For 0 ≤ μ < μc, Cv

(b)(a)

FIG. 5. (a) The free energy vs the temperature at various chemical potentials. The free energy behaves as a multivalued function
of temperature; it has a swallow-tail shape at μ > μc and becomes monotonous at μ < μc. (b) The phase diagram in the T-μ plane.
For large chemical potential μ > μc, the system undergoes a first-order phase transition at a finite temperature and ends at the critical
end point ðμc; TcÞ≃ ð0.04779; 0.1578Þ. For small chemical potential 0 ≤ μ < μc, the phase transition reduces to a crossover. The
zero-temperature phase transition is located at μT¼0 ¼ 0.5695.

FIG. 6. The baryon density ρ vs the chemical potential μ for
various temperatures near the critical point. For T < Tc, ρ is
multivalued, while for T > Tc it is single valued. At T ¼ Tc the
slope is infinite at middle.
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is always positive, indicating that the black holes are
thermodynamically stable. On the other hand, as
μ > μc, Cv reveals the negative part which corresponds
to thermodynamic instability. Furthermore, Cv and c2s
have exactly the same sign behavior. Therefore, the
imaginary part of the speed of sound corresponds to the
negative part of the specific heat capacity, which
implies that our system satisfies the Gubser-Mitra
conjecture.
The trace anomaly ϵ − 3p is another important thermo-

dynamic quantity which can be derived from the internal
energy,

ϵ ¼ F þ Tsþ μρ: ð3:10Þ

We plot the normalized trace anomaly ðϵ − 3pÞ=T4 vs the
temperature T in Fig. 7(d). As the chemical potential
decreases, the peak of the trace anomaly decreases and
the multivalued behavior becomes single valued.
Finally, we summarize the behaviors of some important

thermodynamic quantities in Table I.

IV. OPEN STRINGS IN THE BACKGROUND

Nowwewill study the phase structure of our holographic
QCD model by adding probe open strings to the black hole

(a) (b)

(c) (d)

FIG. 7. The normalized entropy (a), speed of sound (b), specific heat (c), and trace anomaly (d) vs the temperature at various chemical
potentials.

TABLE I. The significant patterns in the black hole phase transition.

Figure μ > μc μ ¼ μc μ < μc

T − zH vibrating converges to a saddle point monotonous
F − T swallow-tail gathers to a point monotonous
c2s − T knot shrinks to a cusp monotonous
ρ − μ waving narrows to an infinite slope monotonous
T − μ first phase trans. second phase trans. crossover
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backgrounds in Eqs. (2.29)–(2.32). We consider open
strings in the black hole background with their ends
attached to the boundary of the bulk at z ¼ 0 or the black
hole horizon at z ¼ zH. We find that there are two
configurations for an open string in the black hole back-
ground. One is a U-shaped configuration with the open
string reaching its maximum depth at z ¼ z0 and both of its
ends attached to the boundary, and the other is an I-shaped
configuration with the straight open string having its two
ends attached to the boundary and the horizon, respectively.
The two configurations are shown in Fig. 8. Since the
holographic QCD fields live on the boundary of the black
hole background, it is natural to interpret the two ends of
the open string as a quark-antiquark pair. The U-shaped
configuration corresponds to a quark-antiquark pair being
connected by a string and can be identified as a meson state,
while the I-shaped configuration corresponds to a free
quark or antiquark.
The Nambu-Goto action of an open string is

SNG ¼
Z

d2ξ
ffiffiffiffiffiffiffi
−G

p
; ð4:1Þ

where the induced metric

Gab ¼ gμν∂aXμ∂bXν ð4:2Þ

on the two-dimensional world sheet that the string sweeps
out as it moves with coordinates ðξ0; ξ1Þ is the pullback of
the five-dimensional target spacetime metric gμνs ,

ds2 ¼ e2AsðzÞ

z2

�
gðzÞdt2 þ dx⃗2 þ 1

gðzÞ dz
2

�
; ð4:3Þ

where we consider the Euclidean metric to study the
thermal properties of the system to identify the black hole
temperature of a gravitational theory in the bulk as a
thermal field theory on the boundary.

A. Wilson loop

It is known that one can read off the energy of such a
quark-antiquark pair from the expectation value of the
Wilson loop [30,37,41],

hWðCÞi ∼ e−Vqq̄ðr;TÞ=T; ð4:4Þ

where the rectangular Wilson loop C is along the directions
ðt; xÞ on the boundary of the AdS space attached by the
quark-antiquark pair separated by r, and Vðr; TÞ is the
quark-antiquark potential.
Based on the string/gauge correspondence, if we con-

sider that a quark-antiquark pair at ðz ¼ 0; x ¼ �r=2Þ are
connected by an open string (as in Fig. 9), the expectation
value of the Wilson loop is given by

hWðCÞi≃ e−Son−shell ; ð4:5Þ

where Son−shell is the on-shell string action on a world sheet
bounded by a loop C at the boundary of AdS space, which
is proportional to the minimum area of the string world
sheet. Comparing Eq. (4.4) and Eq. (4.5), the free energy of
the meson can be calculated as

Vqq̄ðr; TÞ ¼ TSon−shellðr; TÞ: ð4:6Þ

FIG. 8. Two configurations of an open string in a black hole background. (a) Both ends of the open string of the U-shaped
configuration are connected to the boundary z ¼ 0 and reaches a maximum depth at z ¼ z0. This configuration corresponds to a
quark-antiquark bound state at the boundary. (b) The open string of the I-shaped configuration is connected to the boundary and the
horizon at z ¼ zH . This configuration corresponds to a single quark/antiquark in the holographic QCD model.
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B. Configurations of open strings

The string world-sheet action is defined in Eq. (4.1) with
the induced metric on the string world sheet in Eq. (4.2).
For the U-shaped configuration, by choosing static gauge
ξ0 ¼ t, ξ1 ¼ x, the induced metric in the string frame
becomes

ds2 ¼ Gabdξadξb

¼ e2AsðzÞ

z2
gðzÞdt2 þ e2AsðzÞ

z2

�
1þ z02

gðzÞ
�
dx2; ð4:7Þ

where the prime denotes a derivative with respect to x. The
Lagrangian and Hamiltonian can be calculated as

L ¼ e2AsðzÞ

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞ þ z02

q
; H ¼ −

e2AsðzÞ

z2
gðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðzÞ þ z02
p :

ð4:8Þ

Given the boundary conditions

z

�
x ¼ � r

2

�
¼ 0; zðx ¼ 0Þ ¼ z0; z0ðx ¼ 0Þ ¼ 0;

ð4:9Þ

we obtain the conserved energy from the Hamiltonian in
Eq. (4.8)

Hðx ¼ 0Þ ¼ −
e2Asðz0Þ

z20

ffiffiffiffiffiffiffiffiffiffi
gðz0Þ

p
: ð4:10Þ

Therefore, the U-shaped configuration of an open string
can be solved by

z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�
σ2ðzÞ
σ2ðz0Þ

− 1

�s
; ð4:11Þ

where σ is the effective string tension [32],

σðzÞ ¼ e2AsðzÞ
ffiffiffiffiffiffiffiffiffi
gðzÞp

z2
; ð4:12Þ

and the warp factor in the string frame becomes

AsðzÞ ¼ AðzÞ þ
ffiffiffi
1

6

r
ϕðzÞ: ð4:13Þ

The distance r between the quark-antiquark pair can be
calculated as

r ¼
Z r

2

−r
2

dx ¼ 2

Z
z0

0

dz
1

z0
¼ 2

Z
z0

0

dz

�
gðzÞ

�
σ2ðzÞ
σ2ðz0Þ

− 1

��1
2

;

ð4:14Þ
where z0 is the maximum depth that the string can reach.
The dependence of the distance r on z0 in two different
cases is plotted in Fig. 10. The red (upper) line corresponds
to the case of a small black hole horizon where the open
string reaches a maximum depth zm when r → ∞ and
cannot reach the horizon, while the blue (lower) line
corresponds to the case of a large black hole horizon
where the open string might reach the horizon but with a
limited separation r ≤ rM.

C. Cornell potential

The potential between a quark-antiquark pair Vqq̄ in
Eq. (4.6) for the open strings in U-shaped configurations
can be calculated as

Vqq̄¼TSon−shell¼
Z r

2

−r
2

dxL¼2

Z
z0

0

dz
σðzÞffiffiffiffiffiffiffiffiffi
gðzÞp �

1−
σ2ðz0Þ
σ2ðzÞ

�−1
2

:

ð4:15Þ

It is well known that the potential Vqq̄ can be expressed in
the form of the Cornell potential, which behaves as a

FIG. 10. The distance between the quark and antiquark r vs the
maximum depth z0 of the open string in the U-shaped configu-
ration. The red and blue lines are for zH ¼ 9.0 and zH ¼ 3.5 at
μ ¼ 0.12, which represents the small and large black hole,
respectively.

FIG. 9. The Wilson loop C could be viewed as the boundary of
string world-sheet.
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Coulomb-type potential for short separations between
the quark and antiquark, but shows linear behavior for
large separations (with the coefficient σs being the string
tension),

Vqq̄ ¼ −
κ

r
þ σsrþ C: ð4:16Þ

As r → 0, i.e., z0 → 0, we expand the distance r and the
potential Vqq̄ at z0 ¼ 0,

r ¼ 2

Z
z0

0

dz

�
gðzÞ

�
σ2ðzÞ
σ2ðz0Þ

− 1

��−1
2 ¼ r1z0 þOðz20Þ;

ð4:17Þ

Vqq̄ ¼ 2

Z
z0

0

dz
σðzÞffiffiffiffiffiffiffiffiffi
gðzÞp �

1 −
σ2ðz0Þ
σ2ðzÞ

�−1
2 ¼ V−1

z0
þOð1Þ;

ð4:18Þ

where1

r1 ¼ 2

Z
1

0

dv

�
1

v4
− 1

�
−1
2 ¼ 1

2
B

�
3

4
;
1

2

�
; ð4:19Þ

V−1 ¼ 2

Z
1

0

dv
v2

ð1 − v4Þ−1
2 ¼ 1

2
B

�
−
1

4
;
1

2

�
; ð4:20Þ

which gives the Coulomb potential

Vqq̄ ¼
r1V−1

r
þ � � � ; ð4:21Þ

with the coefficient

κ ¼ −r1V−1 ≃ 1.4355; ð4:22Þ

which is a universal constant independent of the choice of
the warp factor AðzÞ. We note that, for simplicity, we ignore
a factor 1=4πα0 in the Nambu-Goto action (4.1). To
compare with the result of lattice QCD, we need to recover
the factor to get κ ≃ 1.4355=4πα0 ≃ 0.114 for α0 ∼ 1. In
Ref. [47], the coefficient of the Coulomb potential was
obtained in lattice QCD with κ ¼ 4αs=3≃ 0.133 for the
QCD coupling constant αs ∼ 0.1, which is consistent with
our result. As r → ∞, i.e., z0 → zm, we make a coordinate
transformation z ¼ z0 − z0w2. The distance r and the
potential Vqq̄ become

r ¼ 2

Z
1

0

frðwÞdw; V ¼ 2

Z
1

0

fVðwÞdw; ð4:23Þ

where

frðwÞ ¼ 2z0w

�
gðz0 − z0w2Þ

�
σ2ðz0 − z0w2Þ

σ2ðz0Þ
− 1

��−1
2

;

ð4:24Þ

fVðwÞ ¼ 2z0w
σðz0 − z0w2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðz0 − z0w2Þ

p �
1 −

σ2ðz0Þ
σ2ðz0 − z0w2Þ

�−1
2

:

ð4:25Þ

From Fig. 10, the distance r is divergent at z0 ¼ zm. By
careful analysis, we find that this divergence also happens
for the quark potential because both of the integrands frðwÞ
and fVðwÞ are divergent near the lower limit w ¼ 0, i.e.,
z ¼ z0 → zm. To study the behaviors of the distance r and
potential Vqq̄ near z0 ¼ zm, we expand frðwÞ and fVðwÞ at
w ¼ 0,

frðwÞ ¼ 2z0

�
−2z0gðz0Þ

σ0ðz0Þ
σðz0Þ

�
−1
2 þOðwÞ; ð4:26Þ

fVðwÞ ¼ 2z0σðz0Þ
�
−2z0gðz0Þ

σ0ðz0Þ
σðz0Þ

�
−1
2 þOðwÞ: ð4:27Þ

The integrals in Eq. (4.23) can be approximated by only
considering the leading terms of frðwÞ and frðwÞ near
z0 ¼ zm in Eqs. (4.26)–(4.27). This leads to

rðz0Þ≃ 4z0

�
−2z0gðz0Þ

σ0ðz0Þ
σðz0Þ

�
−1
2

; ð4:28Þ

Vðz0Þ≃ 4z0σðz0Þ
�
−2z0gðz0Þ

σ0ðz0Þ
σðz0Þ

�
−1
2 ¼ σðz0Þrðz0Þ:

ð4:29Þ

From the above expression, we obtain the expected linear
potential V ¼ σsr at long distances, with the string tension

σs ¼
dV
dr

����
z0¼zm

¼ dV=dz0
dr=dz0

����
z0¼zm

¼ σ0ðz0Þrðz0Þ þ σðz0Þr0ðz0Þ
r0ðz0Þ

����
z0¼zm

¼ σðzmÞ: ð4:30Þ

The temperature dependence of the string tension for
various chemical potentials is plotted in Fig. 11. We see
that the string tension decreases when the temperature
increases. At the confinement-deconfinement transforma-
tion temperature Tμ, the system transforms to the decon-
finement phase and the string tension suddenly drops to
zero, as we expected [48]. The behavior is consistent with
the results of lattice QCD simulations [48]. In Fig. 11, μc ¼
0.04779 is the critical chemical potential for the black hole

1We require the property of the beta function Bðx=k;yÞ
k ¼R

1
0 dttx−1ð1 − tkÞy−1.
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phase transition in the background and μ0c ¼ 0.1043 is
the critical chemical potential for the confinement-
deconfinement phase transition in our holographic QCD
model. We will discuss these two phase transitions in detail
in the next section.
We therefore showed that the behaviors of the quark

potential at short distances and long distances agree with
the form of the Cornell potential [49],

VðrÞ ¼ −
κ

r
þ σsrþ C; ð4:31Þ

which has been measured in great detail in lattice simu-
lations [50]. In order to obtain the r dependence of Vqq̄, we
will evaluate the integral in Eq. (4.16), which is divergent
due to the fact that integrand is not well defined at z ¼ 0.
We regularize Vqq̄ by subtracting the divergent terms as

V ½R�
qq̄ ¼ Cðz0Þ þ 2

Z
z0

0

dz

�
σðzÞffiffiffiffiffiffiffiffiffi
gðzÞp �

1 −
σ2ðz0Þ
σ2ðzÞ

�
−1
2

−
1

z2
½1þ 2A0

sð0Þz�
�
; ð4:32Þ

where

Cðz0Þ ¼ −
2

z0
þ 4A0

sð0Þ ln z0: ð4:33Þ

The regularized potentials are plotted in Fig. 12. For

T < Tμ, V
½R�
qq̄ has the form of the Cornell potential with

linear behavior for large r. For T > Tμ, the open string

breaks at a certain distance and V ½R�
qq̄ become constant for

larger distances.

V. PHASE DIAGRAM

In the previous sections, we have constructed a holo-
graphic QCD model by studying the Einstein-Maxwell-
scalar system. We obtained a family of black hole
backgrounds and studied the phase transition between
the black holes by computing their free energies. We also
added probe open strings in the black hole backgrounds and
studied the different string configurations at various tem-
peratures, which corresponded to the confinement and
deconfinement phases in the dual holographic QCD model.
In this section, we are ready to discuss the phase diagram of
QCD by combining the phase structure of the black hole
background and the configurations of the probe open
strings in the black hole background. We have obtained
the phase diagram for the phase transitions of the black hole
background (as shown in Fig. 5) by comparing the free
energies of black holes. We schematically summarize our
results in Fig. 13. As the black hole temperature grows, the
black hole horizon grows as well, i.e., zH decreases. At the
phase transition temperature, the small black hole with
horizon zHs

jumps to the large one with horizon zHl
.

FIG. 11. The string tension σs vs the temperature for different
chemical potentials with μc ¼ 0.04779 and μ0c ¼ 0.1043. The
region near the phase transition is enlarged, where the tension
suddenly drops to zero, implying the phase transition between
confinement and deconfinement phases.

FIG. 12. The regularized heavy quark potential V ½R�
qq̄ vs r at

μ ¼ 0.12 GeV for zH ¼ f1; 3; 10g (from bottom to top).

FIG. 13. Schematic diagram of the phase transition from a
small black hole zHs

to a large black hole zHl
.
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A. Probe strings and the dynamical wall

To see the confinement-deconfinement phase transition,
we added probe open strings to the black hole background.
As shown in Fig. 10, for a small black hole zHs

, the
separation of the bounded quark-antiquark pair r can be as
long as possible, but the depth of the string is limited by a
maximum value zm, which we call the dynamical wall. In
this case, the open strings are always connected in the U-
shaped configurations to form bounded states and the
system is in the confinement phase. The dynamical wall
is the crucial concept in understanding the confinement-
deconfinement phase transition in holographic QCD mod-
els. On the other hand, for a large black hole zHl

(as shown
in Fig. 10), the separation of the quark-antiquark pair is
bounded by a maximum distance rM at the depth zM. If the
distance between the quark and antiquark is longer than rM,
a U-shaped string will break into two I-shaped open strings
attached between the boundary and the horizon. In this
case, a free quark or antiquark might exist, indicating that
the system is in the deconfinement phase. The open string
breaking process corresponds to the melting of the bounded
state [51].
Our discussion is summarized in Fig. 14. For a small

black hole [as shown in Fig. 14(a)] there exists a dynamical
wall so that open strings are always U-shaped, correspond-
ing to the confinement phase. However, for a large black
hole [as shown in Fig. 14(b)] the open strings could be
either U-shaped or I-shaped depending on the distance
between the quark and antiquark, corresponding to the
deconfinement phase. The configurations of open strings

are collected in Table II. Since the black hole temperature
is closely associated with the black hole horizon, we
expect that the system will undergo a phase transition
from confinement to deconfinement when the temperature
increases.
Since the role of the dynamical wall is crucial to affirm

the confinement phase in holographic QCD models, let
us examine it carefully. To determine the position of the
dynamical wall zm, we use the fact that rðzmÞ → ∞, which
leads to the equation σ0ðzmÞ ¼ 0. With the definition of the
string tension in Eq. (4.12), we have

g0ðzmÞ
4gðzmÞ

þ A0
sðzmÞ þ

1

zm
¼ 0: ð5:1Þ

In the confinement phase, the value of the horizon zH is
large, so that gðzÞ is almost a constant and g0ðzÞ ∼ 0. We
thus have

A0
sðzmÞ þ

1

zm
¼ 0: ð5:2Þ

We would like to remark that the position of the dynamical
wall zm is almost a universal value, and does not depend on
either the chemical potential or the temperature.2 In our
particular model with the choice of AðzÞ in Eq. (2.33) and
also the string frame As in Eq. (4.13), the position of the
dynamical wall zm can be obtained as

zm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða − 4Þp

bð2aþ 1Þ

s
≃ 4.22: ð5:3Þ

For each chemical potential μ, we draw the effective
string tension σ for black holes with three different horizons
in Fig. 15(a). For a small black hole zHs

< zHμ
, σ is single

(a) (b)

FIG. 14. Small/large black hole in the horizon description, zHs=l
.

TABLE II. Black hole sizes and open string configurations with
respect to the qq̄ separation r.

Black hole size U-shape I-shape Phase in QCD

Small ðzHs
Þ 0 < r < ∞ none Confinement

Large ðzHl
Þ r < rM r > rM Deconfinement

2Here we mean that the system is in the confinement phase. In
the deconfinement phase, there is no dynamical wall.
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valued, while for a large black hole zHl
> zHμ

, σ becomes
multivalued. We define the transformation temperature Tμ

at chemical potential μ as the temperature corresponding to
the critical black hole horizon zHμ

. At the transformation
temperature, the dynamical wall appears/disappears as we
decrease/increase the temperature. The transformation tem-
perature is associated to the transformation between the
confinement and deconfinement phases in the holographic
QCD. The transformation temperature Tμ at each chemical
potential is plotted in Fig. 15(b). We should emphasize that
the transformation between the confinement and deconfine-
ment phases here is not a phase transition. The confinement
phase smoothly transforms to the deconfinement phase as
the temperature increases gradually.

B. Confinement-deconfinement phase diagram

To obtain the completed phase diagram in our holo-
graphic QCD model, we combine the phase transition

between large and small black holes as well as the different
configurations of the probe open strings in the background.
In Fig. 16(a), the black (dotted) line represents the con-
finement-deconfinement transformation, while the red
(solid) line is the phase transition between black holes.
Once the phase transition from a small black hole at
lower temperature to a large black hole at higher temper-
ature takes place, the black hole horizon jumps to a large
value which is beyond the critical black hole horizon zHμ

and the system undergoes the confinement-deconfinement
phase transition. The intersection of the two lines is
identified as the critical point at ðμ0c ¼ 0.1043; T 0

c ¼
0.1538Þ. In terms of the baryon chemical potential
μB ≃ 3μ0c ¼ 0.313, the critical point we found is consistent
with the recent result from lattice QCD [52]: μB ≤ 2T 0

c
and 0.135 GeV ≤ T 0

c ≤ 0.155 GeV.
The final phasediagramof theconfinement-deconfinement

phase transition is plotted in 16(b). For a large chemical poten-
tial μ > μ0c, there is a first-order confinement-deconfinement

(a) (b)

FIG. 15. (a) The effective string tension σ for black holes with different horizons. (b) The transformation temperature Tμ, associated
with zHμ

, at which the dynamical wall appears/disappears for each chemical potential. The T intercept T0 ¼ 0.1541 GeV.

(a) (b)

FIG. 16. The phase diagram of a probing string in a black hole system; the intersection is at ðμ0c ¼ 0.1043; T 0
c ¼ 0.1538Þ GeV.
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phase transition at the temperature Tμ (shown as a solid red
line). At the critical point μ ¼ μ0c and T ¼ T 0

c (shown as a
black dot), the first-order phase transition weakens to a
second-order phase transition. For small chemical potential
μ < μ0c, the confinement-deconfinement phase transition
reduces to a smooth crossover (shown as a dotted black line).

VI. CONCLUSION

In this paper, we constructed a bottom-up holographic
QCD model by studying gravity coupled to a Uð1Þ gauge
field and a neutral scalar in five-dimensional spacetime,
i.e., a five-dimensional Einstein-Maxwell-scalar system.
By solving the equations of motion analytically, we
obtained a family of black hole solutions which depend
on two arbitrary functions fðzÞ and AðzÞ. Different choices
of the functions fðzÞ and AðzÞ correspond to different black
hole backgrounds. To include meson fields in QCD, probe
gauge fields were added to the five-dimensional back-
grounds. The function fðzÞ can be fixed by requiring the
linear Regge spectrum for mesons. By making a suitable
choice of the function AðzÞ [as in Eq. (2.33)], we fixed our
holographic QCD model.
We obtained the phase structure of the black hole

background by studying its thermodynamic quantities.
To realize the confinement-deconfinement phase transition
in QCD, we added probe open strings in the black hole
background and studied the shape of their stable configu-
rations. Different U-shaped and I-shaped configurations
were identified for confinement and deconfinement phases,
respectively. By combining the phase structure of the black
hole background and the U-shaped to I-shaped trans-
formation of the open strings, we obtained the phase
diagram of the confinement-deconfinement phase transi-
tion in our holographic QCD model. In our model, the
critical point—where the first-order phase transition
becomes a crossover—is predicted to be at (0.1043 GeV,
0.1538 GeV), which is consistent with the recent lattice
QCD result in Ref. [52].
We studied the Wilson loop in QCD by calculating the

world-sheet area of an open string based on the holographic
correspondence. The heavy quark potential can be obtained
from the Wilson loop. We obtained the Cornell potential
which has been well studied using lattice QCD. The
diagram of the heavy quark potentials at different temper-
atures is plotted in Fig. 17. At low temperature T < Tμ, the
potential is linear at large r, corresponding to the confine-
ment phase; at high temperature T > Tμ, the potential

becomes constant at large r, corresponding to the decon-
finement phase. There is a phase transition at T ¼ Tμ, as
shown in the figure.
The main properties of our holographic QCD model are

as follows:
(i) The coupled Einstein-Maxwell-scalar system was

solved analytically to obtain a family of black hole
backgrounds in Eqs. (2.29)–(2.32).

(ii) The meson spectrum in our model satisfies the linear
Regge behavior [as in Eq. (2.28)].

(iii) For finite chemical potentials μ > μc, the back-
ground exhibits a phase transition between a small
black hole and a large black hole, as shown in
Fig. 5(b).

(iv) The dynamical wall appears/disappears for small/
large black holes, which implies the confinement-
deconfinement phase transition. In addition, in the
confinement phase, the position of the dynamical
wall is nearly constant [as in Eq. (5.3)] and inde-
pendent of the chemical potential and temperature.

(v) We obtained the Cornell form of the quark potential
in Eq. (4.31) by calculating the Wilson loop.
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