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Collective mode contributions to the Meissner effect: Fulde-Ferrell and pair-density
wave superfluids
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In this paper we demonstrate the necessity of including the generally omitted collective-mode contributions
in calculations of the Meissner effect for nonuniform superconductors. We consider superconducting pairing
with nonzero center-of-mass momentum, as is possibly relevant to high transition temperature cuprates, cold
atoms, and color superconductors in quantum chromodynamics. For the concrete example of the Fulde-Ferrell
phase we present a quantitative calculation of the superfluid density, showing not only that the collective-mode
contributions are appreciable but also that they derive from the amplitude mode of the order parameter. This latter
mode is generally viewed as being invisible in conventional superconductors. However, our analysis shows that
it is extremely important in pair-density-wave-type superconductors, where it destroys stable superfluidity well
before the mean-field order parameter vanishes.
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I. INTRODUCTION

There is a large amount of interest in amplitude modes
of superconductors in large part stimulated by the excitement
surrounding the discovery of the Higgs boson [1]. Neverthe-
less, there is a widespread belief that observing these modes,
directly or indirectly, is particularly challenging [2,3]. As
a result they only infrequently appear in condensed-matter
physics [4–10]. In this paper we show that in a class of very
topical superconductors collective-mode effects associated
with the amplitude of the order parameter play an essential role
in the most fundamental quantity, the superfluid density tensor
n

ij
s . The superconductors in question are those which have a

“pair-density wave” order parameter. These are a large class of
theoretical models (awaiting firm experimental confirmation)
associated with pairing of electrons at nonzero center-of-mass
momentum Q. Much attention has focused on these systems
from the perspective of high-temperature superconductivity (in
condensed-matter physics [11,12]) and color superconductors
(in particle physics [13]).

For this class of superfluids, the collective-mode con-
tribution to the superfluid density has been largely ig-
nored in previous literature [14,15], with the exception of
the original calculation of the electromagnetic current by
Larkin and Ovchinnikov [16]. Discussion of this effect
can also be found in Ref. [17] for a different situation
involving non-s-wave superconductors [18]. In both cases,
however, the size of the collective-mode contributions was not
accessible.

We provide two different, but related, derivations of the
superfluid density for the tractable case of the Fulde-Ferrell
(FF) superfluid [19]. Importantly, this enables us to compute
numerical values for the sizable collective-mode effects in
n

ij
s . The first method is based on using the Ward-Takahashi

identity (WTI) in the Kubo formalism, while the second
method is based on studying the equilibrium current. In both
approaches particle number is manifestly conserved and gauge
invariance is maintained. Through these approaches we find
that amplitude collective modes drive the superfluid density
(along the direction parallel to Q) to zero at temperatures lower

than those associated with the vanishing of the mean-field
order parameter.

Before giving these more complete calculations, here we
provide a general argument for the necessity of including
collective-mode effects in nonuniform superconductors. The
origin of collective-mode contributions to the Meissner effect
[16,17] is due to the fact that, in the presence of a vector
potential Aμ, the order parameter � will depend on Aμ through
the gap (saddle-point) equation [9,20]. A series expansion of
�[A], in powers of Aμ, is thus

�[A] = �(0)[A = 0] + �(1)[A] + O(A2). (1.1)

Here �(0) is the order parameter in the absence of Aμ and
�(1) is a correction linear in Aμ. It is this term which gives
rise to the rarely discussed collective-mode contributions to
the superfluid density. Since �(1) is a scalar quantity, it can
depend on only scalar, linear functionals of Aμ. Therefore,
in a uniform superfluid �(1) is a functional of only ∇ · A
[21]. Thus, if one chooses the (“transverse”) gauge such
that ∇ · A = 0, the collective-mode contribution �(1) vanishes
identically [20].

However, for a nonuniform system there are other scalar,
linear functionals of Aμ. In particular, for a pair-density
wave superfluid with pairing vector Q, �(1) can depend
on other scalar, linear quantities such as A · Q. Hence,
for this nonuniform superfluid, even in the gauge where
∇ · A = 0, �(1) may still be nonzero. In principle, this allows
for a collective-mode contribution to the superfluid density.
[For future use in the discussion below, we define �(1) =∫

dq �μ(q)Aμ(q) and �μ(q) = (δ�[A]/δAμ(q))|
A=0]. This

argument emphasizes that, for any nonuniform superfluid with
a pairing vector present, one must consider collective-mode
contributions. In particular, it also applies to a system where Q
is a priori fixed, such as in a crystalline superconductor, where
the rotational symmetry is explicitly, and not spontaneously,
broken. Here one would still need to consider the collective-
mode contributions to the superfluid density, due to a
finite Q.
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For concreteness we will illustrate these collective-mode
effects in the FF superfluid, where pairing at finite Q arises
due to a spin (or mass) imbalance causing a Fermi-surface
mismatch between up- and down-spins. For simplicity we
take the FF pairing vector as Q = Qẑ. In the FF phase
specifically, both a continuous rotational and global U (1)
symmetry are spontaneously broken. Similarly discrete time-
reversal symmetry is also spontaneously broken. However,
gauge invariant observables are translationally invariant [22].
Due to the underlying rotational symmetry of the FF state,
the superfluid density vanishes along the directions transverse
to Q. Hence nxx

s = n
yy
s = 0, and thus only nzz

s needs to be
considered [22].

As has been posited [19], and will be shown in more detail
below, the superfluid density for the FF superfluid can be
written as

∂jz

∂Q

∣∣∣∣
μ,h

= 1

2

(
nzz

s

m

)
, (1.2)

where jz(Q) is the equilibrium current. It is useful to
express Eq. (1.2) in terms of the mean-field thermodynamic
potential �, where jz(Q) = 2(∂�/∂Q)|μ,h,|�|. The saddle-
point condition which determines the mean-field value of Q is
then jz(Q) = 0. Similarly, the saddle-point condition which
determines the mean-field value of � is (∂�/∂�)|μ,h,Q = 0.
In terms of �, Eq. (1.2) becomes

∂jz

∂Q

∣∣∣∣
μ,h

= 2

[
∂2�

∂Q2

∣∣∣∣
μ,h,|�|

−
(

∂2�

∂|�|∂Q

)2/ ∂2�

∂|�|2
∣∣∣∣
μ,h,Q

]
,

(1.3)

where both saddle-point equations and the symmetry of mixed
partial derivatives have been used.

Equation (1.3) indicates that there are two contributions to
the superfluid density. The first is the conventional “bubble”
term (which is usually assumed to be sufficient) and the
second represents the collective-mode contribution required
for gauge invariance. Importantly, a stability inequality for
the FF superfluid based on the thermodynamic potential
curvature [23–25] is equivalent to requiring that both nzz

s , as
derived above, and (∂2�/∂|�|2)|μ,h,Q are positive. It follows
from the latter condition that for a stable FF superfluid
the collective-mode contribution always acts to reduce the
overall size of the superfluid density. These arguments,
however, still do not indicate how large the magnitude of this
effect is.

In this paper the collective-mode contribution will be found
to be appreciable; this underlines the inadequacy of including
only the so-called bubble term [14,15]. Equally important is
the nature of these collective-mode corrections. For the FF
superfluid we will show that they derive from the amplitude
mode of the order parameter. This mode is thought to be rather
invisible in conventional superconductors [2]. Nevertheless we
demonstrate how it arises to ensure the electromagnetic (EM)
response is manifestly gauge invariant. Readers who wish to
quickly take away the main message of this paper can proceed
directly to the numerical results.

II. THEORETICAL FORMALISM

A. Mean-field results

The FF mean-field Hamiltonian, in the ψT
k =

(ck,↑,c
†
−k+Q,↓) basis, is HFF = ∑

k ψ
†
kHFFψk, where [26]

HFF =
(

ξk,↑ −�

−�∗ −ξk−Q,↓

)
. (2.1)

Here an irrelevant constant −∑
k ξk−Q,↓ has been ignored.

The notation is as follows: the dispersion relation is defined by
ξk,σ = k2/2m − μσ , where μσ is the fermionic chemical po-
tential for a species with spin σ =↑ , ↓, m is the fermion mass,
and � denotes an s-wave pairing gap. It is useful to define μ =
1
2 (μ↑ + μ↓) and h = 1

2 (μ↑ − μ↓). The dispersion relations
are then written compactly as ξkQ = (1/2m)[k2 + (Q/2)2] −
μ,E2

kQ = ξ 2
kQ + |�|2, hkQ = h − k · Q/2m. Throughout the

paper h̄ = kB = c = 1.
The inverse Nambu Green’s function is then G−1 =

iωn − HFF, where iωn is a fermionic Matsubara frequency.
The inverse bare Green’s function is defined by G−1

0,σ (k) =
iωn − ξk. Thus, the off-diagonal Gorkov function is G12(k) =
�G0,↓(−k + Q)G↑(k), where the (spin-up) Green’s function
is G↑(k) = G11(k). Note that Greek indices denote space-time
coordinates: xμ = (t,x,y,z), whereas Roman indices denote
spatial coordinates: xi = (x,y,z). Here Qμ = (0,Q). Explicit
calculation then gives the full Green’s function which has
appeared in the literature [14,26]. Indeed, from Dyson’s equa-
tion, G−1

σ (k) = G−1
0,σ (k) − �σ (k), the self-energy is �σ (k) =

−|�|2G0,σ̄ (−k + Q). [For convenience later, we define k̃
μ
± ≡

kμ ± Qμ/2].

B. Electromagnetic response and Ward-Takahashi identity

We now study the EM response of the FF superfluid
and consider the superfluid density for the case of a neutral
superfluid. Our observation that collective modes are necessary
to ensure a gauge invariant superfluid density calculation
should apply to a charged system as well, but we avoid here
the complexities associated with the Coulomb interaction.
We apply linear-response theory, where a fictitious vector
potential Aμ is applied to the system. The resulting EM
current is jμ(q) = Kμν(q)Aν(q), where Kμν(q) is the EM
response kernel. The response kernel can also be expressed
as Kμν(q) = P μν(q) + (n/m)δμν(1 − δμ,0) (with μ and ν not
summed over) where the EM response functions are denoted
by P μν(q). In the Kubo formalism the EM response functions
for a superfluid are

P μν(q) =
∑

σ

∑
k

Gσ (k+)μ
σ (k+,k−)Gσ (k−)γ ν

σ (k−,k+),

(2.2)
where qμ = (i�m,q), with i�m a bosonic Matsubara
frequency.

The important quantity μ(k+,k−) denotes the full EM
vertex, where the incoming (outgoing) momentum is k+ (k−),
with k

μ
± ≡ kμ ± qμ/2. To determine the full vertex μ(k+,k−),

we apply the WTI [27]:

qμμ
σ (k+,k−) = G−1

σ (k+) − G−1
σ (k−)

= qμγ μ
σ (k+,k−) + �σ (k−) − �σ (k+). (2.3)
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This is an exact relation in quantum field theory which
relates the single-particle Green’s function to the full vertex.
It is a gauge invariant statement and here it reflects the
underlying global U (1) symmetry. Similarly, the bare WTI,
qμγ μ

σ (k+,k−) = G−1
0,σ (k+) − G−1

0,σ (k−), is satisfied by the bare
vertex γ μ

σ (k+,k−) = (1,k/m).
Satisfying the WTI ensures conservation of particle number

(or charge in the charged superfluid case). The particle number
can be written in terms of the single-particle Green’s function
as n = ∑

σ

∑
k Gσ (k), where

∑
k ≡ β−1 ∑

iωn

∑
k with β be-

ing inverse temperature. In the limit qμ → 0, the WTI reduces
to the Ward identity: μ

σ (k,k) = γ μ
σ (k,k) − [∂�σ (k)/∂kμ].

The second term in this equation diagrammatically represents
a vertex insertion in the self-energy. This relation then
importantly shows that the full vertex can be obtained by
performing all possible vertex insertions in the full Green’s
function [27,28].

For the FF self-energy given in Sec. II A, there are three
possible positions where the bare vertex can be inserted: the
bare Green’s function and the two gaps � and �∗. Inserting
the bare vertex into the position of the two gaps leads to
the collective-mode vertices, discussed in more detail in the
next section, which are of crucial importance to ensure gauge
invariance.

C. Collective-mode vertices

This section discusses the properties of the collective-
mode vertices and how they contribute to the superfluid
density. By inserting the bare vertex in the two gaps (�,�∗)
one obtains the collective-mode vertices �μ(q) and �̄μ(q),
respectively. Reference [29] presents details showing how
�μ(q) and �̄μ(q) are obtained by performing these vertex
insertions in the gap equation, which can be written as �/g =
�

∑
σ

∑
k G0,↓(−k + Q)G↑(k) = ∑

σ

∑
k G12(̃k) [26].

Due to the spontaneously broken global U (1) symmetry,
the gaps �,�∗ are themselves not gauge invariant. There
are, however, two natural gauge invariant combinations of
the collective-mode vertices; these appear as (�∗�μ − ��̄μ)
and (�∗�μ + ��̄μ). In order to associate these combinations
with the appropriate phase or amplitude modes of the order
parameter, we contract these quantities with qμ. In Ref. [29] it
is proved that, for qμ �= 0, the collective-mode vertices obey
qμ�μ(q) = 2�,qμ�̄μ(q) = −2�∗. These relations then lead
to

qμ(�∗�μ − ��̄μ) = 4|�|2, (2.4)

qμ(�∗�μ + ��̄μ) = 0. (2.5)

The right-hand sides of these expressions are gauge invariant
quantities, and thus so too are the expressions in parentheses,
as claimed.

The limit qμ → 0 of these contractions is of particular
interest. For Eq. (2.4), the right-hand side is finite, nonzero,
and independent of qμ; this applies to the left-hand side as
well. As qμ → 0, it follows that the quantity in parentheses
must become singular in this limit. This indicates that it has
a zero-momentum pole; we can conclude that this is to be
associated with the Nambu-Goldstone boson that restores the
global U (1) symmetry. Since the phase mode of the order

parameter is responsible for restoring gauge invariance, it
follows that (�∗�μ − ��̄μ) corresponds to the phase mode
of the order parameter.

On the other hand, for Eq. (2.5), the right-hand side is zero
and independent of qμ; this applies to the left-hand side as
well. As qμ → 0, it follows that the quantity in parentheses
must be nonsingular in this limit. This indicates the quantity in
parentheses does not have a zero-momentum pole. It follows
that (�∗�μ + ��̄μ) corresponds to the amplitude mode of
the order parameter.

The next section studies the superfluid density where we
find that (�∗�z + ��̄z) and not (�∗�z − ��̄z) contributes.
Thus the phase mode, while contained within the individual
�μ and �̄μ expressions, does not directly contribute to the
superfluid density [30].

We end by noting that � is a function of the FF pairing
vector Q, and by differentiating the gap equation with respect
to Q (at fixed μ and h) one can obtain (∂|�|2/∂Q)|μ,h. An
explicit calculation then gives the following important identity,
for � �= 0, which relates in a more transparent way to the
amplitude mode:

�∗�z(0) + ��̄z(0) = P z
0 /M0 = 2(∂|�|2/∂Q)|μ,h. (2.6)

The order of limits in which frequency and momentum are
taken to zero is important; frequency i�m and qz are set
to zero, and then qx,qy → 0. In the following section this
will be clarified. The quantities P z

0 and M0 are generalized
three-particle and four-particle Green’s functions, respectively,
which are defined in the next section. The generalized Green’s
functions in Eq. (2.6) also appear in a similar form in the
work of Larkin and Ovchinnikov [16] and Millis [17]. Finally,
note that, when Q = 0, P z

0 = 0, and thus this collective-mode
term does not contribute for a uniform superfluid. The size
of the amplitude mode contribution is thus set (in part) by
Q/kF . In principle this allows for a significant collective-mode
contribution, as will be discussed further in Sec. IV.

III. SUPERFLUID DENSITY

A. Superfluid density derivation via Kubo formula

In this section we use the Kubo formula and Eq. (2.2) to
derive the superfluid density tensor:(

nij
s /m

) = (n/m)δij + P ij (ω = 0,q → 0). (3.1)

Note that the order of limits in the above expression is crucial.
To compute n

ij
s , first set ω = qi = qj = 0, then take qk → 0,

where k �= i,j . The collective modes are contained within the
second term.

Evaluating this expression we find(
n

ij
s

m

)
=

∑
k

|�|2
E2

kQ

(
Xk

EkQ
− βYk

)
(̃ki

−/m)(̃kj
+/m)

− δizδjz
(
P z

0

)2
/M0, (3.2)

where we define Xk ≡ D−1 sinh(βEkQ), and Yk ≡ D−2

[1 + cosh(βEkQ) cosh(βhkQ)] with D ≡ cosh(βEkQ) +
cosh(βhkQ).

The first term in Eq. (3.2) represents the usual [14,15]
“bubble” contribution, due to bubble terms in both (n/m)δij
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and P ij (0). The second term represents the collective-mode
contribution arising solely from P ij (0). As an important check,
we note that Eq. (3.2) is identical to the superfluid density ob-
tained from Eqs. (1.2) and (1.3). Explicit calculation shows that
the bubble term is 4(∂2�/∂Q2)|μ,h,|�| and (∂2�/∂|�|∂Q) =
−|�|P z

0 ,(∂2�/∂|�|2)|μ,h,Q = 4|�|2M0, where the mean-
field thermodynamic potential [14,25] is � = |�|2/g −
β−1 ∑

k {log[2 cosh(βEkQ) + 2 cosh(βhkQ)] − βξkQ}.
Note that the collective-mode contribution is only along

the direction of the FF pairing vector, in agreement with
the general arguments presented earlier. Direct calculation
shows that n

ij
s is diagonal, with nxx

s = n
yy
s = 0, as required

by symmetry.

B. Derivation via equilibrium current

A verification of this Kubo analysis and the collective mode
contributions can be made in a slightly simpler fashion. Here
we derive the superfluid density in the direction along the FF
pairing vector using only the equilibrium current and its partial
derivative with respect to Q. The equilibrium current in the
z direction is jz(Q) = ∑

σ

∑
k (̃kz

+/m)Gσ (̃k). This expression
follows from jz = 2(∂�/∂Q)|μ,h,|�|. By symmetry the mean-
field currents in the other directions vanish: jx = jy = 0.

In what follows it will be important to fix μ and h to
their mean-field values, and to consider the Q dependence
of only the gap: �(Q). The following lemma, the proof
of which is given in Ref. [29], will also be required:
(∂G−1

σ (̃k+)/∂Q)|μ,h = −(1/2)z
σ (̃k+,̃k+). The partial deriva-

tive of jz can now be computed. Using the number equation
n = ∑

σ

∑
k Gσ (k), along with the aforementioned lemma,

the partial derivative of jz is then (∂jz/∂Q)|μ,h = (n/2m) −∑
σ

∑
k (̃kz

+/m)G2
σ (̃k)(∂G−1

σ (̃k+)/∂Q)|μ,h = (nzz
s /2m). Note

that the above expression, which reproduces Eqs. (1.2) and
(3.2), includes collective-mode contributions arising through
z (̃k+,̃k+).

IV. NUMERICAL RESULTS

We now illustrate numerically the regime of stability of
the FF phase. We require first that the superfluid density
nzz

s as computed in the theory outlined above is positive
and second that the state of interest is a minimum of the
thermodynamic potential. These conditions correspond to
nzz

s > 0 and (∂2�/∂|�|2)|μ,h,Q > 0. Although derived differ-
ently, these criteria coincide with results in the recent literature
[25]. Importantly, they are a useful way to characterize
the various temperature regimes in mean-field FF superfluid
systems. We associate the critical temperature T FF

c with the
temperature at which either one of these stability conditions
fails. Additionally, we associate the temperature TQ as the
temperature at which the FF pairing vector Q vanishes. Finally,
T� represents the temperature at which the mean-field pairing
gap vanishes.

For the specific region of the phase diagram studied, our
numerical calculations show that there are three temperature
regimes of interest:

(i) 0 � T < T FF
c is the regime where a stable FF phase

exists: both nzz
s > 0 and (∂2�/∂|�|2)|μ,h,Q > 0.

FIG. 1. Superfluid density as a function of temperature for the FF
phase (a) at unitarity (1/kF a = 0) and with polarization p = (n↑ −
n↓)/n set to p = 0.75 and (b) in the near-BCS regime (1/kF a =
−0.5) with polarization p = 0.4. The blue curves denote the full
expressions for nzz

s /n given in Eq. (3.2), while the red curves denote
the bubble contribution alone, given in the first line of Eq. (3.2). The
green curves denote nxx

s /n; in this case there are no collective modes
and so the bubble and full expressions are equivalent.

(ii) T FF
c � T < TQ is the regime where an unstable FF

phase exists. Either one or the other (or both) of the stability
conditions fails; that is, nzz

s < 0 or (∂2�/∂|�|2)|μ,h,Q < 0.
(iii) TQ < T < T� is the regime where � �= 0, but Q =

0. This corresponds to the Sarma phase. Since Q = 0 in
this regime, there is no collective-mode contribution to the
superfluid density, and moreover nzz

s = nxx
s = n

yy
s > 0.

Figure 1 encapsulates the important point that collective
modes of the order parameter will substantially reduce the
region where there is a stable FF phase. In Fig. 1(a)
we plot the superfluid density with collective-mode effects
(blue curve) as a function of temperature for the case of
polarization p = 0.75 and interaction strength (in terms of
the scattering amplitude) 1/kF a = 0. Similarly, Fig. 1(b) plots
the superfluid density with collective-mode effects (blue curve)
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for a more BCS-like case p = 0.4 and 1/kF a = −0.5. The red
curves in Fig. 1 denote the bubble contribution to the superfluid
density which is historically [14,15] all that is considered. The
green curves plot the transverse superfluid density. As required
by symmetry, nxx

s = 0 for all T < TQ for which the FF pairing
vector Q persists.

In Fig. 1(a) we identify T FF
c /TF ∼ 0.06–0.065, in rough

agreement with Ref. [25]. Additionally, TQ ∼ 0.2TF , and
T� ∼ 0.24TF (not shown in Fig. 1). Even though this plot is in
the strong interaction regime, for quantitative purposes, strict
mean-field parameters are used in this plot. It should be noted
that the effects of the collective modes are quite appreciable in
this plot. This follows because the bubble term is proportional
to (�/EF )2, whereas the collective-mode term is proportional
to (Q/kF )2. (Note though the integrands in both expressions
are somewhat different.) Near zero temperature, with p = 0.75
and 1/kF a = 0, �/EF ∼ 0.16 whereas Q/kF ∼ 0.71. Thus
qualitatively the collective-mode contribution is expected to
be an important contribution in this regime.

One can determine from Fig. 1(b) that the highest tem-
perature for which the FF superfluid is stable is given by
T FF

c /TF ∼ 0.09–0.095 (in rough agreement with Ref. [24]).
The other temperature scales of interest are found to be
roughly TQ ∼ 0.13TF , and T� ∼ 0.17TF . In this plot the
effects of the collective modes are not as appreciable. Near
zero temperature, with p = 0.4 and 1/kF a = −0.5, we find
�/EF ∼ 0.13 whereas Q/kF ∼ 0.38, so that the collective-
mode contribution is still expected to be appreciable, albeit not
as large as exhibited in Fig. 1(a).

For numerical checks on our results we have verified
that, in the stable regime, our mean-field solutions are global
minima of the thermodynamic potential [31] and that the blue
curve computed via Eq. (3.2) is numerically equivalent to that
computed via the equilibrium current using Eq. (1.2).

V. CONCLUSIONS

In this paper we have computed the superfluid density tensor
n

ij
s for the FF superfluid phase. Importantly, we have shown

(using multiple, distinct theoretical frameworks) that widely
neglected collective (amplitude) mode contributions cannot
be ignored. In general they will affect n

ij
s for the broad class

of Q �= 0 pair-density wave superconductors. Indeed, while
Fig. 1 was obtained using the specific microscopic approach
of Fulde and Ferrell, we believe its qualitative features (except
for the behavior of the transverse superfluid density) are more
generic. It is useful to note that in the original paper [16] by
Larkin and Ovchinnikov the authors addressed the superfluid
density of pair-density wave phases; however, they used a
small � expansion, necessarily valid near T�. Note that our
numerical results show this may be well removed from the
stable FF regime.

Given the intense interest in condensed-matter observations
of a Higgs mode, one can inquire as to what is the relation
between the amplitude mode evident in pair-density wave
superconductors and the Higgs mode in condensed matter
[4–6,8–10,32]. The Higgs mechanism is associated with a
charged system, where the Nambu-Goldstone mode is gapped
out due to the Englert-Brout-Higgs-Guralnik-Hagen-Kibble
mechanism. In the present theory we argue that the general
observation that amplitude modes affect the superfluid density
applies, even though we have implemented the calculations
for the neutral case. Moreover, in the present theory we
incorporate the effects of the amplitude mode only at zero
frequency and zero wave number so that the amplitude mode is
not observed as a collective resonance. Nevertheless, we have
ascertained in this paper that the existence of an amplitude
mode has important consequences for readily accessible
physical quantities in pair-density wave superconductors.

Note added. After this paper was completed a paper
addressing the “Higgs” mode in FF and other pair-density
wave superfluids appeared [32]. However, as in the present
paper, the authors focused on neutral systems. Their work
addresses the finite frequency behavior of the amplitude mode
in these systems. In our formalism, this mode can be obtained
from the finite frequency branch cut in �μ,�̄μ, which can be
found from the analytic expressions given for these quantities
in Ref. [29].
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