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This study demonstrates an immersed boundary (IB) method which integrates a depth-averaged two
dimensional flow model is proposed to tackle a typical fluid–solid phase problem in fluid dynamics field.
The finite-difference scheme with curvilinear coordinate system is employed to discretize the
shallow-water flow equations. Lagrangian markers and Eulerian grid are applied to portray the geometric
contour of interior boundary and discretize the flow domain, respectively. The Dirac delta function is
accordingly conducted to link both Lagrangian and Eulerian coordinate systems. The numerical simulations
of single pier are performed and compared to examine the effect of marker’s mesh width, grid size, and the
various Dirac delta functions. Experimental data from literatures are compared with numerical results to
justify the validity of the proposed IB model. To further demonstrate the model capability, the model is
applied to the hypothetical cases of piers in parallel, and compared with theoretical results.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In open channel flow, arbitrary non-submerged obstacles, such
as bridges and spur dike, are typical fluid–solid phase problems in
computational fluid dynamics. As far as numerical scheme con-
cerned, commonly used methods for solving these problems in-
clude finite-element method (Taylor and Hughes [1], Molinas and
Hafez [2]), finite-volume method based on triangular grid (Ming-
ham and Causon [3]; Biglari and Sturm [4]) and finite-difference
model (Tingsanchali and Maheswaran [5]). The most convenient
capability of finite-element and finite-volume methods is that
the triangular grid can perfectly describe the arbitrary interior
boundary. However, as far as grid generation concerned, the
advantages for finite-difference model with quadrangular grid
are simple and convenient. Tingsanchali and Maheswaran [5]
developed a finite-difference code which ignored computation
grids surrounded by the interior boundary to simulate flow around
a rectangular cross section spur dike. However, the advantage dis-
appears when it comes to non-rectangular cross section obstacles,
such as circular bridge pier.

Immersed boundary (IB) method proposed by Peskin [6] has
been widely used in the fluid–solid phase problem, such as pros-
thetic cardiac valve, swimming eels, sperm, and bacteria. IB meth-
od has also been used in many fixed-boundary fluid dynamics,
such as flow around cylinder in two-dimensional domain (Lai
and Peskin [7], Silva et al. [8], Su et al. [9]). Fadlun et al. [10] and
ll rights reserved.
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Kim et al. [11] solved flow around complex geometric object in
three-dimensional domain. Shen and Chan [12] used the IB method
to simulate submerged solid bodies, and combined with volume of
fluid (VOF) technique to simulate the interaction between free sur-
face and submerged steps. Studies mentioned above verified the
capability of IB methods by simulating the wake flow behind cylin-
der, and comparing the Strouhal number (dimensionless frequency
of vortex shedding) or drag coefficient with that calculated
experimentally.

In shallow-water flow domain, not the same as the fluid-dy-
namic cases mentioned previously, the Strouhal number is no
longer the sufficient benchmark to justify the rationality of flow
pattern. In this article, the comparison studies with experiments
selected properly will be performed to examine the applicability
of the IB method for shallow-water flow problems. The experi-
ments from literatures include the round pier case deployed by
Ahmed and Rajaratnam [13] and the spur dike case deployed by
Rajaratnam and Nwachukwu [14]. The purpose to simulate the
experiments is to justify the model’s validity. Furthermore, hypo-
thetical parallel-piers cases are designed to demonstrate the mod-
el’s capability.

The IB method is commonly applied in the rectangular grid of
Cartesian coordinate. To fit the boundary of natural rivers, the
orthogonal curvilinear coordinate system is therefore used in this
study to transfer the physical domain into the computational do-
main with rectangular grids, as shown in Fig. 1. This study demon-
strates the applicability of the IB method and explores the
advantages of using the IB method for shallow-water flow domain
under orthogonal curvilinear coordinate.

http://dx.doi.org/10.1016/j.compfluid.2011.08.009
mailto:hsieh0812@itri.org.tw
http://dx.doi.org/10.1016/j.compfluid.2011.08.009
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid
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Fig. 1. Sketch of (a) physical domain and (b) computational domain.
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2. Mathematical formulations

Following the concept of the IB method, the non-submerged
obstacles in the flow field can be considered as a source of virtual
force acting on the interior wall of obstacles. Its effect on the flow
field is formulated as a source term in the momentum equation.
The associated governing equations and solution formulation are
described sequentially in the following.

2.1. Governing equations

This study follows the Warsi’s [15] approach that the governing
equations are transformed from the physical domain of Cartesian
coordinate to the computational domain of orthogonal curvilinear
coordinate. The governing equations are developed based on the
assumptions including: (1) incompressible Newtonian fluid, (2)
hydrostatic pressure distribution, (3) wind shear neglected at the
water surface, (4) Coriolis acceleration ignored. The kinematic
boundary conditions at the bed and the surface are applied to inte-
grate Navier–Stokes equations to obtain 2-D depth-averaged shal-
low-water flow equations by Leibnitz rule (Hsieh and Yang [16],
Miller and Chaudhry [17], Lin and Huang [18]). The governing
equation with a virtual force term can be expressed in orthogonal
curvilinear coordinate system as follows:
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where t is time; n and g are orthogonal curvilinear coordinates in
streamwise axis and transverse axis, respectively; h1 and h2 are
metric coefficients in n and g directions, respectively; U and V are
the depth-averaged velocity components in n and g directions,
respectively; d is water depth; q is fluid density; g is gravitational
acceleration; zb is bed elevation; u and v are velocity components
in n and g directions, respectively; over bar (—) = time averaged;
prime (0) = time fluctuating component; Tij = integrated effective
stress; tt = turbulence kinematic viscosity = ku⁄d/6 (Falconer [19]);
u⁄ = (sb/q)1/2 = shear velocity; k = von Karman’s constant with a va-
lue of 0.4.

sb1 and sb2 are bottom shear stresses in n and g directions,
respectively, modeled by Rastogi and Rodi [20] as follows

sb1 ¼ cf qU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
ð10Þ

sb2 ¼ cf qV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

q
ð11Þ

where cf = g/c2 = friction factor; c = Chezy factor; g = gravitational
constant. The wind caused free surface shear stress is neglected,
thus, ss1 = 0 and ss2 = 0.

In this model, the integrated effective stresses (Eqs. (4)–(6)) are
treated with Boussinesq’s eddy viscosity concept (Eqs. (7)–(9)).
Although Lien et al. [21] and Miller and Chaudhry [17] show that
the effective stresses can be ignored in straight channels, this study
intends to maintain the integrity of numerical model, and hence
the integrated effective stresses are not ignored. The integrated
effective stresses are thereupon solved using an empirical profile
which can be found in De Vriend [22] and Hsieh and Yang [16].

f(n) and f(g) in Eqs. (2) and (3) are the virtual forces of the IB
method in n and g directions, respectively. The force is designed
to enforce the proper boundary conditions on an arbitrary massless
body that may or may not be coincided with the grid, as shown in



Fig. 2. Sketch of flow domain X and immersed boundary C.
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Fig. 2. The circles in Fig. 2 are the markers in Lagrangian coordinate
(C), used to describe the wall of boundary; X is the domain of flow,
also known as the Eulerian grid.

2.2. Boundary conditions

Three types of boundary conditions including inlet, outlet, and
both sides of wall are taken into account. The inlet boundary uses
the unit-width discharge, and the outlet boundary uses the water
surface elevation. In side wall, the boundary is set by the law of
the wall (Nezu and Nakagawa [23]):

uw

U�
¼ 1

j
ln 9

ywU�
t

� �
ð12Þ

uw = depth-averaged velocity nearing the wall; yw = distance be-
tween wall and nearing grid; U⁄ = shear velocity = (sb1/q)1/2;
j = von Karman’s constant = 0.4; t = kinematic viscosity.

2.3. Solution formulation for virtual force term

Fig. 2 demonstrates that the interior boundary of Eulerian do-
main is discretized by the IB markers which may not coincide with
a grid. Therefore, the boundary condition, such as no slip condition,
on the IB markers must be fulfilled first, and then be redistributed
to grid. Mittal and Iaccarino [24] investigated various IB methods
and categorized the methods that solve the interior boundary con-
dition into two approaches: continue forcing and discrete forcing
approaches. The advantages of first approach are simple and
straightforward for implementation; the second one has the
advantages in stability and applicability. Su et al. [9] developed a
methodology that may achieve most advantages of both ap-
proaches simultaneously. In which, the IB method that solves a
banded matrix is formulated from the geometric relations between
the Eulerian grids and the Lagrangian markers with the non-slip
boundary condition. The banded matrix can be expressed as a sys-
tem of linear algebra equation as follows:

Ak;j � FðnkÞ ¼ B1k

Ak;j � FðgkÞ ¼ B2k

k ¼ f1;Mg; j ¼ f1;Mg
ð13Þ
F(nk) and F(gk) represent the virtual forces on markers k in n and g
directions, respectively; M = numbers of markers; Ak,j is the geomet-
ric relations between markers and grids, and the form of the rela-
tions are the same in n and g directions. Ak,j can be expressed as
follows:

Ak;j ¼
XM

j¼1

XX
dk

hDskdj
hh1h2

" #
ð14Þ

Dsk is the averaged distance of one marker k to neighboring two
markers, that is Dsk ¼ 0:5ðskþ1sk þ sksk�1Þ, sk is the position of mar-
ker k; — represents distance between the neighboring markers; dk

h

represents dh (Dirac delta function) of marker k, which is a weight-
ing function based on space distance, and will be described in Eqs.
(18)–(20).

B1k and B2k are the velocity variations on markers k in n and g
directions, respectively, which can be expressed as follows:

B1k ¼
U�k � Uk

Dt

" #

B2k ¼
V�k � Vk

Dt

" # ð15Þ

in Eq. (15), U�k and V�k represent the known velocity on markers; Uk

and Vk mean the current velocities on markers. The known velocity
should remain zero for static obstacles, and are equal to moving
velocity for moving obstacles. The current velocities are calculated
by Eqs. (1)–(3) and can be transformed from depth-averaged veloc-
ity, U and V, by dh function as follows:

Uk ¼
XX

Udk
hDsk

Vk ¼
XX

Vdk
hDsk

ð16Þ

To close Eqs. (2) and (3), the virtual forces, F(nk) and F(gk), on the
IB markers need to be transformed into f(n) and f(g) on Eulerian
grid. The transformation relations can be expressed as follows:

f ðnÞ ¼
XM

k¼1

FðnkÞdk
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f ðgÞ ¼
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k¼1

FðgkÞdk
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ð17Þ

From Eqs. (16) and (17), one can find that the key concept of dh

function is used to redistribute the velocity and force between the
Lagrangian and the Eulerian coordinates. Peskin [25] shows that
the dh function can derived by 4 or 6 points. So far several methods
including 2-point, 4-point and 6-point dh functions have been com-
monly used in computational fluid dynamics. However, Shin et al.
[26] shows that the 6-point dh function might yield less stable re-
sults than others with less points. Therefore, the 4-point dh func-
tion and 2-point dh function are adopted in this study. The dh

function can be calculated by the distribution function dh as
follows:

dk
h ¼ dhðn� nkÞdhðg� gkÞ ð18Þ

The 4-point dh function was presented by Lai and Peskin [7], and
dh is calculated as follows:
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where r is n - nk or g � gk, and Dh is the grid size, equal to Dn or Dg.
The 2-point dh function was presented by Su et al. [9], and dh can

be represented as follows:
dhðrÞ ¼
1� jrj

Dh

	 

1
Dh ; forjrj 6 Dh

0; otherwise

(
ð20Þ
In this study, both 4-point and 2-point dh functions are con-
ducted to demonstrate their capability and distinction as applied
to shallow-water flow computation.
3. Numerical methodology

3.1. Operator-splitting approach

The finite difference method is employed to discretize the gov-
erning equations. The operator-splitting approach proposed by
Hsieh and Yang [16] is used to solve the governing equations.
The first step (dispersion process) takes into account the advection
terms and diffusion terms in the momentum equations to compute
the provisional velocity. The second step (propagation process)
solves the water depth by computing the pressure and bed friction
terms of Eqs. (2) and (3), and the continuity equation, and then cor-
rects the provisional velocity. The third step is to correct the veloc-
ity by solving the virtual force term. The first-order forward
differencing is used for time derivative, and the numerical scheme
for the spatial derivative terms will be introduced in Section 3.2.
The following is the difference form of the operator-splitting
approach.

Dispersion step
Unþ1=2 � Un

Dt
þ Un

h1

@Unþ1=2

@n
þ Vn

h2

@Unþ1=2

@g
þ UnVn

h1h2

@h1

@g
� ðV

nÞ2

h1h2

� @h2

@n

¼ 1
qh1h2dn

@ðh2Tnþ1=2
11 Þ
@n

þ @ðh1Tnþ1=2
12 Þ

@g
þ @h1

@g
Tnþ1=2

12 � @h2

@n
Tnþ1=2

22

" #

þ 1
qh1h2dn �ðh2s11Þns

@zn
s

@n

�
þ ðh2s11Þnb

@zn
b

@n
� ðh1s12Þns

@zn
s

@g

þ ðh1s12Þnb
@zn

b

@g

�
ð21Þ

Vnþ1=2 � Vn

Dt
þ Un

h1

@Vnþ1=2

@n
þ Vn

h2

@Vnþ1=2

@g
þ UnVn

h1h2

@h2

@n
� ðU

nÞ2

h1h2

� @h1

@g

¼ 1
qh1h2dn

@ðh2T12Þnþ1=2

@n
þ @ðh1T22Þnþ1=2

@g
� @h1

@g
Tnþ1=2

11 þ @h2

@n
Tnþ1=2

12

" #

þ 1
qh1h2dn �ðh2s12Þns

@zn
s

@n

�
þ ðh2s12Þnb

@zn
b

@n
� ðh1s22Þns

@zn
s

@g

þ ðh1s22Þnb
@zn

b

@g

�
ð22Þ

where the superscript (n + 1/2) represents the variable determined
by the dispersion step (n + 1/2), and the superscript n represents a
known variable at time step (n).

Propagation step
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where the superscript p means variables of propagation step being
determined, the superscript (n + 1) denotes the unknown variables
at time step (n + 1). Eqs. (23)–(25) are combined to linearize the
depth in n + 1 time step; and hence, the depth increment equation
can be derived. The propagation velocity can be rearranged from
Eqs. (23) and (24) as follows:
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Using Taylor series expansion for the water depth, dn+1, remain-
ing the first order terms, and using Dd = dn+1 � dn as depth incre-
ment, Eq. (26) can be linearized as follows:
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Substituting Eq. (28) into Eq. (25) one can obtain the depth
increment equation
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and Correction step

Unþ1 � Up
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¼ f ðnÞ; Vnþ1 � Vp
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The virtual force terms in n and g directions are solved implic-
itly in Eqs. (13) and (17), to exhibit the influence induced by the
interior obstacle to the flow domain.
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Fig. 3. Layout of experiment for flow passing through a single pier (Ahmed and
Rajaratnam [13]).
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3.2. Numerical scheme

The advection terms in Eqs. (21) and (22) are discretized implic-
itly by a hybrid scheme (Lien et al. [21]). The hybrid scheme com-
bines the upwind and central difference schemes to capture the
flow direction. It can be expressed as follows:
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where u can be U or V;

ax ¼
0 jRxj 6 2
1 Rx > 2
�1 Rx < �2

8><
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where Rx ¼
Un

i;jh1i;jDn

l=q and Ry ¼
Vn

i;jh2i;jDg
l=q are the mesh Reynolds number

for n and g directions, respectively, and l = dynamic viscosity. In
the above scheme, the central difference scheme is used for the
low mesh Reynolds number, whereas the upwind scheme is used
for the high mesh Reynolds number. One can note that the mesh
Reynolds number and the dynamic viscosity are the numerical
parameters used to determine the suitable numerical method;
and both the parameters are not related to the governing equations.

The rest terms of Eqs. (21), (22), and (29) are solved using con-
trol-volume concept and discretized by the central difference
scheme, which can be expressed as follows:
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where W can be U, V or d, We = 0.5(Wi+1,j + Wi,j), Ww = 0.5(Wi,j +
Wi�1,j), Wn = 0.5(Wi,j+1 + Wi,j), and Ws = 0.5(Wi,j + Wi,j�1).

3.3. Solution procedure

The solution procedure for solving the discretized governing
equations expressed previously can be summarized as follows:

1. Calculate the provisional velocities (Un+1/2, Vn+1/2) implicitly
by the alternating direction implicit (ADI) method from
Eqs. (21) and (22) without the pressure gradient terms
and friction terms.

2. Compute Eq. (29) implicitly to obtain depth at time n + 1 by
the ADI method.

3. The velocities (Up, Vp) are calculated to correct the provi-
sional velocities with the pressure gradient and bed friction
from Eq. (26) to complete the propagation step.

4. Use Eq. (13) to calculate F(nk) and F(gk), and then Eq. (17) is
used to calculate f(n) and f(g).

5. Use Eq. (30) to obtain velocity at time n + 1 around interior
boundary.

6. Repeat procedures 1–5 until a steady state solution is
reached (for steady flows) or the specific time period is
completed (for unsteady flows).
4. Examination on model’s accuracy and stability

From the mathematical formulation as described previously, one
can justify that the model’s accuracy is closely related to the param-
eters introduced by using the IB method, which include the marker’s
mesh width distribution and the grid size. To evaluate the effects of
parameters variation to the model accuracy, several test cases are
designed for each parameter varied with sufficient wide range,
and the discrepancy between simulation results and experimental
data are calculated and analyzed. Both the 4-point and 2-point dh

functions are adopted for each test case to demonstrate the influence
from the different dh function to the flow field accuracy.

The single pier experiment, known as the C2R case, carried out
by Ahmed and Rajaratnam [13] is adopted in this study. The layout
of the channel and the pier geometry for the experiment is shown
in Fig. 3. The horizontal flume is 20 m long and 1.22 m wide. The
pier is located at 13 m from upstream. The inflow discharge is
0.065 cms and the depth is 0.182 m. The roughness is calculated
by Manning’s formula, n ¼ d1=6

m =21:1 (Henderson [27]), where
dm = mean diameter of particle size which is 1.84 mm for the sand
glued on wooden plank in the experiment. The Froude number
(Fr ¼ U=

ffiffiffiffiffiffi
gd

p
) is 0.22 and the Reynolds number (Re = qU‘/l, where

‘ = diameter of pier or length of spur dike) is 24,800.
The dh function used for the virtual force computation which is

related to the distance between the marker and grid implicitly
indicates that the model’s accuracy may be affected by the various
conjunctive selections of marker distributions and coordinate
grids. To justify their respective effect, first of all the model’s accu-
racy in terms of velocity variation will be examined to evaluate the
influence of various marker distributions with a constant grid size,
and the effect of varied grid sizes with representative constant
marker’s mesh width.

In the study, RMS error is used as an index to present the dis-
crepancy of velocity between the numerical simulation and exper-
imental data, stated as follows:

RMS error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðxi � yiÞ

2

N

s
ð34Þ

where xi and yi represent the experimental and simulation velocity,
respectively; and N represents the number of data at different posi-
tions. In this study, the RMS error is only evaluated at the same po-
sition where the velocity is measured in the experiment, as shown
in Fig. 3. One of the positions measured is represented by the black
line, in Fig. 3, on one side of the pier with a distance being three
times the radius of the pier, along upstream to downstream of the
pier. The other one is located in front of the pier with the distance
being five times the radius of the pier, along the center of the chan-
nel to the left side wall.
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4.1. Marker’s mesh width effect

The marker can be uniformly or non-uniformly distributed,
whereas the later fits the real case better as far as the natural com-
plex geometry concerned. In the following, the uniform marker
distribution is evaluated first. Fig. 4 shows the variation of RMS er-
rors with respect to the ratio of marker’s mesh width to the grid
size, U = Ds/Dg, for the cases simulated by the 4-point and 2-point
dh functions with uniform grid. In which, Dn = Dg = 0.002 m is
adopted. For the cases studied here, one can find that taking into
account the model’s stability, the value of U cannot be approxi-
mately less than the critical value of 0.6 for the 2-point dh function,
and 0.7 for the 4-point dh function. Below the critical value it may
cause singular solution in the system of linear algebra of Eq. (13).
On the other hand, as U is greater than 2.0, the virtual force might
be underestimated using the 2-point dh function, as shown in Fig. 4,
where the RMS error increases rapidly.

However, for most range of U the results show that the RMS er-
rors are well confined, even with the value of U being as large as
2.5, the RMS error for the 2-point dh function is still quite small
(around 0.02). The case simulated here indicates that the result
accuracy by the proposed IB model highly resonates the experi-
mental results under the conditions of uniform marker distribu-
tion, uniform grid size of 0.002 m, and U < 2.5, no matter which
dh function is used.
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To evaluate the effect due to the non-uniformity of marker dis-
tributions, cases with various U marker distributions around the
pier are investigated. The conceptual sketch of marker distribu-
tions with U values of 1.8 and 1.0 are shown in Fig. 5; in which,
U = 1.8 is used to distribute the markers along the left hand side
of the pier boundary, whereas U = 1.0 is for the right hand side.
The test cases include those with starting angle h = 30� and with
increment of 20� till reaching h = 330�. Fig. 6 shows the results of
velocity RMS errors with respect to various angle of h, which are
computed from the 2-point and 4-point dh functions, respectively.

RMS errors on both sides of the pier are presented to examine
how the non-uniform distribution of the marker’s mesh width af-
fects the velocity field around the pier. From Fig. 6, the results gi-
ven by the 2-point dh function show no systematic RMS error along
two sides of the pier. On the contrary, the results given by the 4-
point dh function show consistently systematic fluctuations being
confined in a very small range with considerably same values. This
may indicate that the flow field along both sides conserves the
symmetric pattern presents less sensitivity to the marker’s non-
uniformity.

4.2. Grid size effect

The grid size effect will be analyzed on the basis of two catego-
ries including the uniform grid with grid aspect ratio (Dn/Dg)
 mesh width to grid size)
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Table 1
List of numerical parameters for grid size test.

Test cases Grid size (m) Grid aspect ratio

Uniform grid
cases

0.0005, 0.001, 0.002, 0.003, 0.005,
0.01, 0.015, 0.02

1

Non-uniform
grid cases

Grid size in g direction is fixed as
0.002

0.05, 0.2, 0.5, 1.0,
1.5, 2.0, 5.0
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equal to unity and non-uniform grid with various grid aspect ra-
tios, whereas the grid size in g direction is fixed as Dg = 0.002.
The designed cases are listed in Table 1. The markers are deployed
uniformly to simplify the analysis on the marker’s mesh width ef-
fect. U = 0.6 and 0.7 are adopted in these tests because they are the
smallest critical value allowed in terms of model stability for the 2-
point and 4-point dh functions, respectively, being pointed out pre-
viously from the outcome shown in Fig. 4.

Cases with uniform grid sizes including – 0.0005 m, 0.001 m,
0.002 m, 0.003 m, 0.005 m, 0.01 m, 0.015 m, and 0.02 m – are used
to examine the influence of grid size on the model accuracy in
comparison to the experiment. Fig. 7 depicts the RMS errors varies
with respect to the grid sizes. One can find that the discrepancy be-
comes more significant with coarser grid sizes. The RMS error var-
ies in the range from 0.015 to 0.03. The influence of the grid size on
Grid S
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Fig. 7. Variation of RMS error
the model accuracy becomes less with the grid size finer than
0.005 m; and the error reduces about 50% in comparison to that
with the grid size of 0.02 m. The difference is 0.15% between the
two dh functions in average, which means both the dh functions be-
have similarly for the cases with uniform grids and uniform marker
distributions.

For non-uniform grid cases with various grid aspect ratios, as
mentioned previously a constant space interval in g direction
Dg = 0.002 m is used, and the space interval in n direction, Dn var-
ies from 0.0001 m to 0.01 m, and therefore providing the grid as-
pect ratio ranging from 0.05 to 5.0. Herein the uniform marker’s
mesh width (Ds) is set up based on the grid space interval in g
direction, that is Ds = UgDg, in which Ug = 0.6 and 0.7 are adopted
for the 2-point and 4-point dh functions, respectively.

Fig. 8 demonstrates the variation of RMS error with respect to
various values of grid aspect ratio for the 2-point and 4-point dh

functions. The RMS errors for cases with grid aspect ratio from
0.05 to 1.5, as shown in Fig. 8, vary from 0.022 to 0.013. As grid as-
pect ratio equal to unity, cases from both the 2-point and 4-point
dh functions show the least RMS discrepancy, and the simulation
shows insignificant difference between the two dh functions. For
cases with the grid aspect ratio >1.5, the simulation results are
unstable and cannot be accomplished, since the Uf(Ds/Df)) is be-
low the critical values of 0.6 or 0.7 as discussed previously based
on the results shown in Fig. 4.
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5. Examination on Dirac delta function

From the results of previous studies, the proposed model can
approximate the experimental data well and keep the error in an
acceptable range under certain conditions as discussed above. Su
et al. [9] indicated that the 2-point dh function can give consider-
ably sufficient accuracy for their test cases under the condition of
Strouhal number or drag coefficient effects. To further examine
the pro/con of the 2-point and 4-point dh functions for shallow-
water flow, the test analysis based on various Froude numbers
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Fig. 10. Simulated and experimental dimensionless velocity at X/r = �5
for the C2R experiment by Ahmed and Rajaratnam [13] is carried
out subsequently. The test cases are studied under the conditions
of a marker distribution with U = 1.0, grid aspect ratio = 1.0, and
grid size = 0.002 m.

Following the experiment layout in Fig. 3, Fig. 9 shows the var-
iation of dimensionless velocity at the position of Y/r = 3 along the
channel reach from upstream point, X/r = �4 to downstream point,
X/r = 4. The dimensionless velocity = w/U0, where w = (U2 + V2)1/2

and U0 is upstream free-stream velocity. Fig. 10 shows the distribu-
tion of dimensionless velocity for the cross section at the position
 r = 3
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of X/r = �5 from the center of channel to the side wall, which is
nearly located right at upstream of pier. From Figs. 9 and 10, one
can find that both the 2-point and 4-point dh functions give consis-
tent results with the experimental data, except that the peak veloc-
ity from the 2-point dh function is less than that from the 4-point dh

function as shown in Fig. 9.
From the above comparison, in fact, it is difficult to identify the

pro/con of both the 2-point and 4-point dh functions. To further
examine the inside details, the following additional hypothetical
cases with larger Froude number are designed by steepening the
slope of C2R case. The slope is steepened to 0.044% and 0.092%
for which the Froude numbers are equal to 0.35 and 0.50, respec-
tively; the Reynolds numbers are equal to 60,207 and 81,184,
respectively; and parameters such as the marker distribution, grid
aspect ratio and grid size are as same as mentioned previously.
Fig. 11 shows the configuration of stream line simulated using
the 2-point and 4-point dh functions for the cases with Froude
numbers equal to 0.22, 0.35 and 0.50. The results show that as
the Froude number increases the vortex is being shed farther away
from the pier. Under a same Froude number, the simulation results
also demonstrate that vortex is shed farther from the pier by the 2-
point dh function than that by the 4-point dh function. The intrinsic
property of the IB method which allows the flow mass penetrating
through immersed body may reveal some sort of interpretation
about this phenomenon. For the cases studied here, one can find
that the mass penetrating through the pier given by the 2-point
dh function is greater than that given by the 4-point dh function,
as shown in Table 2. Apparently, the 4-point dh function gives
the better approximation in terms of the less mass loss through
the pier.



Table 2
List of mass penetrating rate in terms of Dirac delta function and Froude numbers.

Froude number Mass penetrating rate (%)

4-point dh function 2-point dh function

0.22 0.77 1.02
0.35 1.35 1.78
0.5 1.57 2.04

Marker’ s layout

Side wall of channel

Fig. 13. Markers distributed around the spur dike wall.
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6. Validation and application

As mentioned in previous studies, the 4-point dh function not
only intensifies the grid size effect and marker’s mesh width, but
also performs more reasonable flow field as far as the mass conser-
vation concerned at the condition with a larger Froude number.
Therefore, the 4-point dh function is adopted for the following
studies and further demonstrates the applicability of the IB method
for shallow-water flow computation.
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6.1. Model validation with spur dike case

Spur dike experiments by Rajaratnam and Nwachukwu [14] is
simulated by the proposed model, and the measured velocity pro-
file around the non-submerged spur dike is used to validate the
simulation results. Fig. 12 shows the layout of the experiment,
which is a uniform rectangular channel with a length of 37 m, a
width of 0.9 m, a horizontal bed. The length of spur dike, b, is
0.152 m. Flow discharge at upstream boundary is steady and uni-
form, with value of 0.0446 m3/s; downstream depth is 0.189 m;
Froude number is 0.19; and Reynolds number is 46,944.

The grid size is 0.005 m and the grid aspect ratio is 1.0. The mar-
ker distribution is non-uniform along the boundary of spur dike, as
shown in Fig. 13. U values ranges from 1.0 to 1.2; most of them are,
in fact, equal to unity, except those along the corners which ranges
from 1.1 to 1.2. The simulation results are compared with the
experimental data which was measured in several positions. As
shown in Fig. 12, in terms of flow direction, five groups of data lo-
cated at y/b equals to 1.0, 1.5, 2.0, 3.0 and 4.0 are measured. The
data of groups at y/b equal to 1.0 and 1.5 are measured from x/
b = �6 to x/b = 0, and the other three groups are measured from
x/b = �6 to x/b = 8.

Fig. 14 shows the variation of non-dimensionalized velocity, w/
U0, where w = (U2 + V2)1/2 and U0 is upstream free-stream velocity,
at various locations along the distance x/b. The simulation results
at y/b = 1 agree well with the experimental data. The velocity in-
creases rapidly near the spur dike head, whereas the simulated
velocity is slightly underestimated. The discrepancy appears owing
that the markers are positioned along the boundary and not
b

spur

x / b = -6 x / b = 0

flow

y / b = 1.0
y / b = 1.5

Fig. 12. Layout of spu
coincides with the measured positions. In which, the no-slip condi-
tion is needed to satisfy the IB method. From Fig. 14, one can ob-
serve that as the flow field is farther away from the spur dike,
the simulation results approximate to the experimental ones, due
to less non-slip boundary condition effect from the spur dike.

Along the computational points at y/b 6 2 in flow direction, the
simulation results for the upstream portion of the spur dike follow
the trend of experimental data; but those for the downstream por-
tion, the simulation result at y/b = 2 separates from the experimen-
tal data, and the peak value is, therefore, underestimated and out
of phase.

6.2. Application to piers in parallel

The channel geometry and flow condition used in the following
case is the same as the study by Ahmed and Rajaratnam [13] as
described previously. Various numbers of piers are deployed in
x

 dike (Γ domain)

Ω domain

x / b = 8
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r dike in channel.
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parallel as cases for model evaluation. The flow-area ratio varied
with cases is calculated by the ratio of the least cross-sectional area
of flow between piers to the cross-sectional area without piers.

To obtain theoretical discharge for comparison, the channel is
ideally simplified to a rectangular cross section, and only the con-
tinuity equation is considered. Fig. 15 shows the variation of dis-
charge per unit width with respect to the flow-area ratio for both
theoretical, which is simply solved by continuity concept (Hender-
son [27]), and simulation results. Fig. 15 shows that as flow-area
ratio equal to 50%, the discrepancy between simulated and theo-
retical discharge per unit width is about 9.35%. The mass loss is
intuitively unavoidable owing that the pier boundary is treated
as a source term not a solid boundary. The mass loss increases as
the flow-area ratio decreases, therefore, the discrepancy increases
between the simulated and theoretical discharge.

Other than the discharge per unit width, the water surface
change between the upstream and downstream of the pier is also
investigated. The specific energy concept (Henderson [27]) is used
to calculate the theoretical water surface change with the assump-
tion of frictionless bed. Fig. 16 shows the theoretical and simulated
results of dimensionless water surface change, which is the water
surface elevation at upstream minus that at downstream divided
by that without pier effect, varied with the flow-area ratio. The dis-
crepancy between simulated and theoretical results is not signifi-
cant as the flow-area ratio decreases, whereas the largest
discrepancy occurred for the largest flow-area ratio. This may be
because the specific energy equation with the frictionless bed
assumption cannot reveal the phenomenon that water surface is
elevated by the flow plunging to the pier. As flow-area ratio de-
creases, the simulation results approximate to the theoretical ones;
it may revealed that the IB method can approximate the theoretical
result in less flow-area ratio in spite of the mass loss. This applica-
tion study indicates that the IB method cannot avoid the mass loss,
even with the 4-point dh function, but apparently the IB method is
proved as an applicable and acceptable technique embedded in a
2-D shallow-water flow model to simulate the water surface
change around piers.
7. Conclusions

In this study, the proposed model which integrates the IB meth-
od with a 2D depth-averaged shallow-water model was conducted
to simulate the non-submerged obstacles in open channel flow.

The model’s stability is affected by the ratio of marker’s mesh
width to grid size, which should be greater than 0.6 and 0.7 for
the 2-point and 4-point dh functions, respectively. The simulation
with the 4-point dh function showed less sensitive to the non-uni-
formity of marker’s distribution than that with the 2-point dh

function.
For the cases with uniform grids, the better simulation results

can be obtained as the grids are finer in comparison with the
experimental data. On the other hand, under the condition of
non-uniform grid the simulation error decreases as grid aspect ra-
tio close to 1.0.

As far as the mass conservation concerned, in terms of the mass
penetrating through the immersed body, the 4-point dh function
gives less mass loss and perform the expected flow pattern behind
the body.

The model with the 4-point dh function was verified by a spur
dike experiment case. The deflected flow pattern around the spur
dike matched well with the experimental data, except the region
near the head of the spur dike.

The model capability was examined by the hypothetical cases
with multiple parallel piers. The results showed that the mass loss
due to the flow penetrating is inevitable, whereas the effect of pe-
netrating quantity is rather small, and the simulation of water sur-
face change gives well agreement with the theoretical results.
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Through the studies by capability demonstration and compari-
son to the experimental data, the application of the IB method in 2-
D shallow-water flow computation has been properly validated.
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