
C
c

S
D

a

A
R
R
A
A

P
0
0
0
0

K
C
F
F
N
Q

1

1
b
e
b
a
c
t
n

b
[
L
i
s
h
r
a

1
d

Applied Soft Computing 11 (2011) 4474–4487

Contents lists available at SciVerse ScienceDirect

Applied  Soft  Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

haos  control  of  new  Mathieu–van  der  Pol  systems  by  fuzzy  logic
onstant  controllers

hih-Yu  Li ∗

epartment of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 9 September 2009
eceived in revised form 12 February 2011
ccepted 14 August 2011
vailable online 22 August 2011

ACS:
5.45.Xt
5.45.Pq
5.45.Gg
5.45.Vx

a  b  s  t  r  a  c  t

In this  paper,  a  new  fuzzy  logic  controller—fuzzy  logic  constant  controller  (FLCC)  is  introduced  to chaotic
signals  controlling.  The  main  ideas of  the  FLCC  are  described  as  follows:  (1) proving  the  two  chaotic
systems  are  going  to  achieve  asymptotically  stable  via  Lyapunov  direct  method;  (2)  via  detecting  the  sign
of the  errors,  the  appropriate  fuzzy  logic  control  scheme  is  operated;  (3)  choosing  the  upper  bound  and
the lower  bound  of  the  error  derivatives  of  the  chaotic  signals  to be the  consequent  parts  (corresponding
controllers).

Due to controllers  in  traditional  method  – derived  by  Lyapunov  direct  method,  are  always  complicated,
nonlinear  form  or the functions  of  errors,  a new  simplest  controller—FLCC  is  presented  in  this  paper  to
synchronize  two  chaotic  signals.  Through  the  FLCC,  there  are  three  main  contributions  can  be  obtained:
(1)  the  mathematical  models  of  the  nonlinear  chaotic  systems  can be  unknown,  all  we have  to  do  is
eywords:
haos control
uzzy logic constant controller
LCC
ew Mathieu–van der Pol systems

capturing  the  signals  of  the  unknown  systems;  (2)  through  the fuzzy  logic  rules,  the  strength  of controllers
can  be  adjusted  via  the corresponding  membership  functions  (which  are  decided  by  the  values  of  error
derivatives);  (3)  by  the FLCC,  the  chaotic  system  can  be much  more  exactly  and  efficiently  controlled  to
the trajectory  of  our  goal  than  traditional  ones.  Three  cases,  original  point,  regular  function  and  chaotic
Qi  system  (with  large  values  of initial  conditions),  are  given  to illustrate  the  effectiveness  of  our new  FLC.
i system

. Introduction

Since Ott et al. [1] gave the famous OGY control method in
990, the applications of the various methods to control a chaotic
ehavior in natural sciences and engineering are well known. For
xample, the adaptive control [2–5], the method of chaos control
ased on sampled data [6],  the method of pulse feedback of system-
tic variable [7],  the active control [8,9] and linear error feedback
ontrol [10,11].  However, when Lyapunov stability of zero solu-
ion of states is studied, the stability of solutions on the whole
eighborhood region of the origin is demanded.

In recent years, some chaos control based on fuzzy systems has
een proposed since the fuzzy set theory was initiated by Zadeh
12], such as fuzzy sliding mode controlling technique [13,14],
MI-based synchronization [15] and extended backstepping slid-
ng mode controlling technique [16]. The fuzzy logic control (FLC)
cheme has been widely developed for almost 40 years and

as been successfully applied to many applications [17]. Many
esearchers have worked to improve the performance of the FLCs
nd ensure their stability. Li and Gatland in Refs. [18,19] proposed

∗ Tel.: +886 3 5712121x55179; fax: +886 3 5720634.
E-mail address: agenghost@gmial.com

568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2011.08.024
© 2011  Elsevier  B.V.  All  rights  reserved.

a more systematic design method for PD- and PI-type FLCs [20].
Choi et al. [21] presents a single input FLC ensuring stability. Ying
[22] presents a practical design method for nonlinear fuzzy con-
trollers, and many other researchers have results on the matter of
the stability of FLCs, in Castillo et al. [23] and Cázarez et al. [24] was
presented an extension of the Margaliot work [25] to built stable
type-2 fuzzy logic controllers in Lyapunov sense.

Recently, Yau and Shieh [26] proposed an amazing new idea to
design fuzzy logic controllers—constructing fuzzy rules subject to a
common Lyapunov function such that the master-slave chaos sys-
tems satisfy stability in the Lyapunov sense. In Ref. [26], there are
two main controllers in their slave system. One is used in elim-
ination of nonlinear terms and the other is built by fuzzy rules
subject to a common Lyapunov function. Therefore, the resulting
controllers are nonlinear form. Otherwise, in Ref. [26], the regular
form is necessary. In order to carry out the new method, the original
system must to be transformed into their regular form.

In this paper, we  propose a new strategy which is also con-
structing fuzzy rules subject to a Lyapunov direct method. Error
dynamics are used to be upper bound and lower bound. Through

this new approach, a simplest controller, constant controller,
can be obtained and the difficulty in realization of complicated
controllers in chaos synchronization by Lyapunov direct method
can be also coped. Unlike conventional approaches, the resulting

dx.doi.org/10.1016/j.asoc.2011.08.024
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:agenghost@gmial.com
dx.doi.org/10.1016/j.asoc.2011.08.024
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Fig. 1. The configurati

ontrol law has less maximum magnitude of the instantaneous
ontrol command and it can reduce the actuator saturation phe-
omenon in real physic system.

The rest of the paper is organized as follows: in Section 2, chaos
ontrol by FLCC scheme is presented. In Section 3, new chaotic
athieu–van der Pol system is introduced. In Section 4, simulation

esults are shown. In Section 5 conclusions are given.

. Chaos control by using the scheme of FLCC

.1. Chaos control scheme
Consider the following chaotic system

˙ = f(t, x) + u (2-1)

Fig. 2. The flowchart of FCLL des
fuzzy logic controller.

where x = [x1, x2, . . . , xn]T ∈ Rn is a the state vector, f : R+ × Rn → Rn

is a vector function and u = [u1, u2, . . .,  un]T ∈ Rn is the fuzzy logic
controller needed to be designed.

The goal system which can be either chaotic or regular, is

ẏ = g(t, y) (2-2)

where y = [y1, y2, . . . , yn]T ∈ Rn is a state vector, g : R+ × Rn → Rn is
a vector function.

In order to make the chaos state x approaching the goal state y,
define e = x − y = [e1, e3, e3, e4] as the state error. The chaos control

is accomplished in the sense that [13–22]:

lim
t→∞

e = lim
t→∞

(x − y) = 0 (2-3)

igning based on MATLAB.
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here

 = x − y (2-4)

From Eq. (2-4) we have the following error dynamics:

˙
 = ẋ − ẏ = f(t, x) − g(t, y) − u (2-5)

According to Lyapunov direct method, we have the following
yapunov function to derive the fuzzy logic controller for synchro-
ization:

 = f (e1, . . . em, . . . en) = 1
2

(e2
1 + · · · + e2

m + · · ·e2
n) > 0 (2-6)

The derivative of the Lyapunov function in Eq. (2-5) is:

˙
 = e1ė1 + · · · + emėm + · · ·enėn (2-7)

If the controllers included in ė1 . . . ėm . . . ėn can be suitably
esigned to achieve the target: V̇ < 0, then the two chaotic systems
re asymptotically stable. The design process of FLCC is introduced
n the following section.

.2. Fuzzy logic constant controller design process

The basic configuration of the fuzzy logic system is shown in
ig. 1. It is composed of five function blocks [27]:

. A rule base contains a number of fuzzy if–then rules.

. A database defines the membership functions of the fuzzy sets
used in fuzzy rules.

. A decision-making unit performs the inference operations on the
rules.

. A fuzzification interface transforms the crisp inputs into degrees
of match with linguistic value.

. A defuzzification interface transforms the fuzzy results of the
inference into a crisp output.

The fuzzy rule base consists of collection of fuzzy if–then rules

xpressed as the form if a is A then b is B, where a and b denote
inguistic variables, A and B represent linguistic values which are
haracterized by membership functions. All of the fuzzy rules can
e used to construct the fuzzy associated memory.

Fig. 4. Projections of phase portrait of new chaotic Mathieu–van der 
Fig. 3. Membership function.

We  use one signal, error derivatives ė(t) =
[ė1, ė2, . . . ėm, . . . ėn]T , as the antecedent part of the proposed
FLCC to design the control input u that will be used in the
consequent part of the proposed FLCC as follows:

u = [u1, u2 . . . um, . . . un]T (2-8)

where u is a constant column vector and the FLCC accomplishes the
objective to stabilize the error dynamics (2-5).

The strategy of the FLCC designing is proposed as follows and
the configuration of the strategy is shown in Fig. 2.

Assume the upper bound and lower bound of ėm are Zm and −Zm,
then the FLCC can be design step by step as follows:

(1) If em is detected as positive (em > 0), we  have to design a
controller for ėm < 0, then V̇ = emėm < 0 can be achieved.
Therefore we  have the following ith if–then fuzzy rules as:

Rule 1 : if ėm is Mmi then um1 = Zm (2-9)
Rule 2 : if ėm is Mm2 then um2 = Zm (2-10)

Rule 3 : if ėm is Mm3 then um3 = em (2-11)

Pol system with a = 10, b = 3, c = 0.4, d = 70, e = 1, f = 5, and g = 0.1.
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Fig. 5. Time histories of error deri

2) If em is detected as negative (em < 0), we  have to design a
controller for ėm > 0, then V̇ = emėm < 0 can be achieved.
Therefore we have the following ith if–then fuzzy rules as:

Rule 1 : if ėm is Mm1 then um1 = −Zm (2-12)

Rule 2 : if ėm is Mm2 then um2 = −Zm (2-13)

Rule 3 : if ėm is Mm3 then um3 = em (2-14)

3) If em approaches to zero, then the synchronization is nearly

achieved. Therefore we have the following ith if–then fuzzy
rules as:

Rule 1 : if ėm is Mm1 then um1 = em ≈ 0 (2-15)

Fig. 6. Time histories of errors for Case 1—
s for Case 1 (without controllers).

Rule 2 : if ėm is Mm2 then um2 = em ≈ 0 (2-16)

Rule 3 : if ėm is Mm3 then um3 = em ≈ 0 (2-17)

where Mm1 =
∣∣ėm

∣∣/Zm, Mm2 =
∣∣ėm

∣∣/Zm and Mm3 = sgn((Zm −
ėm)/Zm) + sgn((ėm − Zm)/Zm), Mm1, Mm2 and Mm3 refer to the
membership functions of positive (P), negative (N) and zero
(Z) separately which are presented in Fig. 3. For each case, umi,
i = 1–3 is the i-rd output of ėm which is a constant controller. The
centroid defuzzifier evaluates the output of all rules as follows:
um =
∑3

i=1Mmi × umi∑3
i=1Mmi

(2-18)

the FLCC is coming into after 20 s.
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Fig. 7. Time histories of states for Case 1—

Table 1
Rule-table of FLCC.

Rule Antecedent Consequent part
ėm umi

b

1 Negative (N) um1

2 Positive (P) um2

3 Zero (Z) um3

The fuzzy rule base is listed in Table 1, in which the input vari-
ables in the antecedent part of the rules are ėm and the output

variable in the consequent part is umi.

After designing appropriate fuzzy logic constant controllers and
eing substituted into Eq. (2-7), a negative definite of derivatives

Fig. 8. Time histories of errors for Case 
the FLCC is coming into after 20 s.

of Lyapunov function V̇ can be obtained and the asymptotically
stability of Lyapunov theorem can be achieved.

Consequently, the processes of FLCC designing to control a sys-
tem following the trajectory of a goal system can be concluded as
follows:

1. Construct a FLCC system in MATLAB (Simulink) following Fig. 2
and Eqs. (2-9)–(2-17).

2. Get the upper bound and lower bound of the error derivatives of
the goal and control systems without any controller, i.e. −Zm ≤

ėm ≤ Zm, which are used to be the constant controllers.

3. Design the membership functions of positive (P), negative
(N) and zero (Z) M1 =

∣∣ėm

∣∣/Zm, M2 =
∣∣ėm

∣∣/Zm and M3 =
sgn((Zm − ėm)/Zm) + sgn((ėm − Zm)/Zm).

1—by nonlinear controllers (20 s).
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Fig. 9. Time histories of states for

. A negative definite of derivatives of Lyapunov function V̇ can be
obtained and the asymptotically stability of Lyapunov theorem
can be achieved.

. New chaotic Mathieu–van der Pol system

This section introduces new Mathieu–van der Pol system. Math-
eu equation and van der Pol equation are two typical nonlinear
on-autonomous systems:
ẋ1 = x2

ẋ2 = −(a + b sin ωt)x1 − (a + b sin ωt)x3
1 − cx2 + d sin ωt

(3-1)

Fig. 10. Time histories of error derivative
—by nonlinear controllers (20 s).

{
ẋ3 = x4

ẋ4 = −ex3 + f (1 − x2
3)x4 + g sin ωt

(3-2)

Exchanging sin ωt in Eq. (3-1) with x3 and sin ωt in Eq. (3-2) with
x1, we  obtain the autonomous new Mathieu–van der Pol system:⎧⎪⎪⎪⎨
⎪⎪

ẋ1 = x2

ẋ2 = −(a + bx3)x1 − (a + bx3)x1
3 − cx2 + dx3

ẋ3 = x4
(3-3)
⎪⎩
ẋ4 = −ex3 + f (1 − x2

3)x4 + gx1

where a, b, c, d, e, f, g are uncertain parameters. This system exhibits
chaos when the parameters of system are a = 10, b = 3, c = 0.4, d = 70,

s for Case 2 (without controllers).
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Fig. 11. Time histories of errors for Case 2

Table  2
Comparison between forms of controllers.

FLCC (components) Nonlinear controllers

u1 ±Z1 = ± 50 or e1 ≈ 0 −x2 − e1

u2 ±Z2 = ± 500 or e2 ≈ 0 (a + bx3)x1 + (a + bx3)x3
1 + cx2 − dx3 − e2

e
x
F

⎨ ẋ2 = −(a + bx3)x1 − (a + bx3)x3 − cx2 + dx3 + u2
u3 ±Z3 = ± 10 or e3 ≈ 0 −x4 − e3

u4 ±Z4 = ± 10 or e4 ≈ 0 ex3 − f (1 − x2
3)x4 − gx1 − e4
 = 1, f = 5, g = 0.1 and the initial states of system are (x10, x20, x30,
40) = (1, 5, 1, 5). The projections of phase portraits are shown in
ig. 4.

Fig. 12. Time histories of states for Case 2
—the FLCC is coming into after 20 s.

4. Simulation results

In order to lead (x1, x2, x3, x4) in Eq. (3-3) to the goal, we add
control terms u1, u2, u3 and u4 to each equation of Eq. (3-3), respec-
tively.

⎧⎪⎪⎪ ẋ1 = x2 + u1
⎪⎪⎪⎩
1

ẋ3 = x4 + u3

ẋ4 = −ex3 + f (1 − x2
3)x4 + gx1 + u4

(4-1)

—the FLCC is coming into after 20 s.
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Fig. 13. Time histories of errors for Case

Table 3
Comparison between error data at 99.96 s, 99.97 s, 99.98 s, 99.99 s and 100.00 s after
the  action of controllers.

Time FLCC Nonlinear controllers
e1 e1

99.96 s −3.5694e−035 6.8001e−016
99.97 s −3.5339e−035 6.8001e−016
99.98 s −3.4987e−035 6.8001e−016
99.99 s −3.4639e−035 6.8001e−016

100.00 s −3.4294e−035 6.8001e−016

Time FLCC Nonlinear controllers
e2 e2

99.96 s 5.5438e−048 3.0531e−015
99.97 s 5.4885e−048 3.0531e−015
99.98 s 5.4340e−048 3.0531e−015
99.99 s 5.3799e−048 3.0531e−015

100.00 s 5.3264e−048 3.0531e−015

Time FLCC Nonlinear controllers
e3 e3

99.96 s 2.4019e−048 6.9389e−016
99.97 s 2.3780e−048 6.9389e−016
99.98 s 2.3543e−048 6.9389e−016
99.99 s 2.3309e−048 6.9389e−016

100.00 s 2.3077e−048 6.9389e−016

Time FLCC Nonlinear controllers
e4 e4

99.96 s 2.4710e−036 2.7756e−015
99.97 s 2.4464e−036 2.7756e−015
99.98 s 2.4221e−036 2.7756e−015

o
z
C
s

V = 1
2

(e2
1 + e2

2 + e2
3 + e2

4) = V1 + V2 + V3 + V4 (4-5)
99.99 s 2.3980e−036 2.7756e−015
100.00 s 2.3741e−036 2.7756e−015

There are three cases to show the effectiveness and feasibility
f the new approach—FLCC. Case I: Control the chaotic motion to

ero, Case II: Control the chaotic motion to a regular function and
ase III:  Control the chaotic motion of the new Mathieu–van der Pol
ystem to another chaotic motion of the Qi system. Furthermore,
 2—by nonlinear controllers (20 s).

chaos control via traditional nonlinear controllers in Cases I–III is
also given in tables and figures for comparison.

4.1. Case I: control the chaotic motion to zero by (1) FLCC and (2)
traditional controllers

In this case, we  will control the chaotic motion of the new
Mathieu–van der Pol system (4-1) to zero. The goal is y = 0. The state
error is ei = xi − yi = xi (i = 1, 2, 3, 4) and error dynamics becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ė1 = ẋ1 = x2 + u1

ė2 = ẋ2 = −(a + bx3)x1 − (a + bx3)x3
1 − cx2 + dx3 + u2

ė3 = ẋ3 = x4 + u3

ė4 = ẋ4 = −ex3 + f (1 − x2
3)x4 + gx1 + u4

(4-2)

Choosing Lyapunov function as:

V = 1
2

(e2
1 + e2

2 + e2
3 + e2

4) (4-3)

Its time derivative is:

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 = e1(x2 + u1)

+ e2(−(a + bx3)x1 − (a + bx3)x3
1 − cx2 + dx3 + u2)

+ e3(x4 + u3) + e4(−ex3 + f (1 − x3
2)x4 + gx1 + u4) (4-4)

(1) By FLCC

In order to design FLCC, we  divide Eq. (4-3) into four parts:
then the error derivative is

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 = V̇1 + V̇2 + V̇3 + V̇4 (4-6)
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Fig. 14. Time histories of states fo
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Part 1: V̇1 = e1ė1 = e1(x2 + u1)
Part 2: V̇2 = e2ė2 = e2(−(a + bx3)x1 − (a + bx3)x3

1 − cx2 + dx3 + u2)
Part 3: V̇3 = e3ė3 = e3(x4 + u3)
Part 4: V̇4 = e4ė4 = e4(−ex3 + f (1 − x2)x4 + gx1 + u4)
3

According to the process of the FLCC designing, the error deriva-
ives of Case I without any controller are shown in Fig. 5, and the

Fig. 15. Projections of phase portrait of chaotic Q
 2—by nonlinear controllers (20 s).

values of the upper bound and lower bound can be obtained as
follows:

Z1 = 50, Z2 = 500, Z3 = 10,  Z4 = 10 (4-7)

After getting Z1 ∼ Z4, all the constant controllers, membership func-

tions and the corresponding FLCC can be decided. Therefore, V̇1 =
e1ė1 < 0, V̇2 = e2ė2 < 0, V̇3 = e3ė3 < 0 and V̇4 = e4ė4 < 0 can
be achieved, then we have V̇ = V̇1 + V̇2 + V̇3 + V̇4 < 0. It is clear that
the derivative of Lyapunov function is negative definite and the

i system with a1 = 30, b1 = 10, c1 = 1, d1 = 10.
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e
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(

t
t⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fig. 16. Time histories of error der

rror dynamics system is going to achieve asymptotically stable.
he simulation results are shown in Figs. 6 and 7.

2) By traditional nonlinear controllers

In order to lead the error dynamics in Eq. (4-4) to achieve asymp-
otically stable, we have the following nonlinear controllers by
raditional method as:

u1 = −x2 − e1
u2 = (a + bx3)x1 + (a + bx3)x3
1 + cx2 − dx3 − e2

u3 = −x4 − e3

u4 = +ex3 − f (1 − x2
3)x4 − gx1 − e4

(4-8)

Fig. 17. Time histories of errors for Case 3
s for Case 3 (without controllers).

substituting all the nonlinear controllers in Eq. (4-8) into Eq. (4-4):

V̇ = −e2
1 − e2

2 − e2
3 − e2

4 < 0 (4-9)

which is a negative definite function and the error dynamics system
is going to achieve asymptotically stable. The simulation results are
shown in Figs. 8 and 9.

4.1.1. Comparison with FLCC and traditional method
In this section, numerical simulation results by FLCC and
traditional controllers are listed in Tables 2 and 3 for comparison.
Comparing the two  simulation results in Tables 2 and 3, it is clear
to find out that (1) the performance (accuracy and speed of con-
vergence) of the states of errors converging to the original point by

—the FLCC is coming into after 20 s.
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Fig. 18. Time histories of states for Case 3

Table  4
Comparison between forms of controllers.

FLCC (components) Nonlinear controllers

u1 ±Z1 = ± 50 or e1 ≈ 0 −x2 + ω × F1 cos ωt − e1

u2 ±Z2 = ± 500 or e2 ≈ 0 +(a + bx3)x1 + (a + bx3)x3
1 + cx2 + dx3 + ω ×

F2 cos ωt − e2

u3 ±Z3 = ± 20 or e3 ≈ 0 −x4 + ω × F3 cos ωt − e3

u4 ±Z4 = ± 100 or e4 ≈ 0 ex3 − f (1 − x2
3)x4 − gx1 + ω × F4 cos ωt − e4

Table 5
Comparison between error data at 29.96 s, 29.97 s, 29.98 s, 29.99 s and 30.00 s after
the action of controllers.

Time FLCC Nonlinear controllers
e1 e1

29.96 s 0.00031450 0.0065468
29.97 s 0.00031388 0.0065308
29.98 s 0.00031325 0.0065146
29.99 s 0.00031262 0.0064984
30.00 s 0.00031197 0.0064820

Time FLCC Nonlinear controllers
e2 e2

29.96 s 0.00064831 0.0064258
29.97 s 0.00064702 0.0064110
29.98 s 0.00064572 0.0063961
29.99 s 0.00064440 0.0063810
30.00 s 0.00064306 0.0063658

Time FLCC Nonlinear controllers
e3 e3

29.96 s 0.00037285 0.0112380
29.97 s 0.00037216 0.0111750
29.98 s 0.00037146 0.0111130
29.99 s 0.00037075 0.0110510
30.00 s 0.00037003 0.0109890

Time FLCC Nonlinear controllers
e4 e4

29.96 s 0.00142410 0.0066563
29.97 s 0.00142150 0.0066392
29.98 s 0.00141900 0.0066220
29.99 s 0.00141630 0.0066047
30.00 s 0.00141370 0.0065873
—the FLCC is coming into after 20 s.

FLCC is much better than the performance by traditional ones; (2)
the controllers in FLCC designing are much simpler than traditional
ones.

Consequently, even the system is so complicated and the con-
trollers provided in FLCC are such a constant ones, the high
performance and exact numerical simulation results can be still
remained.

4.2. Case II: control the chaotic motion to a regular function by
(1) FLCC and (2) traditional controllers

In this case we will control the chaotic motion of the new
Mathieu–van der Pol system (4-1) to regular function of time. The
goal is yi = Fi sin ωt (i = 1, 2, 3, 4). The error equation

ei = xi − yi = xi − Fi sin ωt, (i = 1, 2, 3, 4) (4-10)

lim
t→∞

ei = lim
t→∞

(xi − Fi sin ωt)  = 0, (i = 1, 2, 3, 4)

where F1 = 0.5, F2 = 1, F3 = 0.5, F4 = 2 and ω = 0.5
The error dynamics is⎧⎪⎨

⎪⎩
ė1 = x2 − ω × F1 cos ωt  + u1

ė2 = −(a + bx3)x1 − (a + bx3)x3
1 − cx2 + dx3 − ω × F2 cos ωt + u2

ė3 = x4 − ω × F3 cos ωt + u3

ė4 = −ex3 + f (1 − x2
3)x4 + gx1 − ω × F4 cos ωt + u4

(4-11)

Choosing Lyapunov function as:

V = 1
2

(e2
1 + e2

2 + e2
3 + e2

4) (4-12)

Its time derivative is:

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 = e1(x2 − ω × F1 cos ωt + u1)

+ e2(−(a + bx3)x1 − (a + bx3)x3
1 − cx2 + dx3 − ω

× F2 cos ωt + u2) + e3(x4 − ω × F3 cos ωt + u3)
+ e4(−ex3 + f (1 − x2
3)x4 + gx1 − ω × F4 cos ωt + u4) (4-13)

(1) By FLCC
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In order to design FLCC, we divide Eq. (4-13) into four parts as
ollows:

Assume V = (1/2)(e2
1 + e2

2 + e2
3 + e2

4) = V1 + V2 + V3 + V4,
hen V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 = V̇1 + V̇2 + V̇3 + V̇4, where
1 = (1/2)e2

1, V2 = (1/2)e2
2, V3 = (1/2)e2

3 and V4 = (1/2)e2
4.

Part 1: V̇1 = e1ė1 = e1(x2 − ω × F1 cos ωt + u1)
Part 2: V̇2 = e2ė2 = e2(−(a + bx3)x1 − (a + bx3)x3

1 − cx2 + dx3 −
ω × F2 cos ωt + u2)
Part 3: V̇3 = e3ė3 = e3(x4 − ω × F3 cos ωt + u3)
Part 4: V̇4 = e4ė4 = e4(−ex3 + f (1 − x2

3)x4 + gx1 − ω × F4 cos ωt +
u4)

According to the process of the FLCC designing, the error deriva-
ives of Case II without any controller are shown in Fig. 10,  and the
alues of the upper bound and lower bound can be obtained as
ollows:

1 = 50, Z2 = 500, Z3 = 20,  Z4 = 100 (4-14)

fter getting Z1 ∼ Z4, all the constant controllers, membership func-
ions and the corresponding FLCC can be decided. Therefore, V̇1 =
1ė1 < 0, V̇2 = e2ė2 < 0, V̇3 = e3ė3 < 0 and V̇4 = e4ė4 < 0 can
e achieved, then we have V̇ = V̇1 + V̇2 + V̇3 + V̇4 < 0. It is clear that
he derivative of Lyapunov function is negative definite and the
rror dynamics system is going to achieve asymptotically stable.
he simulation results are shown in Figs. 11 and 12.

2) By traditional nonlinear controllers

In order to lead the error dynamics in Eq. (4-11) to achieve
symptotically stable, we have the following nonlinear controllers
y traditional method as:
u1 = −x2 + ω × F1 cos ωt − e1

u2 = +(a + bx3)x1 + (a + bx3)x3
1 + cx2 + dx3 + ω × F2 cos ωt − e2

u3 = −x4 + ω × F3 cos ωt − e3

u4 = ex3 − f (1 − x2
3)x4 − gx1 + ω × F4 cos ωt − e4

(4-15)
 3—by nonlinear controllers (20 s).

substituting all the nonlinear controllers in Eq. (4-15) into Eq. (4-
13):

V̇ = −e2
1 − e2

2 − e2
3 − e2

4 < 0 (4-16)

which is a negative definite function and the error dynamics system
is going to achieve asymptotically stable. The simulation results are
shown in Figs. 13 and 14.

4.2.1. Comparison with FLCC and traditional method
Numerical simulation results by FLCC and traditional controllers

are listed in Tables 4 and 5 for comparison. It can be found out that
(1) the performance (accuracy and speed of convergence) of the
states of errors converging to the original point by FLCC is much
better than the performance by traditional ones; (2) the controllers
in FLCC designing are much simpler than traditional ones.

Consequently, even the system is so complicated or regular
form, and the controllers provided in FLCC are such a constant ones,
the high performance and exact numerical simulation results can
be still remained.

4.3. Case III: control the chaotic motion of the new Mathieu–van
der Pol system to another chaotic motion of the Qi system via (1)
FLCC and (2) traditional controllers

In Case III, we will control chaotic motion of the new
Mathieu–van der Pol system (4-1) to that of the Qi system. The
goal system for control is Qi system shown as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẏ1 = a1(y2 − y1) + y2y3y4

ẏ2 = b1(y1 + y2) − y1y3y4

ẏ3 = −c1y3 + y1y2y4

ẏ4 = −d1y4 + y1y2y3

(4-17)

where y1, y2, y3 and y4 are the state variables of the system and

a1, b1, c1 and d1 are all positive real parameters. This Qi system in
Eq. (4-17) was recently introduced by Qi et al. [28] and it has been
shown exhibit complex dynamical behavior including the familiar
period-doubling route to chaos as well as hopf bifurcations. For the
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ystem parameters: a1 = 30, b1 = 10, c1 = 1, d1 = 10 and initial con-
itions (y10, y20, y30, y40) = (20, 50, 20, 50), the Qi model exhibits
haotic motion which is shown in Fig. 15.

The error equation

i = xi − yi, (i = 1, 2, 3, 4) (4-18)

lim
→∞

ei = lim
t→∞

(xi − yi) = 0, (i = 1, 2, 3, 4)

The error dynamics is

ė1 = ẋ1 = x2 − (a1(y2 − y1) + y2y3y4) + u1

ė2 = ẋ2 = −(a + bx3)x1 − (a + bx3)x3
1 − cx2 + dx3 − (b1(y1 + y2) −

ė3 = ẋ3 = x4 − (−c1y3 + y1y2y4) + u3

ė4 = ẋ4 = −ex3 + f (1 − x2
3)x4 + gx1 − (−d1y4 + y1y2y3) + u4

Choosing Lyapunov function as:

 = 1
2

(e2
1 + e2

2 + e2
3 + e2

4) (4-20)

Its time derivative is:

˙ = e1ė1 + e2ė2 + e3ė3 + e4ė4 = e1(x2 − (a1(y2 − y1)

+y2y3y4) + u1) + e2(−(a + bx3)x1 − (a + bx3)x3
1 − cx2 + dx3

−(b1(y1 + y2) − y1y3y4) + u2) + e3(x4 − (−c1y3 + y1y2y4)

+u3) + e4(−ex3 + f (1 − x2
3)x4 + gx1 − (−d1y4 + y1y2y3) + u4)

(4-21)

1) By FLCC

In order to design FLCC, we divide Eq. (4-12) into four parts as

ollows:

Assume V = (1/2)(e2
1 + e2

2 + e2
3 + e2

4) = V1 + V2 + V3 + V4,
hen V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 = V̇1 + V̇2 + V̇3 + V̇4, where
1 = (1/2)e2

1, V2 = (1/2)e2
2, V3 = (1/2)e2

3 and V4 = (1/2)e2
4.
 3—by nonlinear controllers (20 s).

y4) + u2
(4-19)

Part 1: V̇1 = e1ė1 = e1(x2 − (a1(y2 − y1) + y2y3y4) + u1)
Part 2: V̇2 = e2ė2 = e2(−(a + bx3)x1 − (a + bx3)x3

1 − cx2 + dx3 −
(b1(y1 + y2) − y1y3y4) + u2)
Part 3: V̇3 = e3ė3 = e3(x4 − (−c1y3 + y1y2y4) + u3)
Part 4: V̇4 = e4ė4 = e4(−ex3 + f (1 − x2

3)x4 + gx1 − (−d1y4 +
y1y2y3) + u4)

According to the process of the FLCC designing, the error deriva-
tives of Case III without any controller are shown in Fig. 16,  and the

values of the upper bound and lower bound can be obtained as
follows:

Z1 = 2000, Z2 = 2000, Z3 = 1000, Z4 = 1000 (4-22)

After getting Z1 ∼ Z4, all the constant controllers, membership func-
tions and the corresponding FLCC can be decided. Therefore, V̇1 =
e1ė1 < 0, V̇2 = e2ė2 < 0, V̇3 = e3ė3 < 0 and V̇4 = e4ė4 < 0 can
be achieved, then we have V̇ = V̇1 + V̇2 + V̇3 + V̇4 < 0. It is clear that
the derivative of Lyapunov function is negative definite and the
error dynamics system is going to achieve asymptotically stable.
The simulation results are shown in Figs. 17 and 18.

(2) By traditional nonlinear controllers

In order to lead the error dynamics in Eq. (4-19) to achieve
asymptotically stable, we  have the following nonlinear controllers
by traditional method as:⎧
⎪⎨
⎪⎩

u1 = −x2 + (a1(y2 − y1) + y2y3y4) − e1

u2 = (a + bx3)x1 + (a + bx3)x3
1 + cx2 − dx3 + (b1(y1 + y2) − y1y3y4) − e2

u3 = −x4 + (−c1y3 + y1y2y4) − e3

u4 = +ex3 − f (1 − x2
3)x4 − gx1 + (−d1y4 + y1y2y3) − e4

(4-23)
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Table  6
Comparison between forms of controllers.

FLCC (components) Nonlinear controllers

u1 ±Z1 = ± 2000 or e1 ≈ 0 −x2 + (a1(y2 − y1) + y2y3y4) − e1

u2 ±Z2 = ± 2000 or e2 ≈ 0 (a + bx3)x1 + (a + bx3)x3
1 + cx2 − dx3 + (b1(y1 +

y2) − y1y3y4) − e2

u3 ±Z3 = ± 1000 or e3 ≈ 0 −x4 + (− c1y3 + y1y2y4) − e3

u4 ±Z4 = ± 1000 or e4 ≈ 0 ex3 − f (1 − x2
3)x4 − gx1 + (−dy4 + y1y2y3) − e4

Table 7
Comparison between error data at 59.96 s, 59.97 s, 59.98 s, 59.99 s and 60.00 s after
the action of controllers.

Time FLCC Nonlinear controllers
e1 e1

59.96 s −7.0533e−011 −1.5015e−004
59.97 s −6.9883e−011 −1.7386e−004
59.98 s −6.9228e−011 −1.9902e−004
59.99 s −6.8573e−011 −2.2194e−004
60.00 s −6.7920e−011 −2.3330e−004

Time FLCC Nonlinear controllers
e2 e2

59.96 s 4.1470e−012 −1.3996e−004
59.97 s 4.1160e−012 −1.3715e−004
59.98 s 4.0852e−012 −1.2018e−004
59.99 s 4.0544e−012 −7.9564e−005
60.00 s 4.0239e−012 −2.2182e−006

Time FLCC Nonlinear controllers
e3 e3

59.96 s 0 9.1480e−007
59.97 s 0 −1.5572e−005
59.98 s 0 −4.0608e−005
59.99 s 0 −7.6908e−005
60.00 s 0 −1.2420e−004

Time FLCC Nonlinear controllers
e4 e4

59.96 s −3.0018e−011 −9.9919e−005
59.97 s −2.9837e−011 −1.3461e−004

s
2

V

w
i
s

4

t
d
t
t
F
i
v
d

a

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

[

59.98 s −2.9644e−011 −1.7607e−004
59.99 s −2.9441e−011 −2.2263e−004
60.00 s −2.9231e−011 −2.6721e−004

ubstituting all the nonlinear controllers in Eq. (4-23) into Eq. (4-
1):

˙
 = −e2

1 − e2
2 − e2

3 − e2
4 < 0 (4-24)

hich is a negative definite function and the error dynamics system
s going to achieve asymptotically stable. The simulation results are
hown in Figs. 19 and 20.

.3.1. Comparison with FLCC and traditional method
In this case, the new Mathieu–van der Pol system is controlled

o another chaotic motion—the Qi system with large initial con-
itions (y10, y20, y30, y40) = (20, 50, 20, 50). This case is illustrated
o investigate the effectiveness and feasibility of the FLCC even if
he two chaotic trajectories are far from each other. According to
igs. 17 and 19,  the speed of controlling the error states to the orig-
nal points via FLCC (about at 30 s) is much faster than the speed

ia nonlinear controller (about at 60 s). As a results, the numerical
ata in 59.96–60.00 s are further proposed for comparison.

Numerical simulation results by FLCC and traditional controllers
re listed in Tables 6 and 7 for comparison. The two main supe-

[
[
[
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riorities still exist—(1) the performance (accuracy and speed of
convergence) of the convergence of error states by FLCC is much
better than by traditional method; (2) the controllers in FLCC
designing are much simpler than traditional ones.

5. Conclusions

In this paper, a simplest controller—fuzzy logic constant con-
troller (FLCC) is introduced to chaos control. The illustrations
mentioned above demonstrate the better performance and accu-
racy of numerical simulation results of the synchronization via FLCC
clearly even the fuzzy controllers are only a simple form of constant
numbers.

As a result, three main contributions can be concluded—(1) high
performance of the convergence of error states in synchroniza-
tion; (2) the strength of the fuzzy controllers can be adjusted via
membership functions; (3) fuzzy logic controllers are easy to pro-
duce. Furthermore, due to the characters of FLCC, the mathematical
models of domain systems can be unknown, all we have to do is cap-
turing the output signals, constructing the fuzzy logic system and
calculating the area of the error derivatives, then we can control
any output signal to another one. Hence, FLCC is such a poten-
tial tool and can be applied to various kinds of fields with lots of
unknown functions—such as neuroscience, un-model bio-systems,
and complicated brain network.
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