
Information and Software Technology 53 (2011) 1370–1381
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
A relaxable service selection algorithm for QoS-based web service composition

Chia-Feng Lin a, Ruey-Kai Sheu b,⇑, Yue-Shan Chang c, Shyan-Ming Yuan a

a Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
b Department of Computer Science, Tunghai University, Taichung, Taiwan
c Department of Computer Science and Information Engineering, National Taipei University, Taipei, Taiwan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 February 2010
Received in revised form 30 May 2011
Accepted 29 June 2011
Available online 13 July 2011

Keywords:
Web service
Quality of service
Service composition
Service selection
0950-5849/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.infsof.2011.06.010

⇑ Corresponding author.
E-mail addresses: cflin@cs.nctu.edu.tw (C.-F. Lin),

Sheu), ysc@mail.ntpu.edu.tw (Y.-S. Chang), smyuan@c
Context: Web services are emerging technologies that enable application to application communication
and reuse of autonomous services over Web. Composition of web services is a concept of integrating indi-
vidual web services to conduct complex business transactions based on functionality and performance
constraints
Objective: To satisfy user requirements, technologies of Quality of service (QoS)-based web service com-
position (QWSC) are widely used to build complex applications by discovering the best-fit web services in
term of QoS.
Method: In this paper, a QoS-based service selection (RQSS) algorithm is proposed to help composite web
application development by discovering feasible web services based on functionalities and QoS criteria of
user requirements. The RQSS recommends prospective service candidates to users by relaxing QoS con-
straints if no suitable or available web service could exactly fulfill user requirements.
Results: A generic framework is implemented to demonstrate the feasibility and performance of RQSS by
adapting WS-BPEL standards, and can be reused for QoS-based web composition applications.
Conclusion: The experimental results show that the RQSS algorithm indeed performs well and increases
the system availability and reliability.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Web services are considered as self-contained, self-describing,
modular applications that can be published, located, and invoked
across the web [10]. An increasing amount of companies and orga-
nizations only implement their core business and outsource other
services over Internet. If no single web service can satisfy the func-
tionality of user needs, there should be a possibility to combine
existing services together in order to fulfill the user requirements.
If the implementation of a web service’s business logic involves the
invocation of other web services, it is necessary to combine the
functionality of several web services. The process of developing
such composite service is called service composition. Composite
services are recursively defined as an aggregation of elementary
and composite services.

With the increasing number of web services providing similar
functionalities, the QoS is becoming an important criterion of
selection of the best available service. There are two major prob-
lems in using QoS for service discovery, and they are the specifica-
tion and storage of the QoS information, and the specification of
the customer’s requirements [31]. Some researchers used the
ll rights reserved.

rickysheu@thu.edu.tw (R.-K.
s.nctu.edu.tw (S.-M. Yuan).
linear integer programming (LIP) model to solve the service selec-
tion problem by maximizing the utility value which is a weighted
sum of user-defined QoS attributes [4,11,32]. LIP-based approaches
can be used for service matching, ranking and selection. However,
the computation complexity and cost of the LIP solution will in-
crease exponentially with the growth of the size of web services.
Some studies tried to extend the multi-dimension multi-choice
0–1 knapsack problem (MMKP) with heuristic algorithms to get
near-optimal solutions for service selection problems [8,21,31].
Although the heuristic algorithms improve the efficiency of service
selection, they might fail if no feasible service exists. Recently,
some researchers proposed the similarity-based web service dis-
covery mechanisms by calculating the semantic similarity, and
tried to maximize the number of candidate services to reduce the
possibility of system failure [15,18]. However, the similarity-based
solution might be not feasible for engineering or manufacturing
industries because the accuracy of engineering application seman-
tics should be very precise. In addition, the research in [32] was
proposing a QoS-aware fault tolerant middleware. They aim at
advancing the current state-of-the-art in fault tolerance technolo-
gies for dependable service composition.

Obviously, most of existing approaches were endeavoring to
look for suitable services for composing the business logic of appli-
cation. They either did not aim at the possible failure of service
selection or did make too many constraints to find efficiently

http://dx.doi.org/10.1016/j.infsof.2011.06.010
mailto:cflin@cs.nctu.edu.tw
mailto:rickysheu@thu.edu.tw
mailto:ysc@mail.ntpu.edu.tw
mailto:smyuan@cs.nctu.edu.tw
http://dx.doi.org/10.1016/j.infsof.2011.06.010
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381 1371
suitable services. Undoubtedly, stringent constraints might close to
infeasibility solution. It is desirable to minimize the frequency of
failure in finding a feasible solution, if one exists. Such problem
can be viewed as a maximum feasible subsystem problem (MaxFS)1

which is a NP-hard problem.2 The MaxFS is that wishes to find a fea-
sible subsystem containing a maximum number of inequalities.
There are so far various heuristic approaches [36–39] have been pro-
posed to find the approximation solution. Recently, some researches
have shown that the relaxation method [36,39] is an admirable heu-
ristic to approximate the solution of MaxFS.

Most of approaches to service selection do not handle the situ-
ation when there is no feasible solution to fulfill QoS constraints
set by users. Also, some approaches may fail in finding the feasible
solution if ones exist. To improve these problems, in the paper, we
propose a relaxable QoS-based service selection algorithm (RQSS).
The term of ‘‘relaxable’’ means that RQSS will release or relax the
degree of constraints heuristically. The idea of proposed algorithm
is to find a solution with smaller amount of constraints violation if
there is no a feasible solution to fulfill the QoS constraints. Also, if
no feasible can be found, a recommended solution is presented to
the user by relaxing the QoS constraints. In other words, some QoS
constraints have to be relaxed to find such a solution.

From the point of view of users, there may be some QoS con-
straints which cannot be relaxed. Therefore, users can specify each
QoS constraint as either a relaxable constraints or a non-relaxable
constraint. According to the relaxability of QoS constraints, the
relaxable QoS constraints are relaxed to find a solution which
can fulfill the non-relaxable QoS constraints if no feasible solution
exists. Note that it is expected that the amount of relaxation of QoS
constraints is as small as possible. Moreover, the proposed selec-
tion algorithm is a heuristic algorithm that is not an exhaustive
search. We expect the algorithm can lower the rate of failure in
finding a feasible solution when the heuristic is used.

We adopt the idea of a heuristic algorithm proposed in [17],
which is to find the feasible solution for MMKP, to design the relax-
able QoS-based service selection algorithm. In addition, a generic
framework is proposed to simulate the feasibility and performance
of RQSS. The results of the simulation experiments show that the
idea of relaxing QoS criteria in RQSS performs well with lower fail-
ure rate especially when no web service could exactly match users’
QoS constraints.

The remainder of the paper is organised as follows. Section 2
surveys some related work including web service standards, web
service composition techniques, and other QoS constraint web ser-
vice composition research; and briefly introduce the concept and
notations used in the paper. Section 3 describes the model of pro-
posed RQSS QoS web service composition, including basic defini-
tions, constraints and functions. Section 4 depicts the design of
relaxable QoS-based service selection algorithm, its complexity
analysis, and QoS-based Web Service Composition Framework.
Section 5 presents the evaluation setup, experiment results and
analysis. In addition, we also make a comparison with other similar
approaches and give a discussion. And finally, the conclusions and
future work are given in Section 6.
2. Background

2.1. Related work

It is well-known that there are many industrial standards have
been developed for service oriented computing and web service
1 MaxFS problem: Given an infeasible linear system AX P b, find a Maximum
Feasible Subsystem, i.e., a feasible subsystem containing a maximum number o
inequalities.

2 http://risorse.dei.polimi.it/maxfs/.

3 http://www.w3.org/TR/ws-policy/.
4 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
5 http://www.w3.org/TR/wsci/.
f

composition. The WS-Policy standard3 can be used to specify poli-
cies expressing non-functional requirements for Web Services
(WS), while WS-QoS is for specifying provided and required Web
Services QoS [40]. And the Web Services flow specification languages
like WS-BPEL4 (Web service Business Process Execution Language)
provides a programming-language like constructs as well as graph-
based links that represent additional ordering constraints on the
constructs, while the WSCI5 is to describe the messages exchanging
order between services. In addition, semantic annotations have been
widely discussed in the Semantic Web community where precondi-
tions and the effects of services are explicitly declared in the Re-
source Description Format (RDF).

Web service composition is a very complex and challenging task
beyond human capability. Many researches tried to simplify the
integration of web services by defining several standard interfaces,
and proposed many models and approaches for static or dynamic
service composition [22,23,26–28]. Dustdar et al. suggested six
major issues that have a large impact on service composition and
many researches took them into consideration seriously [6]. They
are coordination, transaction, context, conversation modeling, exe-
cution monitoring, and infrastructure of web services. Besides,
Dustdar et al. categorized five composition strategies which is used
by most researches [6]. These approaches are static/dynamic
mechanism, model driven, declarative, automated/manual, and
context based web service discovery and composition.

Alonso et al. summarized six different dimensions of service
composition models which make different assumptions of what a
component is and what it is not [1]. For instance, an orchestration
model defines abstractions and languages to define the order in
which and the conditions under which web services are invoked.
Most of these models focus on the matching, selection and execu-
tion of web services to meet functional requirements. As for non-
functional constraints or Quality of Service (QoS) of a composite
web service, such as latency, throughput, reliability, availability,
cost, etc. are out of the major scopes of their researches.

Alrifai and Risse [33] proposed a solution that combined global
optimization with local selection techniques to benefit from the
advantages of both worlds. The proposed solution consists of two
steps: first, they used mixed integer programming (MIP) to find
the optimal decomposition of global QoS constraints into local con-
straints. Second, they used distributed local selection to find the best
web services that satisfy these local constraints. But they do not take
possible failure in finding a feasible solution into consideration.

Canfora et al. [34] proposed a QoS-aware composite service
binding approach based on Genetic Algorithms (GAs). The main
advantage in the use of GAs is the possibility to apply the approach
in presence of arbitrary, non-linear QoS aggregation formulae,
whereas traditional approaches, such as linear integer program-
ming, require linearization. Obviously, they also do not take possi-
ble failure in finding a feasible solution into consideration.

Yu et al. [21] modeled web services selection with end-to-end
QoS constraints in two ways. The first model is the combinatorial
model that defines the problem as a multidimension multichoice
knapsack problem (MMKP). The second model is the graph model
that defines the problem as a multiconstrained optimal path
(MCOP) problem. Based on both models, they specified a user-
defined utility function of some system parameters to optimize
application-specific objectives. In addition, Yu et al. also proposed
heuristic algorithms to find near-optimal solutions in polynomial
time which is more suitable for making runtime decisions. There-
fore, they also do not take possible failure in finding a feasible solu-
tion into consideration.

http://risorse.dei.polimi.it/maxfs/
http://www.w3.org/TR/ws-policy/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.w3.org/TR/wsci/

1372 C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381
Pastrana et al. [35] presented a methodology for Web Service
composition and coordination based on connectors which are de-
fined by Web Service client and automatically generated by the
COMPOSITOR tool authors have developed. Connectors use con-
tracts to express the non-functional requirements and the behavior
desired by the client of a service, such as QoS (Quality of Service)
features. The work is mainly aiming at proposing a framework
for QoS-enabled and self-adaptive connectors for Web Services
composition and coordination. Adaption [5,25,35] is also an impor-
tant feature for web service composition. But, they do not find out
the feasible solution for composition.

Ko et al. [19] addressed web service composition planning from
the aspect of QoS and proposed an efficient QoS-oriented web ser-
vice composition algorithm. This algorithm is characterized as a
hybrid meta-heuristics that combines tabu search and simulated
annealing and designed not only to find constraint–compliant
composition plans but also to reduce the computational burden re-
quired for searching the plans. The algorithm takes a composition
schema, six QoS permissible values, and their weights as the inputs
and generates a composition plan that satisfies the client’s QoS
requirement as the output. In addition, under a given composition
plan, the algorithm creates a better neighbor plan by modifying a
restricted number of decision variables. Obviously, it does not deal
with finding feasible solution while possible failure.

Liu et al. [29] proposed a QoS-based dynamic web service com-
position approach. In the approach, they also model web service
selection using multi-choice knapsack problem, and divide the ser-
vice selection problems into two classes to facilitate the service
selection process. The mathematical models are established for
each class respectively. Accordingly, the heuristic selection algo-
rithms are proposed to solve the models.

In summary, most of existing approaches were endeavoring to
look for suitable services for composing the business logic of appli-
cation. These approaches do not handle the situation when there is
no feasible solution to fulfill QoS constraints. It is an important is-
sue for finding a solution with smaller amount of constraints vio-
lation if there is no a feasible solution to fulfill the QoS
constraints. Therefore, to get higher system reliability and avail-
ability, a relaxable QoS-based service selection algorithm is pro-
posed in the paper.

2.2. Preliminary

Web service interactions can be described in two ways: execut-
able business processes, and abstract business processes. Execut-
able business processes model actual behavior of a participant in
a business interaction. WS-BPEL is meant to be used to model
the behavior of both executable and abstract processes. WS-BPEL
provides a language for the specification of executable and abstract
business processes [13]. Building composite web services are sim-
ilar to the construction of a workflow for executable business pro-
cesses [7]. For the emulation of RQSS, the WS-BPEL is used to
describe the control flow of abstract processes. In order to clearly
identify the concept, we first define the abstract process.

Definition 1 (Abstract Process). An abstract process AP can be
represented by a DAG, so it can be defined as a tuple of (GAP, ASAP).
That is AP = (GAP, ASAP), where

� GAP = (V, E) is a directed and acyclic graph, whereV = {v1, . . . ,vn}
represents a set of activities. Each vertex in V is a tuple v = (ATv,
Av), where
– ATv is the activity type of the vertex where ATV 2 {Process-

Start, ProcessEnd, IFStart, IFEnd, FlowStart, FlowEnd, Loop-
Start, AbstractService}.

– Av is the activity associated with the vertex.
E � V � V is a set of directed edges indicating the transition
among two activities.
� ASAP = {as1, . . . ,asn} is for a set of abstract services involved in

the abstract process where n is the number of the abstract
services.

In an AP, there are five basic patterns of relationship are used to
integrate individual services for business processes construction,
and they are ‘‘sequence’’, ‘‘if’’, ‘‘flow’’, ‘‘while’’ and ‘‘repeatUntil’’.
The five relations will be used in an abstract process to construct
the fundamental control flow structures of business workflows,
including ‘‘sequential structure’’, ‘‘parallel structure’’, ‘‘conditional
structure’’ and ‘‘loop structure’’. All user requirements will be
described by abstract services of an abstract process using the
WS-BPEL. In addition, a loopNumber attribute is defined as the
upper bound for the loop number of iterations. It determines
the expected maximum number of iteration used to unfold the
loop when calculating the QoS of loop structures. By using the ba-
sic notations of patterns, an abstract process specification can be
represented by a directed acyclic graph (DAG).

An abstract process could be treated as a set of activities which
consist of a start point, an end point, and other intermediate activ-
ities which are represented by the ProcessStart, ProcessEnd and
other activity notations, respectively. The abstract process can
orchestrate the set of abstract services in a precedence order.
Accordingly, the sequences of activities are connected by the direc-
ted edges based on the order of them and conduct a DAG state dia-
gram. The directed edges indicate the precedence relationship
between two activities. Since ‘‘if’’, ‘‘flow’’, ‘‘repeatUntil’’ and
‘‘while’’ activities are all the non-loop structures, each of them
can be represented by an entry point and an exit point. The IFStart
notation is used to connect with the branches of possible condi-
tions of an ‘‘if’’ activity, and an IFEnd notation is used for the con-
vergence of the activity. For a ‘‘flow’’ activity, a FlowStart notation
is used to connect each of the activities involved in it and these
activities will be converge on a FlowEnd activity eventually. For a
‘‘repeatUntil’’ or a ‘‘while’’ activities, a LoopStart activity and a Loo-
pEnd activity can be used to represent the activities which need to
be repeated several times.

In addition, an abstract service describes the functionalities but
not the execution details of a web service. The functionalities of-
fered by a web service are usually performed by its provided oper-
ations. Thus, the definition of an abstract service should include the
name, required operations, inputs, and outputs.

Definition 2 (Abstract Service). An abstract AS is a tuple of (N, OT, I,
O), where
� N is the name of the abstract service.
� OT is the type of required operation in terms of ontology

concepts.
� I = {I1, . . . , Im} is a set of inputs of required operations, where m is

the number of inputs. Ii = (IN, IT), where i = 1, . . . ,m. IN is the
name of input. IT is the input type in terms of ontology
concepts.
� O = {O1, . . . ,On} is a set of outputs of the required operations,

where n is the number of outputs. Oi = (ON,OT), where
i = 1, . . . ,n, and ON is the name of output. OT is the output type
in terms of ontology concepts.

The functional characteristics of an abstract service contain
the inputs, outputs and the classification type representing an
ontology concept. The operation type stands for the classification
type of a web service operation. A WSDL example of an abstract
service in the abstract process specification is shown in Table 1.

Table 1
A WSDL example of an abstract service.

<abstractService name=‘‘example’’ operationType=‘‘USWeatherForecast’’>
< inputs>

< input name=‘‘input’’ inputType=‘‘USAddress’’>
</inputs>
< outputs>

< output name=‘‘output’’ outputType=‘‘FiveDayWeatherInformation’’>
</outputs>

</abstractService>

Table 2
Aggregation functions for QoS criteria.

Sequence Conditional Parallel

Execution Time Pn
i¼1ETðopiÞ

Pn
i¼1ETðopiÞ � pi Maxn

i¼1ETðopiÞ
Reliability Qn

i¼1RelðopiÞ
Pn

i¼1RelðopiÞ � pi
Qn

i¼1RelðopiÞ
Availability Qn

i¼1AðopiÞ
Pn

i¼1AðopiÞ � pi
Qn

i¼1AðopiÞ
Reputation 1

n

Pn
i¼1RepðopiÞ 1

n

Pn
i¼1RepðopiÞ 1

n

Pn
i¼1RepðopiÞ

Price Pn
i¼1PðopiÞ

Pn
i¼1PðopiÞ � pi

Pn
i¼1PðopiÞ

C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381 1373
USWeatherForecast, USAddress, and FiveDayWeatherInformation are
operation types which will be used for ontology mapping or
matching during the service selection process. The mapping
and matching of ontology concepts are out of the scope of this
paper.

Definition 3 (Selection Plan). A selection plan SP of an abstract
process AP is a set of (asi,opi) pairs. That is SP = {(as1,op1), . . . ,
(asn,opn)}. For each pair (asi,opi) in SP, the service operation opi

provides the required function of an abstract service asi, where
i = 1, . . . ,n.

The selection plan describes a combination of operations of-
fered by concrete services for an abstract process. It can be viewed
as a service assignment for the abstract process.

3. The RQSS QoS model

This section articulates the QoS model that is the basis of the
RQSS algorithm. Here describe the QoS criteria, aggregation func-
tions, and constraints are described.

3.1. QoS criteria

QoS criteria are used to differentiate the web services providing
the same functionality during the service selection process of
QWSC. Each operation of a web service will be associated with a
set of QoS criteria. To reduce the complexity, the RQSS uses the
generic QoS criteria as the basis for further discussions which are
also used in [4,11,16].

� Execution Time ET(op): The execution time of the service oper-
ation op is a time interval between when the op is invoked and
when the op finished.
� Reliability Rel(op): The reliability of the service operation op is

the probability that a request is correctly responded within
the expected time.
� Availability A(op): The availability of the service operation op is

the probability that the operation is accessible during a period
of time.
� Reputation Rep(op): The reputation of the service operationop is

the measurement of trustworthiness. It is an integer range from
1 to 10. The higher the value, the better the reputation is.
� Price P(op): The price of the service operationop is the cost

which a service requester has to pay to the service provider of
op.

3.2. QoS aggregation functions

To calculate the quality of a web service, aggregation functions
are defined in Table 2 for each QoS criterion. Pi is the probability
that an abstract service asi will be executed for a conditional struc-
ture. The probability can be evaluated from statistical execution
logs. If an abstract process has never been executed before, the
probability will be assumed to be uniform distribution (pi = 1/n).
As defined above, an abstract process is a set of abstract services.
The service selection would be the key for the construction of an
abstract process from composite services.

3.3. QoS constraints

The QoS constraints represent the minimum thresholds which
an abstract process has to reach to. For an abstract process, a QoS
constraint can be identified by one of the QoS criteria which are
‘‘Execution Time’’, ‘‘Reliability’’, ‘‘Availability’’, ‘‘Reputation’’ and
‘‘Price’’. Besides, a relaxability of QoS constraints is introduced to
specify whether a QoS constraint is relaxable or not. During the pro-
cess of service selection, relaxable QoS constraints could be relaxed
when no service can fulfill the requirements of QoS constraints.

Definition 4 (QoS constraint). A QoS constraint is a tuple QC = (N,
V, R) where

� N is the name of the QoS criterion associated with QC.
� V is the value of the QoS criterion associated with QC desired to

be satisfied. It is a real number.
� R is the relaxability of the QoS constraint which indicates

whether the QoS constraint is relaxable or not. It is a Boolean
value.

4. The relaxable QoS-based service selection algorithm

The service selection process of a QWSC takes abstract processes
as inputs, and then comes out a set of qualified service operations
supported by composite web services. That is, for an abstract pro-
cess AP containing n abstract services, where ASAP = {as1, . . . ,asn},
there will be a set of qualified service operation groups
OP = {OP1, . . . ,OPn} associated with each asi, where.

� Each abstract service asi(i = 1, . . . ,n) has li candidates of service
operations. OPi ¼ fopi1; . . . ; opilig is a service operation group
of asi.
� Each candidate operation opij(j = 1, . . . , li) 2 OPi is associated with

a QoS vector (ET(opij), Rel(opij), A(opij), Rep(opij), P(opij)).
� The QoS constraints of the AP defined by users are QC = {qcET,

qcRel, qcA, qcRep, qcP}.

Based on the above analysis, a service selection process could be
formulated as Eq. (1).

Find X ¼ ðx1; . . . ; xnÞ; 8xi 2 f1; . . . ; lig; i ¼ 1; . . . ;n such that

ETðfðas1; op1x1
Þ; . . . ; ðasn; opnxn

Þg;APÞ 6 qcET ;

Relðfðas1; op1x1
Þ; . . . ; ðasn; opnxn

Þg;APÞP qcRel;

Aðfðas1; op1x1
Þ; . . . ; ðasn; opnxn

Þg;APÞP qcA;

Repðfðas1; op1x1
Þ; . . . ; ðasn; opnxn

Þg;APÞP qcRep;

Pðfðas1; op1x1
Þ; . . . ; ðasn; opnxn

Þg;APÞP qcRep;

ð1Þ

Table 3
Relaxable QoS-based service selection algorithm.

Algorithm RQSS:
// n: the total number of abstract services of a abstract process
// li: the number of candidate service operations in the service operation

group i
// nqvij: normalized quality value of candidate service operation j in the

service
// operation group i
// Xold: old solution vector used to record the solution which satisfies all of

QoS
// constraints in the step 3
// Xnr

old: old solution vector used to record the solution which satisfies non-
relaxable

// QoS constraints in step 3
// QCnr: the set of non-relaxable QoS constraints
1. Service operation sorting

1.1. Calculate the normalized quality value for every candidate service
operation "i = 1, . . . ,n, j = 1, . . . , li, calculate nqvij.

1.2. Sort the candidate service operations in non-descending order in
each service group according to nqvij

1.3. Sort the service operation groups in non-descending order according
to the normalized quality values of the service operations with the
lowest normalized quality value and go to step 2.

2. Naı̈ve service selection
2.1. Perform the NSS algorithm
2.2. if no feasible solution can be found in the step 2.1 then go to step 3

3. Service selection with QoS constraints relaxation
3.1. Perform the SS_QCR algorithm
3.2. if no feasible solution could be found in step 3.1 then if jQCnrj = 0

then return the solution Xold else return the solution Xnr
old .

Table 4
Naı̈ve service selection algorithm.

Algorithm NSS:
// n: the total number of abstract services of an abstract process
// li: the number of candidate service operations in the candidate service
// operation group i
// isFeasible(X): a function which returns true if the solution X satisfies the
// constraints and false otherwise
// X: current solution vector
// min_cso: the minimum number of candidate service operations among all
// service operation groups
X the service operation of the lowest normalized quality value from each

group
if isFeasible(X) then

A feasible solution is found and return X
endif
j 2
repeat

for i 1 to n do
Choose the service operation j from service operation group i
Update solution X
if isFeasible(X) then

a feasible solution is found and return X
endif

next
j j + 1

until j > min_cso // all the service operations in a group have been examined

1374 C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381
X is a vector representing the feasible solution containing the indi-
ces of selected service operations for every abstract service in AP. It
can be viewed as a selection plan of AP which can satisfy all the QoS
constraints. It is expected to find a selection plan which can satisfy
the QoS constraints based on a set of QoS criteria of an abstract pro-
cess. Accordingly, Eq. (1) can be used to model the service selection
problem for a QWSC solution. In the following section, the RQSS
algorithm is proposed for solving the service selection problem
for QWSC.

4.1. The design of RQSS algorithms

The original motivation of RQSS is to find out a feasible solution
which minimizes the differences between selected web service
operations with user-defined requirements when no web service
exactly matching the QoS constraints. In other words, by adding
user-defined relaxable QoS constraints to RQSS, some constraints
could be relaxed to find alternative services if none of the services
can match the QoS criteria. It is not users’ intention to release the
QoS constraints, so the QoS relaxing process can only be triggered
when no feasible solution could be found. And, it is expected that
the degrees of relaxation of QoS constraints are as small as better.

Similar to the algorithm of multi-dimension multi-choice 0–1
knapsack problem (MMKP) proposed in [17,21], the proposed algo-
rithm assigns a value to every candidate item by evaluating the
number of resource consumptions. In RQSS, the value of resource
consumption is assigned to each item based on the degree of the
constraint violation. Based on the value, the RQSS tries to find an
initial solution by selecting an item from each group with the low-
est value. If no feasible initial solution could be found, the one with
the second lowest value will be selected from each group recur-
sively. However, to increase the service availability or reduce the
rate of failure, a new item is practically considered to be selected
only if it has lower value and less number of violated constraints.
It is one of the major purposes of the RQSS algorithm to balance
the resource consumption and service availability.

To simplify the algorithm design, based on the Eq. (1), all of the
QoS constraints inequalities are transformed into less than-or-
equal inequalities before performing the RQSS algorithm. The
values of reliability, availability and reputation of each service
operation and the values of the constraints on these QoS criteria
are set to the reciprocals. Hence, all of the values of QoS constraints
would be the upper bounds for all QoS criteria. Let QCnr =
{qc1, . . . ,qcr} be the set of non-relaxable QoS constraints set by
the user. The details of the RQSS algorithm are shown in
Tables 3–5.

There are three major steps in the RQSS algorithm. The first step
of RQSS is to sort the service operations for each service operation
group and service operation groups based on the normalized qual-
ity value (nqv). The normalized quality value is calculated for each
service operation opij in the each service operation group OPi using
the following equation:

nqv ij

¼

ffi
ETðopijÞ

qcET

� �2

þ
RelðopijÞ

qcRel

� �2

þ
AðopijÞ

qcA

� �2

þ
RepðopijÞ

qcRep

� �2

þ
PðopijÞ

qcP

� �2
s

ð2Þ

We use the normalized quality value as a heuristic to select service
operations. For service operations opi1 and opi2, the heuristic implies
that the probability of service operation opi1 may be greater than
the one of opi2 if nqvi1 > nqvi2. Therefore, the candidate service oper-
ations in each service operation group OPi are sorted based on the
normalized quality value. All OPi of abstract services are also sorted
based on their lowest normalized quality values of the service
operations.
In the second step, a naı̈ve service selection (NSS) is performed
to select the service operations with lower normalized quality val-
ues. As depicted in Table 4, the solution is initialized by selecting
the service operation with the lowest normalized quality value
from each group. Then, the service selection process is applied
repeatedly to every operation group based on their order. Once
all the operations are examined and selected, i.e. no feasible solu-
tion is found; the naı̈ve service selection procedure stops, and RQSS
goes to the third step.

In the final step of RQSS, a heuristic is proposed to find a feasible
solution by the average violated quality value (avqv), as shown in
Table 5. The avgv represents the degree of the constraint violation

Table 5
Service Selection Algorithm with QoS Constraints Relaxation.

Algorithm SS_QCR:

// n: the total number of abstract services in AP
// li: the number of candidate service operations in the candidate service

operation group i
// isFeasible(X): a function which returns true if the solution X satisfies the

constraints and false otherwise
// select(X, i, j): a function used to switch the selection of service from
// operation group i to service
// operation jbased on X and update the value of solution X
// Xold: old solution vector, Vold: the set of QoS constraints that is
// violated by Xold

// Xnr
old: old solution vector used to record the solution which satisfies

// non-relaxable QoS constraints
// Vnr

old: non-relaxable QoS constraints which are violated by Xold

// avqvold: average violated quality value of Xold

// avqvnr
old: average violated quality value of Xnr

old for non-relaxable QoS
constraints

// Xnew: new solution vector, Vnew: the set of QoS constraints which are
// violated byXnew

// Xnr
new: new solution vector used to record the solution which

// stratifies non-relaxable
// QoS constraints
// Vnr

new: non-relaxable QoS constraints which are violated by Xnew

// avqvnew: average violated quality value of Xnew

// avqvnr
new: average violated quality value of Xnr

new for non-relaxable
// QoS constraints
// avqvr

old: average violated quality value of Xnr
old for relaxable QoS constraints

// avqvr
new: average violated quality value of Xnr

new for relaxable QoS
constraints

// iterationmax: maximum number of iterations
Initialize Xold; Xnew; Xnr

old and Xnr
new by selecting the service operation with the

lowest normalized quality value from each group
Identify Vold and Vnr

old , and then compute avqvold and avqvnr
old

avqvr
old avqvold � avqvnr

old

iteration 1
stop false
repeat
stop true// check whether the avqv and avqvnr are reduced in an iteration
for i 1 to n do

for j 1 to li do
cur_sel current selection of service operation group i based on Xnew

if j – cur_sel then
select(Xnew, i, j)
if isFeasible(Xnew) then

Substitute Xold with Xnew and return the feasible solution Xold

endif
Identify Vnew and computeavqvnew

if avqvnew < avqvold then
Substitute Xold and avqvoldwith Xnew and avqvnew

stop false
endif
cur_sel current selection of service operation group i based on Xnr

new

endif
if j – cur_sel and jQCnrj– 0 then

selectðXnr
new; i; jÞ

Identify Vnr
new and QCnr � Vnr

new , and then compute avqvnr
new and

avqvr
new

if avqvnr
new < avqvnr

old then
Substitute Xnr

old; avqvnr
old and avqvr

old with Xnr
new; avqvnr

new

andavqvr
new

stop false
endif
if avqvnr

new ¼ 0 and avqvr
new < avqvr

old then
Substitute Xnr

old; avqvnr
old and avqvr

old with Xnr
new; avqvnr

new and
avqvr

new

stop false
endif

endif
next

next
iteration iteration + 1

until iteration > iterationmax or stop

C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381 1375
of a solution. The reduction of the average violated quality value
for all QoS constraints is applied here to find a feasible solution
or a solution that satisfies non-relaxable constraints if no feasible
one could be found, respectively. Two solutions, Xold and Xnr

old, will
be generated to record the solution fulfilling all of QoS constraints
and the one of satisfying non-relaxable QoS constraints, respec-
tively. Similar to the NSS algorithm, in this step, a solution is also
initialized by selecting the service operation with the lowest nor-
malized quality value from each group. It then goes throughout
all the groups to evaluate either a feasible solution exists or avqv
of Xold and avqvnr of Xnr

old can be reduced. If no feasible solution ex-
ists, it switches to next group and performs the same examination
process recursively. The average violated quality value of Xold is cal-
culated using Eq. (3),

avqv ¼ 1
k

Xk

i¼1

Qiðfðas1; op1x1
Þ; . . . ; ðasn; opnxn

Þg;APÞ
qci

ð3Þ

where k represents the total number of the QoS constraints violated,
i represents the indexes of the QoS constraints violated by Xold and
Qi is the QoS aggregation function of the corresponding QoS
criterion.

The average violated quality value of Xold is denoted as
avqvold. In this step, the average violated quality values are used
as a heuristic to select service operations. Given that there are
two non-feasible solutions, and they are X1 and X2. The concept
of the heuristic is: if avqv1 > avqv2, the probability that X1 becomes
a feasible solution may be greater than the one for X2. That is, it
would be better to create a new feasible solution by choosing the
one of lower average violated quality value. After identifying Xold,
Vold and calculating the average violated quality value avqvold,
we can create selection plans to find a feasible solution. We denote
the new solution as Xnew. If avqvnew < avqvold, then set Xold = Xnew,
avqvold = avqvnew. In the first service operation group, the above
expression will be performed for all service operations, and the se-
lected service operation will be changed to the one of the lowest
normalized quality value eventually. At the same time, the idea
can be also applied to find the solution which satisfies the
non-relaxable QoS constraints. There is also an initial solution
Xnr

old which is set equal to Xold. The only difference is that the aver-
age violated quality value should be calculated based on non-relax-
able QoS constraints and relaxable QoS constraints. The average
violated quality value of Xnr

old for non-relaxable QoS constraints
and relaxable QoS constraints are calculated using the following
formulas:

avqvnr ¼ 1
s
Xs

i¼1

Q iðop1x1
; . . . ; opnxn

;APÞ
qci

ð4Þ

avqv r ¼ 1
jQCj � s

XjQCj�s

j¼1

Q jðop1x1
; . . . ; opnxn

;APÞ
qcj

ð5Þ

where s is the number of the non-relaxable QoS constraints vio-
lated, i represents the indexes of the non-relaxable QoS constraints
that are violated by Xnr

old and j represents the indexes of the relaxable
QoS constraints that are violated by Xnr

old.
As mentioned above, if there is no feasible solution, it is ex-

pected to find a solution to fulfill the non-relaxable QoS constraints
by relaxing the relaxable QoS constraints. The average violated
quality value for non-relaxable QoS constraints is used to match
the idea. The proposed algorithm could find a solution that can ful-
fill the non-relaxable QoS constraints by reducing the average vio-
lated quality value during the selection process. Moreover, if a
solution satisfying the non-relaxable QoS constraints is found, an
additional examination will be performed to check whether the

1376 C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381
avqvr can be reduced or not. The purpose of the additional
examination is used to minimize the total number of the relax-
ations for finding solutions for the non-relaxable QoS constraints.

If a solution that satisfies the non-relaxable QoS constraints is
found, an extra examination for minimizing the amount of the
relaxation is performed to check whether avqvr can be reduced
or not. The final step is an iterative process performed when all ser-
vice operation groups are evaluated. The process will stop at the
maximum iteration or no more reduction of avqvold and avqvnr

old

happened after some iterative runs. If no feasible solution could
be found in this step (Xold is infeasible), the final solution Xnr

old will
be recommended. In the step 3.2, if the jQCnrj = 0, it represents no
QoS constraints are involved in the service selection algorithm.
We can simply return Xold to the caller procedure, otherwise the
RQSS will return Xnr

old to the caller procedure. Obviously, the final
solution can be considered as a better solution than others because
that not only does it satisfy all non-relaxable QoS constraints but it
also has the lower average violated quality value for relaxable QoS
constraints.

4.2. Complexity analysis of RQSS

To simplify the complexity analysis, it is assumed that each ab-
stract service has s candidate service operations. Let n be the total
number of abstract services in an abstract process, m be the number
of QoS criteria and qnr be the number of non-relaxable QoS con-
straints. For the first step of RQSS, the complexity of computing
the normalized quality values of all candidate service operations
is O(s.n.m). The complexity of sorting service operations of every
service operation group is O(s.n.log s). The complexity of performing
the sorting of service operation groups is O(n.log n). Consequently,
the computational complexity of the first step of RQSS is O(s.n.log s).
Similar to the first step, the computational complexity of the second
step of RQSS is also O(s.n.m). For the third step, the complexity of
calculating the average violated quality value is O(m.n). Finally,
there are n. (s � 1) candidate service operations to be explored in
one iteration to evaluate whether a new solution exists or not. If
the maximum number of iterations is l, which is used in the SS_QCR
in the Table 5, the total complexity of the third step is O(l.m.n2.s).
User

Abstract P
Reposit

Feasible Solution
Repository

Servic
Selecto

GUI
Console

Binder

Executi
Engin

QoS
Manag

Use

Feasible
Solution
Manager

Fig. 1. A generic framework for generic Q
According to above analysis, the complexity of the RQSS algorithm
is O(l.m.n2.s).

4.3. The QoS-based web service composition framework

For the reliability and availability simulation, the test data and
algorithms are implemented based on the framework shown in
Fig. 1. An abstract process is used to describe the functional
requirement of a process of web services at an abstract level. The
functionality of required service of an abstract process is repre-
sented by an abstract service. The abstract services and the service
advertisements published in the service registry are described
using ontology. The available and feasible services are then discov-
ered effectively by a semantic search [9,12,24]. Moreover, based on
a set of QoS criteria, QoS constraints can also be specified to repre-
sent the non-functional properties of the whole abstract process to
be satisfied. According to abstract process and the QoS constraints,
selection algorithms can select a set of operations offered by con-
crete web services, which provide the required functionalities ful-
filling the QoS constraints. If no feasible solution can be identified
by the selection algorithm, the framework will recommend alter-
native solutions based on user pre-defined relaxable constraints.
It is expected that the recommended solution for service selection
has small amount of relaxation for relaxable QoS constraints.

As shown in Fig. 1, users can use the GUI Console (GC) to build
the abstract processes and set the QoS constraints according to
their functional requirement and non-functional requirement,
respectively. To reduce the development effort, users can also re-
use the existing abstract processes loaded from Abstract Process
Repository (APR). The Service Selector (SS) is responsible for select-
ing web services according to the abstract process specification
and QoS constraints forwarded from GC. During the service selec-
tion process, Service Brokersearches for candidate services from
Service Registry (SR) which is an extension to UDDI registry which
record the published service information as well as the QoS infor-
mation [2]. These services published in SR are described by ontol-
ogy stored in the Ontology Repository. When a feasible solution is
found in APR, Feasible Solution Manager stores this feasible solution
into Feasible Solution Repository (FSR). Users can reuse existing
rocess
ory

Ontology
Repository

e
r

Service
Broker

on
e

er

Publish

Service Registry

QoS

WSM

WS

Service
Provider

oS-based web service composition.

Table 6
The range of the value for each QoS parameter.

QoS parameter Range

Execution Time [1, 100]
Reliability [0.95, 0.99999]
Availability [0.95, 0.99999]
Reputation [1, 10]
Price [1, 100]

Table 7
The generation of the QoS constraints.

QoS parameter QoS constraint generation

Execution Time n � 100 � CF
Reliability n � log 1

0:95

� �
� CF

Availability n � log 1
0:95

� �
� CF

Reputation n�10�CF
Price n�100�CF

C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381 1377
abstract processes from the FSR easily. After the feasible solution is
identified, users can then composite the selected services by define
the flow of input and output data binding to each services. Based
on WSBPEL [13], the Binder generates the executable process spec-
ification according to the abstract process and binding information.
The executable process specification is then forwarded to the Exe-
cution Engine to construct and execute the process instance. Fur-
thermore, aQoS Manager (QM) is responsible for managing and
monitoring QoS information of web services published in service
registry [3]. QM collaborates with WSM [14,20] which is a web ser-
vice management process to collect QoS information such as of the
invoked service.

5. Experimental analysis

5.1. The evaluation setup

In this section, we compare the performance of proposed RQSS,
WFlow [21] and RWSCS_KP [8]. WFlow and RWSCS_KP that are
both well-known heuristic algorithms for QWSC only consider
finding a feasible solution. They did not take the rate of failure in
finding a feasible solution. We try to analyze the rate of failure in
finding a feasible solution for QWSC and the average violated qual-
ity value if no feasible solution is found for these algorithms.

Especially, in the WFlow [21] approach, Yu et al. divided the ser-
vice selection problem into two categories. One is to composite
services with a sequential flow structure; the other is to composite
services with a general flow structure. In the latter, it may contain
complex structure between function nodes, such as loop. In order
to simplify the problem, the WFlow removed the loop operations
by unfolding the cycle. Based on the categorization, WFlow consid-
ering different objective function proposed two distinct algo-
rithms; there are WFlow_EU and WFlow_HP respectively. In the
experiments, we compared our approach only with the WFlow_EU
(short for WFlow).

We utilized Java programming language to implement these
algorithms and ran them on an Intel Pentium (R) D 3.4 Ghz, 2 GB
RAM desktop PC with 100 MB/s Ethernet card, Window XP and
JDK 6.0. In the simulation, test pattern generation is the same as
what is introduced in [30]. The value of each service is not directly
proportional to the QoS consumption. The random function of inte-
ger i gives an integer from 0 to i, following the uniform distribu-
tion. To generate the test instances, we first randomly generate
the abstract processes, each containing two or more control flow
patterns. For simplicity, we assume that each abstract service con-
tains the same number of candidate service operations. For each
candidate of abstract service, five QoS parameters (q1, q2, q3, q4,
q5): execution time, reliability, availability, reputation and price
are considered. Each quality value is randomly generated with a
uniform distribution in a range, as shown in Table 6.

These parameters are exploited in some researches [32,35] and
refer them to set the values. In the simulation, we assume that all
services can be completed within 100 ms. And most of services are
robustness enough. Therefore the reliability and availability of ser-
vices are ranging from 0.95 to 0.99999. We think that is reasonable
for most of web services. In addition, the reputation is between
[1,10] according to how popular of the service is and the price is
assumed that is between [1] based on the access cost of the service.
These assumptions are all reasonable in various applications.

Moreover, the QoS constraint on each QoS criteria is generated
using the Eq. (6). The concept of generating the QoS constraints re-
fers to the test pattern generation for QWSC presented in [30]. The
constraint factor is defined to increase the difficulty to find a feasi-
ble solution.

QCi ¼ n � Q max
i � CF; i ¼ 1; . . . ;5 ð6Þ
where n is the number of abstract services in an abstract process,
Qmax

i is the maximum value of a quality parameter Qi of a service
and CF is the constraint factor which is used to adjust the strength
of a QoS constraint.

The constraint factor CF is a real number between [0,1]. It can
be used to represent the strength of a QoS constraint. The lower
the constraint factor value is, the higher the strength of the QoS
constraint is. When CF = 1, there is no constraint on QoS require-
ment. CF = 0.5 means there is 0.5 probability that a random gener-
ated service in a group satisfies the average value. The default
value of CF in this paper is 0.5. As shown in Table 7, the generated
constraints are the upper bounds for the QoS constraints. In the
generation of the QoS constraints, all the QoS metrics are assumed
as the additive metrics. Since the reliability and availability are
multiplicative metric, they can be transformed into additive
parameters using logarithmic function. It should be noted that
RQSS algorithm does not transform the reliability and availability
into additive parameters. Therefore, the generated constraints on
reliability and availability need to be transformed back into multi-
plicative metrics, i.e. 1

0:95

� �n�CF .

5.2. Experimental results

WFlow [21] and RWSCS_KP [8] are implemented and compared
with RQSS here because both of them are well-known heuristic
algorithms for QWSC. Only the parts of finding a feasible solution
in WFlow and RWSCS_KP are considered for justice.

From the proposed approach and algorithm mentioned in Sec-
tion 4, there are three aspects related to the will be illustrated in
the experiments, as follows:

1. The failure rate is reduced in finding a feasible solution while
the abstract service increasing.

2. The strength of QoS constraints is increasing while the con-
straint factor value is decreasing.

3. The lower the avgv value is, the better the performance of the
algorithm is.

5.2.1. Comparison of failure rate in finding a feasible solution
Fig. 2 shows the experiment results of examining impact factors

for RQSS, WFlow and RWSCS_KP respectively. The analysis of the
impact focuses on the variances of the number of abstract services
in an abstract process, the number of candidate service operations
and the strength of the QoS constraints (constraint factor). Since
the number of abstract services will affect the failure of finding a
feasible solution. The more the abstract services are, the lower

0.1

0.2

0.4

0.6

0.8

R
at

e
of

 f
ai

lu
re

0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

e
of

 f
ai

lu
re

0

0.2

0.4

0.6

0.8

1

R
at

e
of

 f
ai

lu
re

0.3

0.5

0.7

0.9

0

0.3

0.7

0.9

0.5

0.1

5 10 15 20 25 30 35 40 45 50

Number of abstract services

Number of candidate service operations

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Constraint Factor

5 10 15 20 25 30 35 40 45 50

RQSS

WFlow

RWSCS_KP

RQSS

WFlow

RWSCS_KP

RQSS

WFlow

RWSCS_KP

(a)

(b)

(c)

Fig. 2. Comparison of failure rate.

1

1.05

1.1

1.15

1.2

1.25

1.3

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25 30 35 40 45 50

5 10 15 20 25 30 35 40 45 50

(a) average violated quality values

RQSS (nr=1)

RQSS (nr=2)

RQSS (nr=3)

WFlow

RWSCS_KP

RQSS (nr=1)

RQSS (nr=2)

RQSS (nr=3)

WFlow

RWSCS_KP

(b) standard deviation of avqv

A
ve

ra
ge

 v
io

la
te

d
qu

al
ity

 v
al

ue
St

an
da

rd
 d

ev
ia

tio
n

of

 a

vq
v

Number of abstract services

Number of abstract services

Fig. 3. Impact of the number of abstract services for avqv.

1378 C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381
failure rate in finding a feasible solution is. Similarly, the number of
candidate service operations is also affect the failure rate. In the
simulation, we vary the two factors to analyze failure rate in find-
ing a feasible solution. In addition, since the constraint factor is
used to increase the difficulty to find a feasible solution, in the sim-
ulation, we also analyze the influence of constraint factor regarding
to failure rate in finding feasible solution.

5.2.1.1. Impact of the number of abstract services. In the simulation,
the numbers of abstract services are set from 5 to 50 to analyze the
influence over the three algorithms. There are 50 test cases imple-
mented and examined per number of abstract services. For each
test case, there are 50 candidate service operations for each ab-
stract service and the constraint factor is fixed to 0.4. As depicted
in Fig. 2a, RQSS has lower failure rate in finding a feasible solution
than the other two algorithms for almost of the test cases. When
the number of abstract service is equal to 5, all algorithms have
unacceptable high failure rates to find feasible solutions. The rea-
son is that the number of abstract services is so few that the con-
straints relatively become very severe. When the number of
abstract services is more than twenty, the failure rates of all algo-
rithms behave stably. It can be said that the effects are few on the
failure rate when the number of abstract services is more than a
constant value.

5.2.1.2. Impact of the number of candidate service operations. Similar
to the previous analysis, the numbers of candidate service opera-
tions aer also set from 5 to 50, and the number of abstract services
and constraint factor are fixed as 50 and 0.4, respectively. As de-
picted in Fig. 2b, the failure rates are higher along with the
decreasing number of candidate service operations. It is natural
that the more choices the less failures will happen. And, the con-
straints are relatively severer when the number of candidate ser-
vice operations decreases.

5.2.1.3. Impact of constraint factor. To measure the influence of con-
straint factor, the values are set from 0.1 to 0.65 and 50 test cases
are generated for each. There are 50 abstract services and 50 can-
didate service operations for each abstract service. Fig. 2c shows
that when the constraint factor is less than 0.1, no feasible solution
will be discovered for all algorithms. When the constraint factor is
greater than 0.65, every algorithm can find feasible solution.

5.2.2. Comparison of average violated quality value
The average violated quality value (avqv) represents the degree

of the constraint violation of a solution. To evaluate the perfor-
mance of our proposed QoS constraint relaxation technique, we
compare the average violated quality value of RQSS with WFlow
and RWSCS_KP. We only consider the situations where all the algo-
rithms fail in finding a feasible solution and use the final solutions
found in these algorithms to calculate the average violated quality
values. As the previous analysis, we analyze the impact of varying
the number of abstract services in the abstract process, varying the
number of candidate service operations and varying the constraint
factor. The numbers of non-relaxable QoS constraints for RQSS are
set from 1 to 3 respectively for each test case. But, the items of non-
relaxable QoS constraints are randomly selected. Note that the va-
lue of avqv is greater than 1 in all cases and the lower the value is,
the better the performance of the algorithm is. The factors for ana-
lyzing the impact are the same as previous subsection.

5.2.2.1. Impact of the number of abstract services. Again, the num-
bers of abstract services are set from 5 to 50 and there are 50 test
cases for each. The number of candidate service operations for
every abstract service is set as 50 and the constraint factor is fixed
as 0.4. Fig. 3a shows that RQSS performs better than the other two

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ve

ra
ge

 v
io

la
te

d
qu

al
ity

 v
al

ue
St

an
da

rd
 d

ev
ia

tio
n

of

 a

vq
v

Constraint Factor

Constraint Factor

(a) average violated quality values

(b) standard deviation of avqv

RQSS (nr=1)

RQSS (nr=2)

RQSS (nr=3)

WFlow

RWSCS_KP

RQSS (nr=1)

RQSS (nr=2)

RQSS (nr=3)

WFlow

RWSCS_KP

Fig. 5. Impact of constraint factor for avqv.

C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381 1379
algorithms for every test case. Fig. 3b shows the standard deviation
of avqv for 50 test cases per number of abstract services. All of
standard deviations of avqv in RQSS are less than 0.15. In addition,
the behaviors of both WFLow and RWSCS_KP are too unstable to be
accepted. It is because the objective of the two algorithms is to find
a feasible solution but not suggest alternative solutions when no
feasible one can be discovered. This result highlights the impor-
tance of relax of QoS constraints.

5.2.2.2. Impact of the number of candidate service operations. The
variances of the number of candidate service operations are set
from 5 to 50. The number of abstract services is fixed as 50 and
the constraint factor is set as 0.4. As depicted in Fig. 4a, RQSS has
lower rate of failure in finding a feasible solution than other two
algorithms for all of the tested number of candidate service opera-
tions. Obviously, the number of candidate service operations or the
number of the non-relaxable QoS constraints increase, the avqv va-
lue of RQSS decreases. The more the number of candidates, the
higher the possibility of finding a feasible solution is. It is because
that the constraints are severer along with the decreasing number
of candidate service operations and the relaxable QoS constraints
are fewer. Thus, the number of constraints to be relaxed will sub-
stantially affect the avqv value. Fig. 4b shows that all of standard
deviations of avqv in RQSS are less than 0.3. Similar to the analysis
of impact of the number of abstract services, WFLow and
RWSCS_KP also have more unstable avqv.

5.2.2.3. Impact of constraint factor. The constraint factors are from
0.1 to 0.45 to analyze the effect for each algorithm. Fifty test cases
are generated for each constraint factor. There are 50 abstract ser-
vices and 50 candidate service operations for each case. Fig. 5a
shows that RQSS performs better than the other two algorithms
when the constraint factor is greater than 0.2. RWSCS_KP can even
perform better than RQSS when the constraint factor and the num-
ber of non-relaxable QoS constraints are small. It is in the situation
when both the values of constraint factor and number of relaxable
constraints are small enough. RQSS has to substantially release
relaxable QoS constraints causing the high avqv value. Note that
when the constraint factor is below 0.1, the constraint is too severe
to find the solution that satisfies non-relaxable QoS constraints.
1

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25 30 35 40 45 50

Number of candidate service operations

A
ve

ra
ge

 v
io

la
te

d

 q
ua

lit
y

va
lu

e RQSS (nr=1)

RQSS (nr=2)

RQSS (nr=3)

WSFlow

RWSCS_KP

 (a) average violated quality values

0

0.15

0.3

0.45

0.6

0.75

0.9

5 10 15 20 25 30 35 40 45 50

Number of candidate service operations

St
an

da
rd

 d
ev

ia
tio

n

 o
f

av
qv

RQSS (nr=1)

RQSS (nr=2)

RQSS (nr=3)

WSFlow

RWSCS_KP

(b) standard deviation of avqv

Fig. 4. Impact of the number of candidate service operations for avqv.
When the constraint factor is greater than 0.45, there should exists
at least one feasible solution in RQSS. Therefore, we exclude these
situations.

Fig. 5b shows that when the constraint factor is greater than 0.2,
the standard deviation of avqv is less than 0.4. When the constraint
factor is less than 0.2 and the numbers of non-relaxable QoS con-
straints are 2 and 3, the standard deviation of avqv is larger. The
reason is also that the constraints are much severer in some test
cases. RQSS has to substantially relax relaxable QoS constraints
and thus the avqv of those test cases are much higher.
5.3. Discussion

From the experimental results, we conclude that, since the RQSS
adopt heuristic approach to design the relaxable QoS-based service
selection algorithm, it leads to significantly better QoS of compos-
ite service executions with lower the rate of failure in finding a fea-
sible solution. Even if there is no a feasible solution to fulfill the
QoS constraints, the RQSS can also find a solution with smaller
amount of constraints violation. Table 8 shows the comparison
with the WFlow and RWSCS_KP in terms of time complexity, fail-
ure rate in finding feasible solution, availability, and adaptation
respectively. Even if the time complexity of the RQSS is similar to
the others due to adopting similar heuristic approach, the
Table 8
Comparison with existing methods.

WFlow RWSCS_KP Proposed
RQSS

Time complexity O(n2(s � 1)2m). O(n2(s � l)2)m) O(l.m.n2.s)
Failure rate in finding a

feasible solution
Middle Middle Low

Availability Middle Middle High
Adaption Good Good Good

n is the total number of abstract services in an abstract process.
m is the number of QoS criteria.
l is the maximum number of iterations.
s is the number of candidate service operations in an abstract service.

1380 C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381
complexity of RQSS is possibly superior to the WFlow and
RWSCS_KP while the s is far greater than l. It will be possible when
the number of alternative web service increasing.

In addition, the failure rate and the availability can be proved
that the RQSS is superior to the others from the simulation result
in previous subsection. It is the main contribution of the proposed
algorithm. The other factor in the comparison is the adaptation.
Self-adapting [35] is an important feature of dynamic software
architecture, especially for large scale web service composition.
Systems which can monitor and adapt to the changes in their envi-
ronment are known as self-adaptive, self-healing, or self-managing
systems. Since WFlow, RWSCS_KP, and RQSS are all adopting
heuristic approach to find feasible solution in each composition
of web service, they can be adaptive to the changes in their envi-
ronment as well as possible. Obviously, the only shortcoming is
that the RQSS needs the user intervention to specify which QoS
constraints are relaxable before the service selection.

In summary, we have stated that the heuristic algorithm is sim-
ilar to the MMKP [17,21] in Section 4.1, which have shown that
their algorithms are near-optimal solution for web service compo-
sition. In addition, based on the comparison, it is obvious that the
RQSS is also a near-optimal solution for web service composition
with lower failure rate and high availability.
6. Conclusions and future work

It is not easy to implement a development environment for
users to reduce the complexity application building based on the
web service composition technology. Most researches or studies
do not deal with the situation of no suitable or feasible solution
can be found during the service composition process. To get higher
system reliability and availability, a relaxable QoS-based service
selection algorithm, RQSS, is proposed in this paper. Not only does
the RQSS help users to discover web services fulfilling the func-
tional requirements and non-functional QoS constraints, but also
it recommends solutions which could satisfy the non-relaxable
QoS constraints by relaxing the relaxable QoS constraints. Besides,
a generic framework is also designed for the evaluation of system
performance for service selection algorithms. The experiment re-
sults reveal that the failure rate of finding a feasible solution in
RQSS is much lower than those of WFlow and RWSCS_KP
approaches. RQSS also has the lower average violated values for
almost of the test cases, especially when no feasible solutions
could be discovered. That is, RQSS performs well not only because
of the low computation complexity of itself but also the idea of
relax of QoS constraints.

In the next step, we plan to complete the framework for partic-
ular domain applications. We will also try to extend the RQSS algo-
rithm for the case of contingencies and dynamic service
composition which are currently out of the scope of our study.
References

[1] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Services Concepts,
Architectures and Applications, Springer-Verlag, Berlin, Heidelberg, 2004.

[2] A. ShaikhAli, O.F. Rana, R.A. Ali, D.W. Walker, UDDIe: an extended registry for
web services, in: Proceedings of the Symposium on Applications and the
Internet Workshops, January, 2003, pp. 85–89.

[3] C. Zhou, L.T. Chia, B.S. Lee, QoS-aware and federated enhancement for UDDI,
International journal of Web Services Research 1 (2) (2004) 58–85.

[4] D. Ardagna, B. Pernici, Adaptive service composition in flexible processes, IEEE
Transactions on Software Engineering 33 (6) (2007) 369–384.

[5] Quan Z. Sheng, Boualem Benatallah, Zakaria Maamar, Anne H.H. Ngu,
Configurable composition and adaptive provisioning of web services. IEEE
Transactions on Services Computing 2 (1) (2009), 34–49.

[6] S. Dustdar, W. Schreiner, A survey on web services composition, International
Journal of Web and Grid Services 1 (1) (2005) 1–30.
[7] F. Casati, M. Sayal, M.-C. Shan, Developing e-services for composing e-services,
in: Proceedings of 13th International Conference on Advanced Information
Systems Engineering, Interlaken, Switzerland, June, 2001, pp. 171–186.

[8] H. Cao1, X. Feng, Y. Sun1, Z. Zhang, Q. Wu, A service selection model with
multiple QoS constraints on the MMKP, in: Proceeding of the IFIP International
Conference on Network and Parallel Computing Workshops, September, 2007,
pp. 584–589.

[9] J. Cardoso, A. Sheth, Semantic e-workflow composition, Journal of Intelligent
Information Systems 21 (3) (2003) 191–225.

[10] Jinghai Rao, Xiaomeng Su, A survey of automated web service composition
methods, in: Proceedings of the First International Workshop on Semantic
Web Services and Web Process Composition, San Diego, California, USA, July,
2004, pp. 43–54.

[11] L. Zeng, B. Benatallah, QoS-aware middleware for web services composition,
IEEE Transactions on Software Engineering 30 (5) (2004) 311–327.

[12] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Importing the semantic web in
UDDI, in: Proceedings of Workshop on Web Services, E-Business and Semantic
Web, 2002, pp.225–236.

[13] Organization for the Advancement of Structured Information Systems (OSAIS),
Web Services Business Process Execution Language (WSBPEL). <http://
www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel>.

[14] Organization for the Advancement of Structured Information Systems (OSAIS)
and Web Services Distributed Management (WSDM). <http://www.oasis-
open.org/specs/index.php#wsdmv1.1>.

[15] P. Plebani, B. Pernici, URBE: web service retrieval based on similarity
evaluation, IEEE Transaction on Knowledge and Data Engineering 21 (11)
(2009) 1629–1642.

[16] R. Aggarwal, K. Verma, J. Miller, W. Milnor, Constraint driven web service
composition in METEOR-S, in Proceedings of the IEEE International Conference
on Services Computing, 2004, pp. 23–30.

[17] R. Para-Hernández, N.J. Dimopoulos, A new heuristic for solving the
multichoice multidimensional Knapsack problem, IEEE Transactions on
Systems, Man, and Cybernetics – Part A: Systems and Humans 35 (5) (2005)
708–717.

[18] D. Stefan, G. Alessio, D. John, Exploiting metrics for similarity-based semantic
web service discovery, in: Proceedings of International Conference on Web
Services, July, 2009, pp. 327–334.

[19] J.M. Ko, C.O. Kim, I. Kwon, Quality-of-service oriented web service composition
algorithm and planning architecture, The Journal of Systems and Software 81
(2008) 2079–2090.

[20] S.M. Yuan, Chia-Feng Lin, Ruey-Shyang Wu, Kuan-Yu Chen, Distributed
systems management for enterprise web services environment, in:
Proceedings of International Conference on New Trends in Information and
Service Science, 2009, pp. 384–389.

[21] T. Yu, Y. Zhang, K.J. Lin, Efficient algorithms for web services selection with
End-to-End QoS constraints, ACM Transactions on the Web 1 (1) (2007).
Article 6.

[22] The Workflow Management Coalition, ‘‘The Workflow Reference Model’’,
Document Number TC00-1003, January, 1995.

[23] UDDI.org. <http://www.uddi.org>.
[24] V. Suraci1, S. Mignanti, A. Aiuto, Context-aware semantic service discovery, in:

Proceedings of the Third International Conference on Semantics, Knowledge
and Grid, October, 2007, pp. 499–502.

[25] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein O. Hallsteinsen,
Jorge Lorenzo, Alessandro Mamelli, Ulrich Scholz, MUSIC: middleware support
for self-adaptation in ubiquitous and service-oriented environments, Software
Engineering for Self-adaptive Systems (2009) 164–182.

[26] W3C WS-Policy Framework Ver. 1.2. <http://www.w3.org/Submission/WS-
Policy/>.

[27] World-Wide Web Consortium (W3C), Simple Object Access Protocol (SOAP).
<http://www.w3.org/2000/xp/Group/>.

[28] World-Wide Web Consortium (W3C), Web Services Description Language
(WSDL). <http://www.w3c.org/TR/wsdl>.

[29] X. Liu, G. Huang, H. Mei, Discovering homogeneous web service community in
the user-centric web environment, IEEE Transactions on Services Computing 2
(2) (2009) 167–181.

[30] Y.S. Luo, Y. Qi, L.F. Shen, D. Hou, C. Sapa, Y. Chen, An improved heuristic for
QoS-aware service composition framework, in: Proceeding of IEEE
International Conference on High Performance Computing and
Communications, September, 2008, pp. 360–367.

[31] Ziqian Xu, Patrick martin, Wendy Powley, Farhana Zulkernine, Reputation-
enhanced QoS-based web service discovery, in: Proceedings of International
Conference on Web Services, July, 2007, pp.249–256.

[32] Zibin Zheng, Michael R. Lyu, A QoS-aware fault tolerant middleware for
dependable service composition, in: Proceeding of IEEE/IFIP International
Conference on Dependable Systems & Networks, 2009, pp.
239–248.

[33] M. Alrifai, T. Risse, Combining global optimization with local selection for
efficient QoS-aware service composition. In: International Conference on
World Wide Web 2009 Proceedings, pp. 881–890.

[34] G. Canfora, M. Di Penta, R. Esposito, M.L. Villani, A framework for QoS-aware
binding and re-binding of composite Web services, Journal of Systems and
Software 81 (10) (2008) 1754–1769.

[35] J.L. Pastrana, E. Pimentel, M. Katrib, QoS-enabled and self-adaptive connectors
for Web Services composition and coordination, Computer Languages, Systems
& Structures 37 (1) (2011) 2–23.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/specs/index.php#wsdmv1.1
http://www.oasis-open.org/specs/index.php#wsdmv1.1
http://www.uddi.org
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/2000/xp/Group/
http://www.w3c.org/TR/wsdl

C.-F. Lin et al. / Information and Software Technology 53 (2011) 1370–1381 1381
[36] E. Amaldi, M. Bruglieri, G. Casale, A two-phase relaxation-based heuristic for
the maximum feasible subsystem problem, Computers & Operations Research
35 (5) (2008) 1465–1482.

[37] E. Amaldi, V. Kann, The complexity and approximability of finding maximum
feasible subsystems of linear relations, Theoretical Computer Science 147 (1–
2) (1995) 181–210.

[38] John W. Chinneck, Fast heuristics for the maximum feasible subsystem
problem, INFORMS Journal on Computing 13 (3) (2001) 210–223. Summer.
[39] Edoardo Amaldi, Pietro Belotti, Raphael Hauser, Randomized relaxation
methods for the maximum feasible subsystem problem, Lecture Notes in
Computer Science 3509/2005 (2005), 249–264.

[40] T. Rajendran, P. Balasubramanie, Resmi Cherian, An efficient WS-QoS broker
based architecture for web services selection, International Journal of
Computer Applications 1 (9) (2010) 79–84.

	A relaxable service selection algorithm for QoS-based web service composition
	1 Introduction
	2 Background
	2.1 Related work
	2.2 Preliminary

	3 The RQSS QoS model
	3.1 QoS criteria
	3.2 QoS aggregation functions
	3.3 QoS constraints

	4 The relaxable QoS-based service selection algorithm
	4.1 The design of RQSS algorithms
	4.2 Complexity analysis of RQSS
	4.3 The QoS-based web service composition framework

	5 Experimental analysis
	5.1 The evaluation setup
	5.2 Experimental results
	5.2.1 Comparison of failure rate in finding a feasible solution
	5.2.1.1 Impact of the number of abstract services
	5.2.1.2 Impact of the number of candidate service operations
	5.2.1.3 Impact of constraint factor

	5.2.2 Comparison of average violated quality value
	5.2.2.1 Impact of the number of abstract services
	5.2.2.2 Impact of the number of candidate service operations
	5.2.2.3 Impact of constraint factor

	5.3 Discussion

	6 Conclusions and future work
	References

