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Abstract Light-emitting diodes (LED) are used in many
different applications. However, some LED defects are
unavoidable in large-volume fabrication and taping
processes. These defects may include missing compo-
nents, incorrect orientations, inverse polarity, mouse
bites, missing gold wires, and surface stains. Human
visual inspection has traditionally been used in LED-
packaging factories. However, it is subjective, time
consuming, and lacking consistent inspection results.
This paper proposes a machine vision system combining
an automatic system-generated inspection regions (IR)
method to inspect two types of LED surface-mounted
devices (SMDs). Experimentation revealed that the
proposed automatic inspection method could successfully
detect defects with up to 95% accuracy for both types
(Types 1 and 2) of SMD LEDs. The online inspecting
speed was on average under 0.3 s per image.

Keywords LED - Vision inspection - Machine vision -
Defect detection
1 Introduction

Increasingly, light-emitting diodes (LEDs) have been
replacing conventional lamps owing to their excellent
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characteristics such as high efficiency, fast response time,
long life, and environmental friendliness [1]. LEDs are now
widely used in many applications, including car lights,
general illumination, street lamps, and backlights in liquid
crystal displays [2]. A surface-mounted device (SMD) LED
generally comprises a base, LED chip, two pads, and a
circuit pattern that can be formed on the bottom and in the
inner circumferential surface of the LED chip-mounted
recess [3, 4]. SMD LEDs can be categorized into two types,
Types 1 and 2, as shown in Fig. 1. The orientation regions,
which are highlighted by the dashed rectangles, are
designed to distinguish the electronic polarity of the LED.
For a Type 2 LED, there are three gold wires and a chip in
the phosphor region. The quality of the phosphor region
influences the LED illuminating efficiency. However, the
lighting phosphor region of a Type 1 LED cannot be seen
due to its physical placement when it is packaged during
the taping process.

Both types of LEDs have to undergo fabrication and
taping processes. The fabrication process for an SMD
LED involves die attachment, wire bonding, encapsulat-
ing, curing, and punching. After fabrication, the SMD
LED is placed on tape to protect it from moisture
adsorption during handling or transporting. However,
several defects can be produced when the SMD LEDs
are packaged on the tape. These defects include missing
components, wrong orientations, inverse polarity, mouse
bites, missing gold wires, and surface defects. Figure 2
shows batches of one non-defective and five defective
samples for both types of LED. Sample No. 1 is the non-
defective LED in Fig. 2a and b. Both types of LED share
four common defects caused by missing component,
wrong orientation, inverse polarity, and surface stains,
corresponding to sample Nos. 2, 3, 4, and 6 of Fig. 2a and b,
respectively. However, among the five defective samples,
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Fig. 1 Illustration of the struc-
ture of Types 1 and 2 LEDs
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one of them was different for both types of LED (No. 5).
Sample No. 5 of Fig. 2a shows a mouse bite in the middle of
the right-hand side while sample No. 5 of Fig. 2b has three
gold wires missing. The defects of sample Nos. 2, 3, and 4 in
both Fig. 2a and b were produced during the taping process,
while the defects of sample Nos. 5 and 6 were produced
during the fabrication process.

Currently, packaging factories rely on operators or
quality assurance (QA) experts to inspect for defects before
the packaged LEDs are shipped. Human visual inspection is
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subjective, time-consuming, and cannot assure consistent
inspection quality. In mass production, packaging factories
still lack a standard specification to detect and recognize
flaws; consequently, the inspection results are inconsistent.
In contrast, an automatic optical inspection (AOI) system
can effectively identify defects and relieve the tedious tasks
of human inspectors [5—7]. Machine vision in particular can
elevate productivity, improve quality management, and
offer competitive advantages [6—8]. At the same time, it
can provide a highly accurate and robust inspection results.

Fig. 2 One non-defective and five defective samples collected on
carrier tape with six bins: a Type 1 LED; b Type 2 LED. In both (a)
and (b), sample No. I is non-defective, sample No. 2 has a missing
component, sample No. 3 is wrong orientation, and sample No. 4 has

@ Springer

inverse polarity. Sample No. 5 of (a) has a mouse bite in the middle of
the right-hand side while sample No. 5 of (b) has three gold wires
missing. Sample No. 6 of (a) and (b) has surface stains
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Fig. 3 Illustration of the proposed AOI system for LED defect inspection: a configuration diagram; b implemented prototype

However, an AOI system has not yet been explored for
SMD LED packaging inspection. The objective of this
paper was to develop an AOI system to inspect the above
defects of Types 1 and 2 LEDs.

This paper is organized as follows. In Section 2, related
studies concerning AOI in industrial applications and the
use of image processing are reviewed. Details of the
proposed algorithms are presented in Section 3. The AOI
hardware and experimental results are given in Section 4.
Concluding remarks and suggestions for further work are
presented in Section 5.

2 Related researches

Defect inspection using AOI systems in industry has been a
popular topic recently [9-15]. For printed circuit board
(PCB) inspection, Wu et al. [9] proposed a two-stage PCB
automated inspection system. They used a direct subtrac-
tion and an elimination procedure to detect defects and then
used three indices to classify the types of each detected
defect. Perng et al. [10] proposed a vision inspection
machine for a surface-mounted device on a PCB. The
concept of a virtual charge-coupled device (CCD) and a
three-tier inspection scheme was devised to simplify the
PCB inspection process. Rau and Wu [11] discussed using
an AOI approach to detect defects on the PCB inner layer.
Jiang et al. [12] proposed a background remover-based
inspection method for solder defects. Various industrial
AOI applications for internal thread defects [13], float glass
fabrication [14], vessels and fiber quality in pulp production
[15], and wire bonding defects [16] have been proposed.
These studies developed prototype hardware systems and
used different image processing methods to assist human
inspectors in identifying defects.

Gray-image segmentation methods are based on either
intensity discontinuity or intensity homogeneity in a region
[17]. Approaches based on intensity discontinuity detect
abrupt changes in the gray value of adjacent image pixels.
Approaches based on homogeneity detect smooth or

homogeneous characteristics of neighboring image pixels.
The process of merging pixels or splitting a region is
usually governed by a homogeneity criterion according to
certain features, such as gray level, texture, or color [18—
20]. However, there is no universal segmentation algorithm
that can be adopted by AOI systems and applied to different
domains. For the application of an AOI system in industrial
domains, the approach is to focus on some defective
regions of an object as inspection regions (IR), or regions
to be inspected, and to treat non-defective regions as
background. The IR is varied and depending on the product
shape or the quality inspector. In practice, a flexible method
of specifying the IR is helpful for the defect inspection.
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Fig. 4 Flowchart of the proposed pre-training phase for LED defect
inspection
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Fig. 5 Demonstration of typical
image normalization for both
types of LEDs: al and b/,
respectively, was the typical
image of Types 1 and 2 LED. a2
and b2, respectively, showed the
center reference point p on the
binary image obtained by ap-
plying Otsu’s auto-thresholding
method and closing operation;
a3 and b3, respectively, showed
the rotation angle 6 calculated
based on the column axis and
the major axis of the ellipse; a4
and b4, respectively, was the
final normalization result that
corresponded to (al) and (b1)
by using Eq. (1)

3 Approach for inspecting LED defects
3.1 Hardware system

The hardware system implemented to auto-inspect the two
types of LEDs is shown in Fig. 3. The structure of the
proposed AOI system is shown in Fig. 3a. Major
components of the proposed computer vision system
included a front illuminating white light LED source with
a white diffused filter, a CCD camera, a telecentric lens, a
motion control mechanism containing two reels, and a
mounting tape, as shown in Fig. 3b.

3.2 Algorithms for LED defect inspection

A two-phase algorithm, including a pre-training phase and
a testing phase, was proposed to inspect for LED defects.
The details of the proposed inspection algorithm are
discussed in the next subsection.

Fig. 6 Illustration of the IR as I
(x",y"): a sample of a Type 1
LED with two IRs having an
orientation region as indicated
with a dashed line and a mouse
bite region as delineated with a
solid line; b sample of a Type 2
LED with four IRs having ori-
entation regions as indicated
with a dashed line and three
gold wire regions as delineated
with a solid line
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orientation region

3.2.1 Manually specified IRs in the pre-training phase

The pre-training phase specified the IR and obtained the
related parameters. Figure 4 shows a flow chart for the pre-
training phase. First, a non-defective (typical) image was
loaded and denoted as I(x,y). The IR on the typical image
must be manually specified by a QA expert; hence, the
image must first be auto-normalized. To obtain the bright
region on I(x,y), Otsu’s auto-thresholding method [21] and
closing operation [22] were used to filter out the back-
ground. The center point P of the LED region was
calculated and used as a reference point of rotation.

Next, to determine the rotation angle, we calculated the
spatial moments, including second-order row moment,
second-order column moment, and second-order mixed
moment of the LED region. The equation of the approxi-
mated ellipse of the LED region was then calculated. Since
the coefficients of the equation were determined, the
rotation angle 6 can be calculated and defined as the

orientation region

gold wire region
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Fig. 7 Illustration of a specified
IR and its associated parameters
I(x',)") for a Type 1 LED \

Upper -left points

N

Lower-right points

orientation angle between the major axis of the ellipse and
the column axis [23]. Based on the center reference point P
and the rotation angle 6, we could normalize the typical
image I(x',)") by using the affine transform [24] with
bilinear interpolation [25], as Eq. (1),

¥ _[cos6 —sing][x] _ [xcos®—ysin6]
£)-[z -

cos 6 y xsin @ + ycos 8

Figure 5 is a demonstration of the normalized typical
images of Types 1 and 2 LEDs. Figure 5, al and bl,
respectively, shows the typical image. The processed
images of applying Otsu’s auto-thresholding method and
closing operation with the center reference point P are
shown in Fig. 5, a2 and b2. Then the orientation angle 6
could be calculated between the major axis of the ellipse
and the column axis, as shown in Fig. 5, a3 and b3. As
shown in Fig. 5, a4 and b4, the normalized typical images
could be obtained by Eq. (1), as compared to the typical
images shown in Fig. 5, al and bl.

It was important to have the IR on I(x',)") evaluated by a
QA expert in order to ensure that the proposed algorithm
was flexible enough to inspect the two different types of
LEDs. Note that two IRs must be specified for I(x',)") of a
Type 1 LED, whereas four IRs must be specified for I(x’,y")
of a Type 2 LED, as illustrated in Fig. 6. The specified IRs
containing the orientation regions of both types of LED are
boxed-in with a dashed line, the mouse bite region of a
Type 1 LED is delineated with a solid line, and the gold
wire region of a Type 2 LED is also boxed-in with a solid
line. In this research, the proposed algorithm could provide
8.33 and 10.53 pm per pixel for Types 1 and 2 LED,
respectively.

Finally, the associated parameters of the specified IR,
including the vector of the upper left points, (U,Vy), the
vector of the lower right points, (U,,V,), and the center
reference point P (see Fig. 7) were saved for subsequent
processes. The pre-training phase focused on enhancing the

flexibility of the proposed inspection in order to assess the
different defect patterns present on the two types of LEDs.
The obtained parameters of the IR were implemented in the
testing phase.

3.2.2 Testing phase

After executing the training phase, the defects were
inspected. Both taping and fabrication defects were evalu-
ated during the testing phase. A flowchart of the proposed
inspection method is given in Fig. 8. The testing image is
denoted as T(x,y). The details of testing phase are discussed
below.

Training data file

Inspection

image input

l Image preprocessing |

Bright region area
(q1) extraction

<:>k>~,
Y

I Image normalization I

uondadsur p3jap Surde],

| IRs segmentation |

Mean intensity from orientation
region ([3) calculation

<‘>N
e .

Area of mouse bite (yp/
the shortest length of gold
wire (V) calculation

=|_|defect |

Y

Yi<10 pixe N
¥2>40 pix
Y
Area of surface stain
() calculation

0<UCL N
X

Y

Y

uonadsul 199Jap UOHEILIqE ]

\J

Fig. 8 Flowchart for the proposed testing phase for LED defect
inspection
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Fig. 9 al-a3 and a4—a6 are the input images of a Type 1 LED and a Type 2 LED, respectively, having a missing component, wrong orientations,
and no defects. The brighter regions in (b/—b6) are obtained by applying Otsu’s auto-thresholding method and the closing operation to (a/—a6)

3.2.3 Image preprocessing

Because an object in the LED image has a lighter gray
value than the background, in this stage, we also applied
Otsu’s auto-thresholding method [21] and the closing
operation [22] to the images. Figure 9, al—a6 shows the
testing images with missing components and wrong
orientations, and without defects. Figure 9, bl to b6
shows the processed brighter regions that corresponding to
Fig. 9, al to a6, respectively. The areas of the brighter
regions were calculated and denoted as a. Because the
values of a for the cases of a missing component or a
wrong orientation were less than the non-defective cases,
we used the threshold k; as a criterion. If the value of @ on
the testing image was less than Kk, then the testing image
was regarded as a defect. If the value of a on the testing

Fig. 10 Illustration of the method used to derive IRs by the system-
generated IR method: a two specified IRs (dashed rectangles) on the
normalized typical image with its center reference point p; b
normalized testing image with its center reference point p'; ¢
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image was larger than k;, then we proceeded to the next
inspection process.

3.2.4 Automatically system-generated IR method for Image
normalization and segmentation

The operations of normalization and segmentation were
applied on the testing images of inverse polarity, mouse
bites, missing gold wires, and surface defects and on the
testing images without defects. The testing images were
normalized by rotating by angle 6 counterclockwise with
respect to the center reference point and denoted as
normalized images T(x',)"). The center reference point and
orientation angle # were obtained by the same process as in
the pre-training phase. The center reference point in T(x",)")
was denoted as p'.

(e)

IR orientation

IR mousebite

computed shift Ap and Av between point p and point p’ on the
normalized testing image; d specified IRs (dashed line rectangles) and
derived IRs (solid line rectangle); e segmented IRs, including
IRoricntation and IRoricntation
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Fig. 11 Demonstrations of mouse bite region extraction for a Type 1
LED and gold wire region extraction for a Type 2 LED. a/ and b1 are
the normalized images. The regions of (¢2) and (b2) are the specified
IRs. The black region obtained from (a2) in the IR is the mouse bite
region in (a3). The black region obtained from (b2) in the IRs are the
gold wire regions in (b3)

A system-generated IR method was adopted in order to
have the IR segmented automatically. First, we obtained the
saved parameters of I(x',)') in the pre-training stage. We
obtained the specified rectangles in I(x’,)") by using Eq. (2),

rect (Pointsuppe,.,lgﬁ, Points,owg,,n-gh,) = rect[(Uy, V1), (Uy, V2)].
(2)
Next, according to P in I(x',)") and p’ in T(x'y"), we
calculated the shift distances Ay and Av in the x and y
directions. Finally, the shift distance was used to segment
the corresponding IR in T(x',y") using Eq. (3),
rect(Au, Av) = [(Uy + Aw, Vi + Av), (Uy + A, Vo + Av)).
(3)

Let the segmented IR in T(x",)") of a Type 1 LED and a
Type 2 LED be denoted as [ROMenation Jrmousebite  anq

Fig. 12 Process of applying the DoG filter to a quasi-surface defect
image of a Type 1 LED

[RE™I - Fioure 10 illustrates the process of deriving

[ROientation 5 g [R™OUSCRI iy the testing image of a Type 1
LED. Figure 10a shows two specified IRs on the
normalized typical image with its center reference point P;
Fig. 10b shows a normalized testing image with its center
reference point p'. Figure 10c gives both center reference
points P of I(x",)") and p' of T(x",)"), as well as the shift
distance between the two points. According to the shift
distance, we can obtain the corresponding IR in the
normalized image. The rectangles with dashed lines in
Fig. 10d are the IRs manually specified by a QA expert
whereas the rectangles with solid lines are the IRs
automatically determined by using the system-generated

IR method. Figure 10e shows the segmented IR anq
IRorientation.

3.2.5 LED defect extraction

The defective features were extracted from the segmented
IR. First, we calculated the mean intensity of the orientation
region by using Eq. (4),

E Z ]Rol'leﬂlulwﬂ (r’ c)
B=—— ; (4)

r Xc

where IR°™34N jg the gray value of the coordinate (r,¢) on

the IR°"“™3°n - Generally, since the 3 value of an inverse
polarity image was larger than a non-defective one, we
established a threshold parameter k, to detect an inverse
polarity defect.

Second, the area of a mouse bite region of a Type 1 LED
was calculated, and the shortest length of the three gold
wires of a Type 2 LED was calculated. For a Type 1 LED,
to determine the area of the mouse bite region, we
subtracted IR™UP of T(x',") from IR™U of T(x',)).
If there was any evidence of a mouse bite appearing in the
subtracted region, this area was measured and denoted as
~y. For IR&™I™ we obtained the three gold wire regions
by using Otsu’s auto-thresholding method and then calcu-
lated the every length of the three gold wires in these
regions. Among the three lengths, the shortest length was
defined as 7,. The missing gold wire defect could happen in
any of the three gold wires. So, we used the shortest length
of v, as a reference to inspect for a missing gold wire
defect. Figure 11 illustrates the processed images of the
mouse bite and gold wire regions for both types of LEDs.
Figure 11, al and bl shows the normalized images.
Figure 11, a2 and b2 shows the segmented mouse bite
and gold wire regions, respectively, which were derived
using the system-generated IR method. The black regions
of Fig. 11, a3 and b3 are the mouse bite and gold wire
regions, respectively. Since the area of the mouse bite
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Fig. 13 Evaluated index with different k; area threshold values for both types of LED

region and the shortest length of the three gold wire regions
were extracted, the thresholds of these defects could be set
as a specification. In this research, the area of the mouse
bite region, 7y, was defined as less than 10 pixels, and the
shortest length of gold wire, ,, was defined as greater than
40 pixels.

3.2.6 Development of a control chart for surface quality

Because of the lack of an explicit specification for surface
defects using human inspection, we used a control chart
with an upper limit to assess surface quality. First, we
highlighted the defective region on the surface by using the
difference of Gaussian (DoG) filter [22]:

242
e 2(7% , ( 5 )

¥2 +y2 1

1
DoG(x,y) = 52 @y
1

2
2ro3

where the suggested standard deviation ratio was set at
1.6:1 [22]. Figure 12 illustrates the result of applying a
DoG filter on the quasi-surface defect image for a Type 1
LED. Then, we extracted the stains from the processed
image by using a threshold, k3. Next, the area of the stains
in the binary image was calculated and used as a parameter
in the quality control chart. Let the calculated area of the
surface stain of the testing image be §. Because the area of a
surface defect will be somewhat larger than that of a non-
defective surface, the concept of statistical process control
(SPC) was used to set the upper control limit (UCL) [26] to

—o— Evaluated ingex

=37
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distinguish a surface defect image from a non-defective
image. The SPC concept is described by Eq. (6),

UCL = u+ k4 X o, (6)

where p and o represent the mean and standard deviation,
respectively, of the area of the surface stain. The parameter
k4 is a control constant. Generally, p and o can be
determined from the non-defective training samples. In
Section 4, different values of k, will be evaluated
experimentally and assessed against the desired degree of
control.

4 Experimentation and discussion

In Section 4.1, we describe some preliminary experiments
used to evaluate the impact of different values of the four
parameters ki, kj, k3, and k4. In Section 4.2, we describe
and discuss our experimental results. Our algorithm was
programmed in the Visual Basic 2008 environment com-
bined Halcon 9.0 image processing software [27].

4.1 Sensitivity analysis for parameter setting

Our proposed testing phase algorithm contains four
parameters that influence the inspection outcome. They
are the threshold value of the brighter region ki, the
threshold value of the mean intensity k, of the orientation

—o— Evaluated index
k-=56

/"

-4

43 45 47 49 51 53 55 57 59

k, mean intensity threshold for the Type 2 LED

Fig. 14 Evaluated index with different k, mean intensity threshold values for both types of LED
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Fig. 15 Area of the extracted region generated with different values
of kj for both types of LED

region, a binary threshold k; for the processed DoG
images, and a control constant ky for the defective surface
area. Two experimental phases were carried out to establish
k; and k,. Each used 15 training images containing missing
component, incorrect orientation, inverse polarity, and non-

defective samples for both types of LEDs (Section 4.1.1).
Another 15 non-defective images were used to establish the
threshold value ks, p, and o (Sections 4.1.2 and 4.1.3).
Fifty testing images (30 images of surface defects and 20
images of non-defective samples) were used to gauge the
effect of the control constant k4 for both types of LEDs
(Section 4.1.3).

4.1.1 Determining the threshold values ky and k,

To inspect the taping defects of missing component, wrong
orientation, and inverse polarity defects, two phases of
experiments were conducted. In phase 1, we obtained the
ranges of thresholds of k; and k, from the first training
images. In phase 2, we calculated an index by changing the
threshold value within the range from the second training
images. Then, a threshold value could be flagged using the
higher evaluated index. The process of identifying the two
thresholds k; and k, was the same. Each of the 15 images
of missing component, wrong orientation, and non-
defective samples was used to obtain the range of k;.
Similarly, each of the 15 images of inverse and non-inverse
polarity was used to obtain the range of k,. Then, the other
set of images of missing component, wrong orientation,
inverse polarity, and non-defective samples was used to
determine the threshold values of k; and k.

In phase 1, because a non-defective image has a larger
bright region than a defective image, we computed the area
of the extracted bright region to detect missing component
and wrong orientation defects. In addition, because the gray
value in the orientation region for a non-defective sample
image is lower than that for an inverse polarity image, we

Jriginal image

Original image

k_‘= 2 k3= 3
l. ; . | : .
| %) \ 9
ks=2 k=3

Fig. 16 Experimental results for different k3 thresholds ranging from —1 to 3 for both types of LED images that were processed using the DoG

filter. a Type 1 LED, b Type 2 LED
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Table 1 4 and o values derived

from samples of both types of Type 1 LED Type 2 LED
LED
1 o I o
530 140.5 1455 337

computed the mean intensity of the orientation region to
detect inverse polarity defects. We then obtained the limited
ranges of area and mean intensity from the first training set
of images. These limited ranges were used to set the
minimum value of a non-defective group and the maximum
value of a defective group based on the dispersed value
between these two groups.

In phase 2, the index evaluated from the second training
images was used to obtain a stable threshold. We calculated
the index by gradually changing the threshold value of k;
and Kk, over identical intervals:

-

Evaluated index(EI) = “ x 100%,

(7)
where w and w are the number of images successfully and
unsuccessfully detected, respectively, under the threshold
value, @ is the total number of testing images, and
® = w + . The index was used to examine whether the
area threshold values of k; and k, were reliable.

Figures 13 and 14 illustrate the effect of the various
thresholds of ky and k, for Types 1 and 2 LEDs. There is a

Fig. 17 SPC inspection rate of 100% - —
LED surface defects with re- Satlwhmm
spect to the control constant k4 p—o—o" N
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Table 2 SMD LED inspection results

Items Inspection rate (%)

Type 1 LED Type 2 LED

93.8% (980/1045)
6.1% (58/946)
7.1% (7/99)

Accuracy rate 98.0% (1004/1024)
0.95% (9/949)

14.7% (11/75)

Misdetection rate
False alarm rate

marked plateau in both figures. Generally, the higher the
evaluated index, the more reliable the threshold. Figure 13
indicates that the optimal index had a value of 100% in the
stable interval (125,000-165,000 for the Type 1 LED and

Fig. 18 Examples of misdetec-
tions and false alarms for Types
1 and 2 LEDs: al-hl normal-
ized images; a2—h2 results of
applying the surface defect
method to (a/—h2), respectively

(al)

T

e 2 LED - false alarms

140,000-215,000 for the Type 2 LED). The k; parameter
was determined by choosing the median value between the
intervals, that is, ky=145,000 pixels for the Type 1 LED
and k;=177,500 pixels for the Type 2 LED. In Fig. 14,
considering the mean intensity threshold of k,, the optimal
index fell between 31 and 43 for the Type 1 LED and
between 55 and 57 for the Type 2 LED. The thresholds for
k, were then flagged at 37 for the Type 1 LED and 56 for
the Type 2 LED.

4.1.2 Effects of ks on highlighting the defective region

Applying the threshold kj to the image that was processed
by the DoG filter of Eq. (5) highlighted the surface stains

Type 1 LED - misdetections

(a2) (b2)
misdetections
(c2) (d2)
{ i}
(€2) (f2)
y
(g2) (h2)
TN N\
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in the images. A different threshold value affected the area
of the extracted image. Figure 15 shows the change in the
area of the extracted image after we applied various k3
values to the 15 processed images for both types of LED.
It is clear that both types of LED behaved similarly.
Figure 16 shows visually how the images for both types of
LED changed with different values of k3. When the value
of k3 was equal to —1, the extracted region consisted of
most of the LED. Some of the extracted region appeared
as false stains, increasing the extracted area to close to the
entire area of the LED. When the k3 value was greater
than 0, the surface stains were gradually highlighted, as
shown progressively in Fig. 16. The trend for the average
extracted area started to level off at k=1 and continued to
decrease with increasing kz. When the threshold k3 value
was equal to 3, the defective extracted area was shrunk
and close to zero, as shown in Figs. 15 and 16. The
extracted area related to the region of interest could be
effectively identified when k3=2 for both types of LED, as
shown in Figs. 15 and 16.

4.1.3 Effect of the control constant Ky

Because the area of the LED surface defect affected the
illumination quality of the LED, a control chart with an
upper limit was used, as Eq. (6), to discriminate the
defective surface area of the LED from non-defective areas.
To obtain a reliable control constant, a supervised two-stage
procedure was followed. In the first stage, 15 non-defective
samples for each type of LED were used to calculate the
associated p and o values using Eq. (60); the results are
shown in Table 1. In the second stage, the derived values of
w1 and o were fixed, and the inspection rates for different
values of k4 were determined for 50 other samples (30
defective images and 20 non-defective images) for each of
the two types of LED.

Generally, the control constant kg4 affected the severity of
the associated control limit. A smaller value of k4 resulted
in a tighter limit that could trigger false alarms in a surface
quality inspection. On the contrary, too large of a value of
k4 caused defects to be missed. Figure 17 shows the
detection outcome based on 50 samples of the Types 1 and
2 LEDs. For the Type 1 LED, the number of false alarms
decreased gradually as the k4 value increased to 3.2. For the
Type 2 LED, the number of false alarms decreased more
rapidly, and no more occurred when k4 was greater than
1.4. 1t is evident that for both types of LED, the rate of
missed detection and the rate of false alarms were inversely
related to k4. Satisfactory k4 limits were in the range of
3.2-3.8 for Type 1 LEDs and 1.2-1.8 for Type 2 LEDs. The
recommended values of k4 are, therefore, 3.5 and 1.5 for
the Types 1 and 2 LEDs, respectively, i.e., the midpoint of
the ranges.

@ Springer

4.2 Experimental results and discussion

In this subsection, experimental results are presented that
confirm the function of the proposed inspection algo-
rithm for online SMD LED inspection. A number of
samples of both types of LED were used to evaluate the
accuracy and time of the proposed AOI system. The test
set comprised 1,045 sample images of the Type 1 LED
(946 defective images and 99 non-defective images) and
1,024 sample images of the Type 2 LED (949 defective
images and 75 non-defective images). The parameters
were as follows: k;=145,000, k,=37, and UCL=1,021.75
for the Type 1 LED; k;=177,500, k,=55, and UCL=
1,960.5 for the Type 2 LED; k;=2 for both types of LED.

The experiments revealed that the average accuracy of
the proposed inspection system was more than 95%. The
details are listed in Table 2. This implies that the vision
inspection system not only reduced the number of samples
to be inspected but also reduced the inspection time and
labor cost. The inspection times for the Types 1 and 2
LEDs were 0.228 and 0.225 s per image, respectively.
Concerning the misdetections for both types of LED,
Fig. 18, al—-d2 illustrates the case when the surface
defective area was above the UCL, while Fig. 18, el-h2
illustrates the case when the surface defective area was
below the UCL. The unsuccessful detection was the
inconsistent result of machine—human inspection. However,
any ambiguous or implicit defect inspection must be
rechecked by a human.

5 Conclusions

An AOI system was proposed to inspect the defects of two
types of SMD LEDs. The proposed AOI system could
successfully detect defects with up to 95% accuracy, and
the inspection speed was less than 0.3 s per image, fast
enough to work synchronously with a LED production line.
The number of LED-based products has grown rapidly as
new types of LEDs have become available [28]. It is,
therefore, worthwhile to develop new systems to detect
defects in various types of LEDs.
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