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ABSTRACT

The steady state deformation and infinitesimal free vibration around the steady state deformation of a
rotating inclined Euler beam at constant angular velocity are investigated by the corotational finite
element method combined with floating frame method. The element nodal forces are derived using the
consistent second order linearization of the nonlinear beam theory, the d’Alembert principle and the
virtual work principle in a current inertia element coordinates, which is coincident with a rotating
element coordinate system constructed at the current configuration of the beam element. The rotating
element coordinates rotate about the hub axis at the angular speed of the hub. The equations of motion
of the system are defined in terms of an inertia global coordinate system, which is coincident with a
rotating global coordinate system rigidly tied to the rotating hub. Numerical examples are studied to
demonstrate the accuracy and efficiency of the proposed method and to investigate the steady state
deformation and natural frequency of the rotating inclined beam.

Finite element method

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating beams are often used as a simple model for propel-
lers, turbine blades, and satellite booms. Rotating beam differs
from a non-rotating beam in having additional centrifugal force
and the Coriolis effects on its dynamics. The free vibration
frequencies of rotating beams have been extensively studied
[1-24]. However, the vibration analysis of rotating beam with
inclination angle, which is considered in the recent computer
cooling fan design on the natural frequencies of rotating beams
[20], is rather rare in the literature [9,18,20,21]. In Refs. [20,21],
the effect of the steady state axial deformation and the inclination
angle on the natural frequencies of the rotating beam was
investigated. However, the lateral steady state deformation and
its effects on the natural frequencies of the rotating beam were
not considered in Refs. [20,21]. It is well known that the spinning
elastic bodies sustains a steady state deformation (time-indepen-
dent deformation) induced by constant rotation [25]. For rotating
beams with an inclination angle as shown in Fig. 1, the steady
state deformations include axial deformation and lateral defor-
mation. The linear solution of the steady state deformation of
rotating inclined beam induced by constant rotation can be easily
obtained using mechanics of materials and is given in Appendix A.
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However, the centrifugal stiffening effect on the steady lateral
deformation is significant for slender rotating inclined beam, and
the centrifugal force is configuration dependent load; thus the
linear solution of the steady state deformation of rotating inclined
beam may be not accurate enough. The lagwise bending and axial
vibration of rotating inclined beams are coupled due to the
Coriolis effects [14,23] and the lateral steady state deformation.
The accuracy of the frequencies obtained from linearizing about
the steady state deformation is dependent on the accuracy of the
steady state deformation and the accuracy of the linearized
perturbation [6,11]. Thus, the geometrical nonlinearities that
arise due to steady state deformation should be considered.
However, to the authors’ knowledge, the lateral steady state
deformation and its effects on the lagwise bending and axial
vibration of rotating inclined beams are not reported in the
literature. The objective of this paper is to investigate the steady
state deformation and its effects on the lagwise bending and axial
vibration of rotating inclined beams with zero setting angle at
constant angular velocity. Here, the large displacement and large
rotation, but small strains are considered for the steady state
deformation. The equations of motion for a rotating inclined Euler
beam at constant angular velocity are derived using a corotational
finite element formulation combined with the rotating frame
method. The nodal coordinates, displacements and rotations,
absolute velocities, absolute accelerations and the equations of
motion of the system are defined in terms of an inertia global
coordinate system, which is coincident with a rotating global
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Fig. 1. A rotating inclined beam, (a) top view and (b) side view.

coordinate system rigidly tied to the rotating hub, while the total
deformations in the beam element are measured in an inertia
element coordinate system, which is coincident with a rotating
element coordinate system constructed at the current configura-
tion of the beam element. The rotating element coordinates rotate
about the hub axis at the angular speed of the hub. The inertia
nodal forces and deformation nodal forces of the beam element
are systematically derived by the virtual work principle, the
d’Alembert principle and consistent linearization of the fully
geometrically nonlinear beam theory [26-28] in the element
coordinates. The element equations are constructed first in the
inertia element coordinate system and then transformed to the
inertia global coordinate system using standard procedure.
The dominant factors in the geometrical nonlinearities of beam
structures are attributable to finite rotations, the strains remain-
ing small. For a beam structure discretized by finite elements, this
implies that the motion of the individual elements to a large
extent will consist of rigid-body motion. If the rigid-body motion
part is eliminated from the total displacements and the element
size is properly chosen, the deformation part of the motion
is always small relative to the local element axes; thus, in
conjunction with the corotational formulation, the higher-order
terms of nodal parameters in the element deformation
nodal forces and inertia nodal forces may be neglected by the
consistent linearization. Due to the consideration of the exact
kinematics of the Euler beam, some coupling terms of axial and
flexural deformations are retained in the element internal nodal
forces.

The infinitesimal free vibrations of rotating beam are measured
from the position of the corresponding steady state deformation.
The governing equations for linear vibration of rotating beam are
obtained by the first order Taylor series expansion of the equation of
motion at the position of steady state deformation.

2. Formulation
2.1. Description of problem

Consider an inclined uniform Euler beam of length Lt rigidly
mounted with an inclination angle o on the periphery of rigid hub
with radius R rotating about its axis fixed in space at a constant
angular speed Q2 as shown in Fig. 1. The axis of the rotating hub is
perpendicular to one of the principal directions of the cross
section of the beam. The deformation displacements of the beam
are defined in an inertia rectangular Cartesian coordinates, which
is coincident with a rotating rectangular Cartesian coordinate
system rigidly tied to the hub.

Here only axial and lagwise bending vibrations are considered. It is
well known that the beam sustains a steady state deformations
(time-independent deformation displacements) induced by constant
rotation [25]. In this study, large displacement and rotation with
small strain are considered in the steady state deformation. The
vibration (time-dependent deformation displacements) of the beam
is measured from the position of the steady state deformation, and
only infinitesimal free vibration is considered. Note that the axial and
lagwise vibrations, which are coupled due to the Coriolis effects and
the lateral steady state deformation, cannot be analyzed indepen-
dently. Here the engineering strain and stress are used for the
measure of the strain and stress.

2.2. Basic assumptions

The following assumptions are made in derivation of the beam
element behavior.

(1) The beam is prismatic and slender, and the Euler-Bernoulli
hypothesis is valid.

(2) The unit extension of the centroid axis of the beam element is
uniform.

(3) The deformation displacements and rotations of the beam
element are small.

(4) The strains of the beam element are small.

In conjunction with the corotational formulation, the third
assumption can always be satisfied if the element size is properly
chosen.

2.3. Coordinate systems

In this paper, a corotational formulation combined with the
rotating frame method is adopted. In order to describe the
system, we define three sets of right handed rectangular Cartesian
coordinate systems:

(1) A rotating global set of coordinates, X; (i=1, 2, 3) (see
Figs. 1 and 2); the coordinates rotate about the hub axis at a

X, A

X
0,

Fig. 2. Coordinate systems.
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constant angular speed 2 as shown in Fig. 1. The origin of this
coordinate system is chosen to be the intersection of the
centroid axes of the hub and the undeformed beam. The X;
axis are chosen to coincide with the centroid axis of the
undeformed beam, and the X, and X3 axes are chosen to be
the principal directions of the cross section of the beam at the
undeformed state. The direction of the axis of the rotating hub
is parallel to the Xs; axis. The nodal coordinates, nodal
deformation displacements, absolute nodal velocity, absolute
nodal acceleration and equations of motion of the system are
defined in terms of an inertia global coordinate system, which
is coincident with the rotating global coordinate system.

(2) Element coordinates; x; (i=1, 2, 3) (see Fig. 2), a set of element
coordinates is associated with each element, which is con-
structed at the current configuration of the beam element. The
coordinates rotate about the hub axis at a constant angular
speed 2. The origin of this coordinate system is located at the
element node 1, the centroid of the end section. The x; axis is
chosen to pass through two end nodes of the element; the
directions of the x, and x5 axes are chosen to coincide with the
principal direction of the cross section in the undeformed state.
Because only the displacements in X;X, plane are considered,
the directions of x3 axis and X3 axis are coincident. The position
vector, deformations, absolute velocity, absolute acceleration,
internal nodal forces, stiffness matrices and inertia matrices of
the elements are defined in terms of an inertia element
coordinate system, which is coincident with the rotating ele-
ment coordinate system.

In this study, the direction of the axis of the rotating hub is
parallel to the X5 axis and only the displacements in XX, plane
are considered. Thus, the angular velocity of the hub referred to
the global coordinates may be given by

Q:={0, 0, Q) 1)

where the symbol { } denotes a column matrix, which is used
throughout the paper.

2.4. Kinematics of beam element
Let Q (Fig. 3) be an arbitrary point in the beam element, and P

be the point corresponding to Q on the centroid axis. The position
vector of point Q in the undeformed and deformed configurations

X

R%)

Fig. 3. Kinematics of Euler beam.

may be expressed as

Io={x,¥, 2} (2)
and
r={ry, Iy, 13} = {xp(x,t)—ysind, v(x,t)+ycos¥, z} A3)
Lo OVXD) av(x,t)% 4
sin6 = os  ox os  1+e @
oS
&= &—1 )

where xp(x,t) and v(x,t) are the x; and x, coordinates of point P,
respectively, in the deformed configuration, t is time, 0=0(x,t) is
the angle counterclockwise measured from x; axis to the tangent
of the centroid axis of the deformed beam, ¢ is the unit extension
of the centroid axis and s is the arc length of the deformed
centroid axis measured from node 1 to point P. In this paper, ( )
denotes () , = d()/0x, sin0 is approximated by 0, but the difference
between 0 and v’ is considered.

Here, the lateral deflection of the centroid axis, v(x,t) is
assumed to be the Hermitian polynomials of x and may be
expressed by

V(x,t) = {N1,N2,N3,N4} {v1,0,v2,05) = Nju, 6)

where v;=v;(t) and Vi =vi(t) (j=1, 2) are nodal values of v and v,
respectively, at nodes j. Note that, due to the definition of the
element coordinates, the values of v; (j=1, 2) are zero. However,
their variations and time derivatives are not zero. N; (i=1-4) are
shape functions and are given by

1 L ¢
Ni=3(1-9°2+0, Na=g(1-)1-9)

1 L
Ni=z(1+872-9) No=g(-1+)1+0) @)
F=—1+ % ®)

where L is the length of the undeformed beam element.
The relationship between x,(x,t), v(x,t) and x in Eq. (3) may be
given as

Xp(X,0) =y + /O.X [(1+&0)*—vA]"/2dx 9)

where u; is the displacement of node 1 in the x; direction. Note
that due to the definition of the element coordinate system, the
value of u; is equal to zero. However, the variation and time
derivatives of u; are not zero.

The axial displacements of the centroid axis may be deter-
mined from the lateral deflections and the unit extension of the
centroid axis using Eq. (9).

Making use of Eq. (9) and assumptions v, <1 and ¢. < 1, one
may obtain

'L
=Lt tiy—tty = Xe(L,t)—Xc(0,6) = /0 (1 +sc—%v?x> dx (10)
in which ¢ is the current chord length of the centroid axis of the

beam element, and u, is the displacement of node 2 in the x;
direction. From Egs. (6) and (10), &. may be expressed by

&= % (GZua+ %Gf,ub) 11
Go={-1, 1} 12)
ug = {ug, U} 13)
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L
Gb:/ N, v dx (14)
0

where u,, is defined in Eq. (6).

Substituting Egs. (9), (11)-(14) into Eq. (3), using the approx-
imation cosf~ 1—%92, sinf~0 and 1/(1+¢:)~ (1—¢c), retaining
all terms up to the second order, the position vector in Eq. (3) may
be approximated by

r:{rl,rz,rg}:{xp—yH,y<]—%92) +v, z} (15)
t X ~t 1/ 5
xp(x,t):Naua+x+ﬂGbub—i/ Vi dx (16)
0
0=(1—g)V 17)
_[1=¢ 14¢
{5 (18

From Eq. (3) and the definition of engineering strain [29,30],
making use of the assumption of small strain, and retaining the
terms up to the second order of deformation parameters, the
engineering strain in the Euler beam may be approximated by

&11 = &c—(1-&c)yV,xx (19)

The absolute velocity and acceleration vectors of point Q in the
rotating beam element may be expressed as

V={V,V3,V3} =Vo+Q X T+T (20)
a=1{01,02,03} =2+ Q x I+ Q x (Q x 1)+2Q x F+§ 21)
Vo =Q x Iy (22)
A, = {ao1,002,003} = L X (€2 X Fao) (23)
Q=A Q¢ (24)
Ta0 = AGeTaoc (25)
Ta06 =0 +Tooc = {RCOS+Xo,—Rsina+Y,, 0} (26)

where r is the position point of point Q given in Eq. (15), the
symbol () denotes time derivative, Q is the vector of angular
velocity referred to the current inertia element coordinates, £ is
the angular velocity of the hub referred to the global coordinates
given in Eq. (1), Agr is the transformation matrix between the
current global coordinates and the current element coordinates,
Vv, and a, is the absolute velocity and absolute acceleration of
point o, the origin of the element coordinates, X, and Y, are
coordinates of point o referred to the current global coordinates, R
is the radius of the hub, and « is inclination angle of the rotating
beam. r and f are the velocity and acceleration of point Q relative
to the current moving element coordinates. From Eqgs. (11)-(18), ¢
and r may be expressed as

= {f1,F2.F3) = {Xp—y0,7—y0 0,0} 27)
i = (1, Fa.s) = (% —y0,i—y0’ —y00,0) 28)
. P x o

szNalla—l-ZGbllb—/ ViV xdx 29)

0

0 =(1—e)V x—&cVx (30)
b= L (Glitg + Gl 31
C—I( aua+ bub) ( )

. X
%p = Nifia + § (Gl Ghtty)— [ (et Vot i (32)
J0
0 = (1—E0)V x— 2V x—EcV x (33)
Be = 1 (Gyiia+Gitt, +Gyiy) (34)

2.5. Element nodal force vector

Let éu; and dv;, and 60; (j=1, 2) denote the virtual displace-
ments in the x; and x, directions of the current inertia element
coordinates, and virtual rotations applied at the element nodes j.
The element nodal force corresponding to virtual nodal displace-
ment Ju; and 6v;, and 60; (j=1, 2) are f;;, the forces in the x;
(i=1, 2) directions, and m; moments about the x5 axis, at element
local nodes j.

The element nodal force vector is obtained from the d’Alem-
bert principle and the virtual work principle in the current inertia
element coordinates. The virtual work principle requires that

Sulf, +uyfy — /V (011611 + porta)dv (35)
oug = {ouq,0uy} (36)
ouf = {6v1,601,0v3,60,} 37
fo=fq +f,={fi1.fi2) (38)
£y =) +£, = (H1.m1,fo2,m5) 39)
faDZ{fP]-sz} (40)
£ = (5, mP, f5, mB) (41)
£ =11, flo) 42)
£, = (31, mi, flp, mb) 3)

where f; (i=aq, b) are the generalized force vectors corresponding
to du, and 5ug, f? and ff (i=a, b) are element deformation nodal
force vector and inertia nodal force vector corresponding to f;,
respectively, V is the volume of the undeformed beam element,
0eqq is the variation of &1 in Eq. (19) corresponding to du, and
éug. o011 is the engineering stress. For linear elastic material,
o11=Ee11, where E is Young’s modulus. p is the density, Jr is the
variation of r in Eq. (15) corresponding to du, and éu, and a is
the absolute acceleration in Eq. (21). Note that d¢y; and ou, are
functions of du, and ou,. However, the difference between 660 and
dv' is considered here. Thus, the relation between 6ug, ou, and
ou, is required, and will be derived later in this section.

If the element size is chosen to be sufficiently small, the values of
the deformation parameters of the deformed element defined in the
current element coordinate system may always be much smaller than
unity. Thus the higher-order terms of deformation parameters in the
element internal nodal forces may be neglected. However, in order to
include the nonlinear coupling among the bending and stretching
deformations, the terms up to the second order of deformation
parameters and their spatial derivatives are retained in element
deformation nodal forces by consistent second-order linearization of
0e11011 in Eq. (35). Here, only infinitesimal free vibration is con-
sidered, thus only the terms up to the first order of time derivatives of
deformation parameters and their spatial derivatives are retained in
element inertia nodal forces by consistent first-order linearization of
orta in Eq. (35). Note that the values of L, v and v, will converge to
zero, and the values of v x/L, ¢ and v, will converge to constants
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with the decrease of the element size. Thus, the higher order terms
containing L, v, and v, are neglected, and the higher order terms
containing v x/L, & and vy are retained in the element internal nodal
forces here. However, to avoid improper omission in the element
internal nodal forces in this section and element matrices in the next
section, some third order terms are retained in the derivation process.

From Eqs. (6) and (11)-(14), the variation of &7 in Eq. (19) may
be expressed as

0e11 = 6ec+YV xxec—(1—£)yoV xx (44)
1

06 = I (0uSGq + Su}, Gp) (45)

OV xx = OU; N} (46)

From Egs. (6) and (15)-(18), or the variation of r in Eq. (15)
may be expressed as

or = {0r1,012,0} = {0x,—y0,0v—y056,0} 47)
X X
Oxp = Ut Ng + I oujG,— / V xOV 5 dx (48)
0
00 = —decvx+(1—ec)ovx (49)
vy = oujNy (50)

From Egs. (45), (49) and (50), the relations between du, in
Eq. (46) or (50) and éuf in Eq. (37) may be expressed as

duy, = Tyou) + Ty dug, (51)

Ty, =T} +T> (52)
1 0 0 O

1 0 1+¢ O 0

T=lo 0o 1 o (53)
0 0 0 1l4e&

Tp = [04x1,V} Gp,04,1,V4 Gp]" (54)
0 o0
_V’l ﬁ
L L

Tba= 0 0 (55)
7‘/’2 ﬁ
I 1

Substituting Eqs. (21)-(34) and (44)-(55) into Eq. (35), using
Jy dA=0, neglecting the higher order terms, we may obtain

£ EA@CGH_¥ / V2, dxGq (56)

2 =T} {51(1—85)2 / N,V xx dx+f5 / N;Jv,xdx] (57)

£l — pA /.NaNf]dxﬁa+szAaol / N dx

—Q%pA / Na(Niug +x)dx—2QpA / Novdx (58)

f, =T} {pA/Nb\')dx—i-pI(l —ac)z/N},\'},xdx

+Q%pAay, /Nbdx—szA /Nbvdx

—Q%pl / 2004 [ NN, dxua} (59)

where the range of integration for the integral [( )dx in Egs. (56)-(59)
is from O to L, A is the cross section area, I is moment of inertia of the
cross section, a,; (i=1, 2) are the x; components of a, in Eq. (23). The
underlined terms in Egs. (58) and (59) are the inertia nodal force
corresponding to the steady state deformation induced by the
constant rotation.

2.6. Element matrices

The element matrices considered are element tangent stiff-
ness matrix, mass matrix, centripetal stiffness matrix and gyro-
scopic matrix. The element matrices may be obtained by differ-
entiating the element nodal force vectors in Egs. (56)-(59) with
respect to nodal parameters, and time derivatives of nodal
parameters.

Using the direct stiffness method, the element tangent stiff-
ness matrix may be assembled by the following submatrices:

o  (EA EI
kaa = ﬁi = <T_L_2/v'2Xx dX) Gan (60)
Y 2Ele. st gl
Koy = K, = =T Ga/vXXN dxT) 61)
6f§ 1t /aNus
kbb:w =T}!|EI(1—&c)? /NbN dx+f12/NbN dx|T} (62)
b

The element mass matrix may be assembled by the following
submatrices:

|
mg, = ‘3.f =pA / NgN; dx (63)
fl
mg, =my, 4 =0 (64)
ol
o},

my, = oy =T} {pA / NN, dx+ pI(1—&c)? / N, N dx] T, (65)
b

The element centripetal stiffness matrix may be assembled by
the following submatrices:

|

Ko = Qfgﬂu —_pA / NN dx (66)
a
' of!
Koo =Koq, = inaug = (67)
of 1t ¢ 1
kab = W :Tb —pA/NbNb dx Tb (68)
b

The element gyroscopic matrix may be assembled by the
following submatrices:

of!
€= i =0 (69)
Cap = —Ch, — af; = —2pA / NaN. dxT] (70)
of}
= Hou, ~° 70
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2.7. Equations of motion

For convenience, the following dimensionless variables are
used:

- x = R S X o Y
X—E' R—E‘ Xo E; Yo—E,
- L _ u _ v
L:E‘ UZE' VZE (72)
ﬁ/_@_u/ H”_az—ﬁ_L u” V/_@_V/ V//_@_L v
=== —a)_{z—ry ===V —XZ—T
= ﬁj _ mj . :
fu_ﬁ' m]_m. (1—1,2,]—1,2)
t [E . &u . [p - &1 p
=2 u=Zon /o g=22 o
Lt\ p’ U ot u\/;, u ot? TgY
GV _y P 5 TV _) Py
"o VB "T ez T TE

_ P w_ P L _ 2
k_QLT\/;, K_wLT\/;, I_AL%_n2

where E is Young’s modulus, p is the density, 7 is a dimensionless
time, Q and k are angular speed and a dimensionless angular speed
of rotating beam, respectively, w and K are natural frequency and
dimensionless natural frequency of rotating beam, respectively, and
7 is the slenderness ratio of the rotating beam.

The dimensionless nonlinear equations of motion for a rotating
beam with constant angular velocity may be expressed by

¢=F°Q)+F(2,0.Q.Q)=0 (73)
Q=0Q,+Q(® (74)
Table 1

Comparison of results for different cases (1=20, R=1.5).
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where @, FP and F are the dimensionless unbalanced force vector, the
dimensionless deformation nodal force vector and the dimensionless
inertia nodal force vector of the structural system, respectively. F' and
FP are assembled from the dimensionless element nodal force vectors,
which are calculated using Egs. (56)-(59) and (72) first in the current
element coordinates and then transformed from element coordinate
system to global coordinate system before assemblage using standard
procedure. Q is the dimensionless nodal displacement vector of the
rotating beam, @ = 6@ /ot and Q = 826 /ot? are the dimensionless
nodal velocity vector and the dimensionless nodal acceleration vector
of the rotating beam, respectively, Qs is the dimensionless steady
state nodal displacement vector induced by constant dimensionless
rotation speed k, Q(t) is the time-dependent dimensionless nodal
displacements vector caused by the free vibration of the rotating
beam. Here only infinitesimal vibration is considered.

2.8. Governing equations for steady state deformation

For the steady-state deformations, Q(7)=0. Thus Eq. (73) can
be reduced to nonlinear dimensionless steady state equilibrium
equations and expressed by

@=F(Q,)+k*F.(Q,)=0

where F?(Q,) and k2F.(Q,) are the dimensionless deformation
nodal force vector and the dimensionless inertia nodal force (the
centrifugal force) vector of the structural system corresponding to
the dimensionless steady state nodal displacement vector Qs,
respectively. I<2F§(Qs) is corresponding to the underlined terms
of Egs. (58) and (59). Note that kzFé(Qs) is deformation depen-
dent. Thus kng(Qs) should be updated at each new configuration.

Here, an incremental-iterative method based on the Newton-
Raphson method is employed for the solution of nonlinear
dimensionless steady state equilibrium equations at different
dimensionless rotation speed k. In this paper, a weighted Euclidean
norm of the unbalanced force is employed for the equilibrium

(75)

o (deg) k eMX (1073)  &P™(1073) v/l (1073) Ky Ky Ks (a) Ky Ks Kg K7 (a)
0 0 EA10 0 0 0 174788  1.05957  1.57241  2.82495 475610  5.19546  8.00214
EA50 0 0 0 174787  1.05953  1.57086  2.82431  4.71413  5.19120  7.86206
EA100 0O 0 0 174787  1.05953  1.57081  2.82431 471283  5.19119  7.85600
[23] 0 0 0 17479 1.05953 157080  2.82431  4.71239 519119 -
[31] 0 0 0 17580 110172 157080  3.08486  4.71239  6.04510 -
06  EA10 6.93309 0 0 197994  1.08369  1.57615  2.84311 475729 520566  8.00257
EA50 7.15492 0 0 197894  1.08337 157461  2.84191 471534  5.19999  7.86273
EA100  7.18210 0 0 197891  1.08336  1.57456  2.84190  4.71403  5.19994  7.85667
EB100  7.18210 0 0 198511 1.08726 157457  2.85242 471403 521930  7.85669
[23] 7.20000 0 0 .19862 1.08760  1.57455  2.85276 471360  5.21962 -
LAS 7.20000 0 0 - - - - - - -
5 03  EA10 1.72680 1.93655 5.48934 180882  1.06562  1.57335  2.82949 475639  5.19801  8.00220
EA50 1.78195 1.94115 5.49004 180854  1.06552  1.57180  2.82871  4.71442  5.19339  7.86221
EA100  1.78871 1.94131 5.49007 180853  1.06552 157175  2.82871 471312  5.19337  7.85615
EB100  1.78870 1.93560 5.47701 181020  1.06651  1.57175  2.83136 471312  5.19822  7.85616
LAS 1.79486 2.03794 5.88301 - - - - - - -
30 01  EA10 173298 1.29046 3.72389 175392 1.06018  1.57252  2.82541 475613  5.19573  8.00213
EA50 178615 1.29263 3.72394 175389  1.06014  1.57097  2.82476 471416  5.19142  7.86207
EA100 179264 1.29270 3.72395 175389  1.06014  1.57092  2.82476 471285  5.19141  7.85601
EB100 179264 1.29231 3.72300 175407  1.06024 157092  2.82503 471285  5.19190  7.85601
LAS 179904 1.29904 3.75000 - - - - - - -
90 01  EA10 0500346 2.59388 7.49567 174830  1.05974 157253  2.82511 475612  5.19557  8.00206
EA50 0500385 2.59808 7.49570 174829  1.05971  1.57098  2.82447 471415  5.19128  7.86205
EA100 0500217 2.59821 7.49570 174829  1.05971 157093  2.82447 471284  5.19127  7.85599
EB100 .0500216 2.59797 7.49507 174835  1.05974 157093  2.82456  4.71284  5.19144  7.85599
LAS 0500000 2.59807 7.50000 - - - - - - -
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iterations, and is given by

lo|
— <€
KRVNE| T

where N is number of the equations of the system, and ey, is a
prescribed value of error tolerance. Unless otherwise stated, the
error tolerance ey, is set to 10~? in this study.

(76)
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2.9. Governing equations for free vibration measured from the
position of steady state deformation

Substituting Eq. (74) into Eq. (73), and setting the first-order
Taylor series expansion of the unbalanced force vector @ around
Q; to zero, one may obtain the dimensionless governing equations
for linear free vibration of the rotating beam measured from the

Table 2

Comparison of results for different cases (n=100, R=1.5).

o (deg) Kk EMX(1073)  eP™ (1073)  vgy/Ly K (107Y) K Ks K, Ks (a) Kg K,

0 0 EA10 0 0 0 .351520 219996 614757  1.20161 1.57241 1.98111 2.95267
EA50 0 0 0 .351520 219989 614602  1.20047 157086  1.97619  2.93707
EA1I00 O 0 0 .351520 219989 614601 1.20047 1.57081 197618  2.93704

[23] 0 0 0 3515 21999 61460 1.20047 157080  1.97618 -

[31] 0 0 0 3516 .22034 616972  1.20902 157080 - -
06  EA10 6.93309 0 0 1.00061 337850 753355 1.35311 157588  2.13851 3.11190
EA50 7.15492 0 0 .999008 336839 751962 135058  1.57434  2.13195  3.09426
EA100  7.18210 0 0 .998959 336808  .751924 135054  1.57429  2.13188  3.09415
EB100  7.18210 0 0 .999710 337324 753756 1.35450  1.57429  2.13877  3.10471

[23] 7.20000 0 0 .9989 33722 75363 135435 157427 213860 -

LAS 7.20000 0 0 - - - - - - -
5 03  EA10 1.72775 5.09357 0511913 591219 254778 652135  1.24001 157551  2.02262  2.99338
EA50 1.78184 5.17548 0512390  .590437 254476 651668  1.23856  1.57386  2.01728 297726
EA100  1.78842 5.17847 0512404  .590413 254467 651657 123855  1.57381 201725 297721
EB100  1.78840 5.16732 0511903 590651 254646 652209 123966  1.57382  2.01911 2.97999

LAS 1.79486 10.1897 1470753 - - - - - - -
30 01 EA10 174250 5.74549 0788668  .383279 223645 617615 1.20301 157860  1.98709  2.95692
EA50 178734 5.76488 0788899 383144 223606 617430  1.20185 157696  1.98213  2.94126
EA100 179264 5.76552 0788906  .383140 223605 617428  1.20185 1.57691 1.98212  2.94123
EB100 179262 5.76388 0788731 .383173 223626 617490 120197  1.57691 1.98231 2.94152

LAS 179904 6.49519 0937500 - - - - - - -
90 01 EA10 0543132 12.7940 179785 361111 220583 610488  1.19029  1.60306  1.99241 295467
EA50 0504783 12.8203 .179801 .361062 220567 610327  1.18916  1.60109  1.98747 293903
EA100 .0499228 12.8211 .179801 .361060 220566 610327  1.18916  1.60104  1.98745 293899
EB100 0499202 12.8198 179783 361076 220576 610354  1.18921 1.60105  1.98753 293912

LAS .0500000 12.9904 .187500 - - - - - - -

Table 3
Comparison of results for different cases (#=1000, R=1.5).
o (deg.) k EMX(1073) &M (1073)  vyplly K (1072) K, (1071) K3 (10~1) Ky Ks Ks K,

0 0 EA10 0 0 0 .351601 .220349 617105 121008 200340 300117  .421052
EA50 0 0 0 .351601 220341 616949 120893 199838 298509  .416903
EA100 O 0 0 .351601 220341 616948 120893 199837 298506  .416896

[23] 0 0 0 .352 2203 6169 .12089 .19984 .29851 -

[31] 0 0 0 3516 22034 616972 120902 - - -
.06 EA10 6.93309 0 0 9.00392 2.50170 4.13382 591357 784564 992667  1.21721
EA50 7.15492 0 0 8.96171 2.47409 4.06028 580433 771135 975828  1.19320
EA100  7.18210 0 0 8.96090 2.47299 4.05718 580000  .770663  .975346  1.19271
EB100  7.18210 0 0 8.96152 2.47312 4.05756 580088  .770833  .975634  1.19316

[23] 7.20000 0 0 8.952 2.4708 4.0536 57955 77017 97486 -

LAS 7.20000 0 0 - - - - - - -
5 03 EA10 1.73113 3.88613 0835235  4.54694 1.27442 2.17642 323061 442957 577154  .726538
EA50 1.78397 6.01548 0838255  4.53331 1.26216 2.15013 319740 439096 572342  .719773
EA100  1.78938 6.21315 0838279  4.53304 1.26175 2.14927 319641 438996 572245  .719680
EB100  1.78936 6.20203 0838218  4.53320 1.26179 2.14942 319678 439068 572368  .719873

LAS 1.79486 101.897 14.70753 - - - - - - -
30 008  EA10 117176 8.73688 429697 1.29066 405573 836364 143457 221474 319570  .439088
EA50 114344 9.36265 429987 1.28846 404148 .836039 143625 221421 318236  .434627
EA100 113413 9.38899 429994 1.28839 404101 .836030 143637 221447 318271  .434665
EB100 113410 9.38784 429986 1.28840 404108 .836056 143643 221458 318289  .434691

LAS 115138 41.5692 6.00000 - - - - - - -
90 003  EA10 00632598 8.11019 747141 561366 232167 566047 113316 .190888  .289635  .409720
EA50 .00388231 8.15303 747254 .560584 232181 .566295 113203 190324 287893  .405356
EA100 .00351746 8.15402 747257 .560557 232180 .566302 113202 190320  .287884  .405339
EB100 .00351740 8.15396 747254 .560558 232181 .566306 113202 190322 287886  .405342

LAS .00450000 11.6913 1.68750 - - - - - - -




M.H. Tsai et al. / International Journal of Mechanical Sciences 53 (2011) 1050-1068

position of the steady-state deformation as follows:
MQ +CQ + (K+k*’K)Q =0

where M, C, K and K, are dimensionless mass matrix, gyroscopic
matrix, tangent stiffness matrix and centripetal stiffness matrix
of the rotating beam, respectively. M, C, K, and K, are assem-
bled from the dimensionless element mass matriX, gyroscopic
matrix, tangent stiffness matrix and centripetal stiffness matrix,
which are calculated using Eqgs. (60)-(72) first in the current
element coordinates and then transformed from element coordi-
nate system to global coordinate system before assemblage using
standard procedure.
We shall seek a solution of Eq. (77) in the form

Q = (Q+iQ)e*" (78)

where i=+/—1, K and 7t are dimensionless natural frequency of
rotating beam and dimensionless time defined in Eq. (72), and Qg

7
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Substituting Eq. (78) into Eq. (77), one may obtain a set of
homogeneous equations expressed by

HZ -0 79)
ko | K KoM kKC! 50

=HKJ) = kKC K+k2Ko—K*M 80
Z={QxQ} (81)

where H(K)k) denotes H is a function of K and k. Note that H is a
symmetric matrix.

Eq. (79) is a quadratic eigenvalue problem. For a nontrivial Z,
the determinant of matrix H in Eq. (79) must be equal to zero. The
values of K, which make the determinant vanish, are called
eigenvalues of matrix H. The bisection method is used here to
find the eigenvalues. Note that when k=0, Eq. (79) will degen-

and Q; are real part and imaginary part of the vibration mode.

Table 4

erate to a generalized eigenvalue problem.

Dimensionless frequencies for rotating beam with different inclination angle (y=70, R=1, k=5/70).

o (deg.) emax (1073) gnax Veip/LT K, K>
EA EC EA EA EA EC [20] EA EC [20]
0 7.61579 7.61579 0 0 105427 105427 105 410792 410792 418
10 7.53381 7.53893 .0220374 119890 105377 .104869 .105 410400 1410001 417
20 7.28963 7.31066 .0438841 .237606 105225 .103195 .103 1409219 1407642 414
30 6.88882 6.93792 .0653510 351025 104971 100399 .100 407246 403758 410
40 6.34057 6.43205 .0862526 458121 104612 .0964721 .096 404475 398421 405
50 5.65758 5.80840 106408 .557013 104146 .0913941 .091 400900 391733 398
60 4.85594 5.08596 125641 .646008 103568 .0851262 .085 396518 .383830 .390
70 3.95486 4.28663 143786 723643 102875 .0775919 .077 391331 374876 .381
80 2.97641 3.43472 160683 788722 102058 .0686418 .068 .385349 .365073 371
90 1.94513 2.55611 176180 .840342 101109 .0579597 .057 378595 354659 361
k=0, K;=.0502050, K>=.313742.
Table 5
Dimensionless frequencies for rotating beam with different inclination angle (y=100, R=1, k=.01).
o (deg.) emax (1073) & (1073) Veip/Lt Ky (1071) K> Ks Ky
EA EC EA EA EA EC EA EC EA EC EA EC
0 148998 148998 0 0 .375668 375668 223145 223145 .617913 617913 1.20392 1.20392
10 148624 148621 688751 .009524 .375607 .375588 223136 223137 .617890 617905 1.20387 1.20391
20 147501 147494 1.37346 .018996 .375426 375351 223109 223116 .617820 617883 1.20373 1.20389
30 145640 145625 2.05011 .028364 375124 374957 223064 223079 .617706 617846 1.20350 1.20385
40 135791 135734 3.99154 .055323 .373502 372865 .222830 .222887 617116 617649 1.20232 1.20364
50 120113 120001 5.71738 .079478 .370830 369512 222461 222582 .616235 617335 1.20062 1.20332
60 .099663 .099497 7.12453 .099453 367164 365097 221990 222183 .615201 616926 1.19873 1.20289
70 .075822 .075619 8.11670 113912 .362605 .359884 221459 221717 .614181 616450 1.19700 1.20240
80 .050208 .049995 8.60876 121597 357312 .354205 220916 221216 .613344 615938 1.19577 1.20187
Table 6
Dimensionless frequencies for rotating beam with different inclination angle (1=1000, R= 1, k=.003).
o (deg.) emax (10~7) &P (1072) Veip/Lr Ky (1072) K, (1071) K (10~ 1) Ky
EA EC EA EA EA EC EA EC EA EC EA EC
0 1.34094 1.34094 0 0 .529054 .529054 247469 247469 646623 646623 124064 124064
10 1.33742 1.33755 401966 .042755 528948 528552 247408 247410 646343 646557 124020 124057
20 1.32688 1.32740 .802883 .085366 528626 527049 247224 247232 645506 646361 123887 124036
30 1.30939 1.31058 1.20170 127689 .528088 .524546 246917 .246936 644121 646036 123670 124001
40 1.21666 1.22157 2.37507 251535 .525149 .511096 .245271 .245364 636859 .644310 122559 123815
50 1.06851 1.07997 3.49175 .367905 520114 488923 242565 242842 625541 641553 120920 123519
60 .874165 .895442 4.52322 473573 512761 458389 .238860 239513 611240 637939 118999 123132
70 645893 .680549 5.44045 .565891 .502734 419991 .234253 235572 .595231 .633700 117027 122679
80 398360 449942 6.21305 .642909 1489484 374358 228875 231264 578803 629113 115176 122190
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3. Numerical examples

To verify the accuracy of the present method and to investigate
the steady deformation and the natural frequencies of rotating
inclined beams with different inclination angle «, dimensionless
radius of the hub R, and slenderness ratios # at different dimen-
sionless angular velocities k, several dimensionless numerical

examples are studied here.

Table 7

Dimensionless frequencies for rotating beam with different slenderness ratio (R = 0).

M.H. Tsai et al. / International Journal of Mechanical Sciences 53 (2011) 1050-1068

For simplicity, only the uniform beam with rectangular cross
section is considered here. The maximum steady state axial strain
emax Of rotating beam is the sum of the maximum steady state
membrane strain ¢ and bending strain &%, which occur at the
root of the rotating beam. In practice, rotating structures are
designed to operate in the elastic range of the materials. Thus, it
is considered that emax <&y (say .01) in this study. At the same
dimensionless angular speed k, emax are different for rotating

n k emax (10~4) K1 K> K Ky Ks Ks K7
20 0 0 174787 1.05953 1.57086 (a) 2.82431 4.71413 (a) 5.19120 7.86206 (a)
.01 1499954 174823 1.05972 1.57096 (a) 2.82446 4.71417 (a) 5.19127 7.86208 (a)
.02 2.00007 174930 1.06027 1.57127 (a) 2.82489 4.71427 (a) 5.19148 7.86213 (a)
.04 8.00427 175354 1.06248 1.57251 (a) 2.82663 4.71467 (a) 5.19234 7.86236 (a)
.06 18.0246 176054 1.06615 1.57458 (a) 2.82952 4.71533 (a) 5.19377 7.86273 (a)
50 0 0 .0702550 437859 1.21530 1.57086 (a) 2.35176 3.82646 471413 (a)
.01 1499954 .0703844 438455 1.21592 1.57096 (a) 2.35238 3.82704 4.71417 (a)
.02 2.00007 .0707689 1440240 1.21780 1.57125 (a) 2.35425 3.82879 4.71426 (a)
.04 8.00427 .0722524 447313 1.22528 1.57240 (a) 2.36171 3.83581 4.71466 (a)
.06 18.0246 .0745530 458872 1.23765 1.57433 (a) 2.37409 3.84748 4.71531 (a)
100 0 0 .0351520 219989 614602 1.20047 1.57086 (a) 1.97619 2.93707
.01 1499954 .0354205 221216 615938 1.20187 1.57096 (a) 1.97760 2.93847
.02 2.00007 .0361954 224860 619929 1.20605 1.57124 (a) 1.98183 2.94267
.04 8.00427 .0389181 238890 635620 1.22261 1.57239 (a) 1.99865 2.95942
.06 18.0246 .0425305 260607 660876 1.24968 1.57431 (a) 2.02636 2.98715
500 0 0 .00703197 .0440661 123375 241735 399539 .596720 .833235
.01 1499954 .00814757 .0498972 .130004 248856 406927 604274 .840899
.02 2.00007 .0100978 .0642386 147927 268932 428225 626321 .863435
.04 8.00427 .0135687 102725 202962 .335905 .503267 706764 947569
.06 18.0246 .0164590 145081 268690 421555 .605093 .821022 1.07120
1000 0 0 .00351601 .0220341 .0616949 120893 199838 298509 1416903
.01 1499954 .00504927 .0321223 .0739765 134505 214203 313344 432052
.02 2.00007 .00677821 .0513635 101497 .168006 251762 353634 474228
.04 8.00427 .00942143 .0942683 169116 257543 .360229 477630 .610650
.06 18.0246 .0116029 138373 240912 .355544 483657 .624839 779391
Table 8
Dimensionless frequencies for rotating beam with different inclination angle (=20, R=1).
o (deg.) k gmax (10~4) & (1072) Veip/Lr (1073) Ky K Ks (a) Ky Ks (a) Ks K7 (a)
0 0 0 0 0 174787 1.05953 1.57086 2.82431 4.71413 5.19120 7.86206
.01 1.48998 0 1] 175258 1.06004 1.57096 2.82469 471417 5.19138 7.86208
.02 5.96058 0 0 176661 1.06156 1.57127 2.82581 4.71427 5.19194 7.86213
.04 23.8527 0 0 182150 1.06762 1.57252 2.83030 4.71467 5.19418 7.86236
.06 53.7076 0 0 .190897 1.07766 1.57460 2.83779 4.71533 5.19792 7.86273
5 .005 371543 .0377019 .108796 174905 1.05966 1.57089 2.82441 471414 5.19124 7.86206
.01 1.48622 150388 433403 175256 1.06004 1.57096 2.82469 4.71417 5.19138 7.86208
.02 5.94555 .594973 1.70572 176655 1.06156 1.57128 2.82581 471427 5.19194 7.86213
.03 13.3800 1.31504 3.73772 178959 1.06408 1.57180 2.82768 4.71443 5.19287 7.86222
15 .004 232994 .0716798 206879 174860 1.05961 1.57088 2.82437 4.71414 5.19122 7.86206
.006 524241 161163 464982 174952 1.05971 1.57090 2.82445 4.71415 5.19126 7.86207
.008 1931995 286224 .825404 175079 1.05985 1.57093 2.82455 4.71415 5.19131 7.86207
.01 1.45627 446646 1.28723 175243 1.06003 1.57096 2.82468 471417 5.19138 7.86208
30 .004 217170 138483 399691 174853 1.05961 1.57088 2.82437 4.71414 5.19122 7.86206
.006 488640 311386 .898436 174936 1.05970 1.57090 2.82444 4.71415 5.19126 7.86207
.008 868711 .553076 1.59506 175052 1.05983 1.57093 2.82453 471415 5.19130 7.86207
.01 1.35740 .863181 2.48796 175200 1.06000 1.57097 2.82466 4.71416 5.19137 7.86207
60 .004 159194 239914 692486 174828 1.05959 1.57088 2.82436 4.71414 5.19122 7.86206
.006 .358200 .539609 1.55715 174879 1.05966 1.57090 2.82441 4.71414 5.19124 7.86206
.008 636832 .958813 2.76593 174950 1.05975 1.57093 2.82448 4.71415 5.19128 7.86207
.01 995114 1.49716 4.31705 175043 1.05988 1.57097 2.82458 4.71416 5.19133 7.86207
90 .004 .0799949 277114 799932 174793 1.05956 1.57088 2.82434 4.71414 5.19121 7.86206
.006 .180004 .623516 1.79965 174801 1.05960 1.57090 2.82437 471414 5.19122 7.86206
.008 .320045 1.10850 3.19889 174811 1.05965 1.57093 2.82441 471415 5.19124 7.86206
.01 .500146 1.73208 4.99725 174826 1.05971 1.57097 2.82446 4.71416 5.19127 7.86206
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beams with different #, o« and R. Thus, the allowable k are
different for rotating beams with different #, & and R in this study.

To investigate the effect of the consideration of the difference
between v’ and 6 (see Eq. (17)), and the effect of the lateral deflection
on the steady state deformation and the natural frequency of rotating
Euler beams, here cases with and without considering the difference
between v’ and 6, and case without considering the lateral deflec-
tion are studied. The corresponding elements are referred to as EA

element, EB element and EC element, respectively. For EA element,
all terms in Eqs. (56)-(71) are considered; for EB element, the
approximations 1+é.~1 and 1—¢.~ 1 are used in Eqgs. (56)-(71),
the term —(Ele. /L) [ V2, dxGq in Eq. (56), the term —(EI/L) [ v%, dx in
Eq. (60), and Eq. (61) are not considered; for EC element, all terms
in Eqs. (56)-(71) are considered except the underlined terms in
Eq. (59), which are the lateral inertia nodal force corresponding
to the steady state deformation induced by the constant rotation.

Table 9

Dimensionless frequencies for rotating beam with different inclination angle (n=50, R=1).

o (deg.) k gmax (10~4) e (1073) Veip/Lr (1073) K; (1071) K> Ks Ky (a) Ks Ks K(a)
0 0 0 0 0 .702550 437859 1.21530 1.57086 235176 3.82646 471413
.01 1.48998 0 0 714858 439405 1.21686 1.57096 2.35330 3.82790 471417
.02 5.96058 0 0 750486 444012 1.22152 1.57125 2.35791 3.83224 4.71426
.04 23.8527 0 0 .877636 461975 1.23999 1.57241 237627 3.84954 4.71466
.06 53.7076 0 0 1.05339 490429 1.27012 1.57435 2.40655 3.87823 4.71531
5 .005 371544 .0937658 674872 .705638 438245 1.21569 1.57089 2.35214 3.82682 471414
.01 1.48623 368372 2.62960 714819 439402 1.21685 1.57096 2.35330 3.82790 4.71417
.02 5.94560 1.37849 9.53161 750365 443994 1.22144 1.57134 2.35792 3.83222 471428
.03 13.3800 2.81927 18.5488 .805930 451541 1.22898 1.57208 2.36562 3.83940 471448
15 .004 232995 178621 1.28693 704475 438102 1.21554 1.57088 2.35200 3.82668 471414
.006 .524249 399999 2.87568 706875 438404 1.21584 1.57090 2.35231 3.82696 4.71415
.008 .932020 706460 5.06355 710224 438828 1.21626 1.57095 2.35273 3.82736 471416
.01 1.45632 1.09469 7.81586 714511 439370 1.21678 1.57102 2.35328 3.82787 471418
30 .004 217177 345204 2.48741 .704300 438086 1.21552 1.57088 2.35199 3.82667 471414
.006 488671 773414 5.56161 706487 438369 1.21579 1.57093 2.35228 3.82693 4.71415
.008 .868804 1.36686 9.80109 709550 438764 1.21615 1.57103 2.35269 3.82730 471417
.01 1.35761 2.11970 15.1438 713488 439268 1.21657 1.57120 2.35322 3.82777 4.71420
60 .004 159213 .598775 4.31633 703655 438030 1.21546 1.57090 2.35194 3.82662 471414
.006 .358293 1.34391 9.67280 705054 438241 1.21562 1.57100 2.35217 3.82681 4.71416
.008 637111 2.38084 17.0989 .707047 438532 1.21579 1.57124 2.35251 3.82708 471420
.01 .995750 3.70333 26.5209 709666 438899 1.21588 1.57171 2.35298 3.82741 471428
90 .004 .0800204 692777 4.99678 702768 437953 1.21538 1.57090 2.35186 3.82655 4.71414
.006 180129 1.55871 11.2331 703070 438068 1.21543 1.57103 2.35201 3.82666 471417
.008 .320420 2.77081 19.9439 703545 438223 1.21541 1.57135 2.35223 3.82680 471422
.01 .501000 432854 31.1046 704248 438412 1.21523 1.57200 2.35257 3.82696 471432
Table 10
Dimensionless frequencies for rotating beam with different inclination angle (=100, R=1).
o (deg.) k gmax (10~4) &rex (1072) Veip/Lr (1073) Ky (1071) K> K Ky Ks(a) Ks K
0 0 0 0 0 351520 219989 614602 1.20047 1.57086 1.97619 2.93707
.01 1.48998 0 0 375668 223145 617913 1.20392 1.57096 1.97967 2.94053
.02 5.96058 0 0 1439754 232350 627728 1.21418 1.57124 1.99008 2.95089
.04 23.8527 0 0 630513 .265905 665347 1.25429 1.57240 2.03110 2.99195
.06 53.7076 0 0 .852550 .313660 723130 1.31800 1.57433 2.09747 3.05905
5 .005 371547 184151 2.62905 357700 220780 615428 1.20133 1.57089 1.97706 2.93793
.01 1.48624 .688752 9.52424 375607 223136 617890 1.20387 1.57105 1.97969 2.94052
.02 5.94541 2.24028 27.6708 1439644 232313 627575 1.21380 1.57195 1.99029 2.95088
.03 13.3786 4.02653 42.8179 528363 246845 643385 1.23009 1.57328 2.00786 2.96808
15 .004 .233001 .353188 5.06288 355386 .220486 615117 1.20100 1.57090 1.97674 2.93761
.006 .524272 780114 11.0871 360170 221104 615750 1.20164 1.57102 1.97745 2.93829
.008 932074 1.35273 18.9983 366779 221965 616617 1.20248 1.57128 1.97848 2.93924
.01 1.45640 2.05010 28.3642 375124 223064 617706 1.20350 1.57175 1.97983 2.94047
30 .004 217197 .683351 9.79987 .355048 220453 615073 1.20094 1.57097 1.97673 2.93758
.006 488757 1.51201 21.5075 359457 221027 615619 1.20142 1.57136 1.97747 2.93822
.008 .869005 2.62751 36.9515 365619 221821 616314 1.20192 1.57227 1.97863 2.93913
.01 1.35791 3.99154 55.3226 373502 222830 617116 1.20232 1.57395 1.98028 2.94031
60 .004 159275 1.19032 17.0972 353793 220335 614922 1.20074 1.57117 1.97666 2.93746
.006 .358552 2.65115 37.8356 356773 220751 615186 1.20073 1.57232 1.97748 2.93796
.008 637717 4.64576 65.6798 361176 221308 615331 1.20019 1.57517 1.97899 2.93869
.01 .996627 7.12453 99.4533 367164 221990 615201 1.19873 1.58053 1.98153 2.93967
90 .004 .0801032 1.38534 19.9428 352036 220177 614745 1.20053 1.57127 1.97653 2.93730
.006 180479 3.11508 44.6722 352910 .220389 614728 1.20013 1.57288 1.97726 2.93760
.008 321229 5.52865 78.8019 354544 .220646 614359 1.19875 1.57704 1.97887 2.93806
.01 .502076 8.60877 121.597 357312 220916 613344 1.19577 1.58523 1.98193 2.93871
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In this section, v.p/Lr denotes the dimensionless lateral tip deflection
of the steady state deformation; K; denotes the ith dimensionless
natural frequency of the rotating beam, and denotes that the corres-
ponding vibration mode is lateral vibration at k=0; in all tables, the
entries with‘(a) denotes that the corresponding vibration mode is
axial vibration at k=0.

Table 11

The example first considered is the rotating inclined beams
with dimensionless radius of the hub R=1.5, inclination angle
oa=0° 5° 30° 90° and slenderness ratios #=20, 100, 1000. The
present results are shown in Tables 1-3 together with some
results available in the literature. In Tables 1-3, EAn and EBn,
n=10, 50 and 100, denote that n equal EA and EB elements,

Dimensionless frequencies for rotating beam with different inclination angle (=500, R=1).

o (deg.) k enax (107°) e (1073) vt,-p/LT(lo’z) Ky (1072) Ky (1071) K3 K4 Ks Ks K7
0 0 0 0 0 703197 440661 123375 241735 399539 .596720 833235
.01 14.8998 0 0 1.48226 578458 139137 258881 417488 615179 .852038
.02 59.6058 0 0 2.65111 .864577 177158 .303589 466489 666975 905720
.04 238.527 0 0 5.05357 1.53227 276760 432184 618642 .837278 1.08978
.06 537.076 0 0 7.46277 2.22828 .385008 578158 .800313 1.05084 1.33083
5 .005 3.71523 623972 3.58503 964371 478904 127486 .246092 1404032 601297 .837856
.01 14.8592 1.53057 5.97156 1.48209 578323 .139055 258706 417215 .614805 851525
.02 59.4466 3.35362 7.34169 2.65094 .864514 177104 303407 466095 666282 904574
.03 133.806 5.16695 7.79682 3.84949 1.19171 224942 .363905 .536149 743176 986233
15 .004 2.32945 1.33657 8.25672 878114 464921 125811 244238 402050 599215 .835658
.006 5.23761 2.40353 12.7695 1.05614 493800 .128805 247270 405036 .602116 .838383
.008 9.30567 3.49014 15.8100 1.26123 .531886 .133036 251633 409363 606322 842347
.01 14.5349 4.57922 17.8071 1.48067 577239 138395 257330 415102 611946 .847700
30 .002 543143 798138 5.53097 747272 446394 .123905 242269 1400063 597231 833714
.004 2.16965 2.62907 16.2583 .872059 462982 125115 .243280 400855 597815 .833958
.006 4.86672 4.75037 25.1546 1.05026 490506 127347 .245018 402093 598573 .834055
.008 8.62862 6.91073 31.0627 1.25602 528088 .131069 248188 404621 .600444 835114
60 .001 .099571 370269 2.65157 710412 441743 123473 241833 399633 596811 .833319
.002 .398630 1.42467 9.94347 734584 444712 123552 241842 399566 .596676 .833067
.003 .895261 3.00402 20.0010 779944 449239 123279 241278 398722 595591 .831610
.004 1.58240 490168 30.4970 846717 455709 122699 240117 .397048 593498 .828946
90 .001 .050098 432814 3.11011 .704972 441242 123414 241769 399566 .596740 .833244
.002 .200817 1.72159 12.1583 714860 442553 .123200 241437 399113 596183 832514
.0025 313142 2.66832 18.5342 726241 443213 122774 .240833 398338 595264 831370
.003 448275 3.79060 25.7176 743838 443815 .122046 239816 397053 593764 .829553
Table 12

Dimensionless frequencies for rotating beam with different inclination angle (n=1000, R=1).

o (deg) Kk eMX (107%) &M (1073)  wlLr(1072) Ky (1072 Ky(107Y)  Ks(107Y) K, Ks Ks K
0 0 0 0 0 351601 220341 616949  .120893  .199838  .298509 416903
01 14.8998 0 0 1.32579 432330 885977  .151847 233362  .333715 453260
.02 59.6058 0 0 2.52836 766152 1.38402 216170 309504  .418994 545501
04 238.527 0 0 4.94470 1.46591 2.47884 364608 495920  .640731 799060
.06 537.076 0 0 7.35850 2.17470 3.60269 518160 691561  .878499  1.07803
5 .005 3.71469 765180 5.97101 741092 289187 695390  .129389 208697  .307592 426132
01 14.8600 1.67595 7.33957 1.32571 432299 885713 .151759 233177  .333411 452825
02 59.4715 3.47188 8.02091 2.52828 766140  1.38394 216134 309404 418777 545103
.03 133.890 5.19998 8.25422 3.73627 1.11397 1.92494 289119 400294 525712 665915
15 .004 2.32637 1.74492 15.8089 630646 265964 665203  .125858 204796  .303429 421755
.006 5.23165 2.83438 19.1617 854092 314085 723732 132190 211269  .309887 428128
.008 9.30220 3.92558 20.8459 1.08760 370658 798239 140759 220369  .319173 437418
01 14.5421 5.01583 21.8450 1.32503 432039 883572 .151045 231702  .331041 449500
30 .002 542410  1.31451 16.2579 436038 231505 625672  .121676 200527  .299137 417464
.004 2.15709 3.45508 31.0607 628041 264065 655495 124158 202506  .300707 418660
.006 4.84207 5.61912 37.4732 851749 312451 712882 .129769 207592 305203 422605
.008 8.61283 7.78577 40.6.544 1.08529 369462 788909  .138171 215887  .312999 429813
60 .001 .099657 712333 9.94341 367296 222367 617842 120950  .199862  .298514 416886
.002 395596  2.45079 30.4964 423367 227869 613626 .120111  .198677  .297113 415275
.003 874165  4.52322 473573 512761 238860 611240 118999  .196928  .294949 412763
.004 1.52872 6.63384 57.8448 617231 256517 620640  .118883  .196085  .293610 411048
90 .001 .050204 860795 12.1582 357433 221288 616084  .120749  .199640  .298279 416639
.002 194123 321654 40.7207 400094 222722 599363 .118425  .196788  .295121 413183
.0025 290777  4.68882 54.0274 440751 224722 587409 116668  .194632  .292733 1410601
.003 398359  6.21305 64.2909 489484 228875 578803  .115176  .192739  .290593 408272
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respectively, are used for discretization, and LAS denotes the between the present results and the analytical solutions given in
linear analytical solution of the steady state deformation given in Ref. [31], in which the rotary inertia is not considered, increases
the Appendix A of this study. For k=0, the results of EA and EB are with decrease of the slenderness ratio. It seems that the effect of
identical; thus only the results of EA are given. It can be seen that the rotary inertia on the higher natural frequencies of the Euler
for higher natural frequencies of lateral vibration, the discrepancy beam is not negligible when the slenderness ratio is small. It can
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Fig. 4. The steady state deformation of rotating beam, (a) deformed configuration, (b) axial displacement and (c) lateral displacement (y=100, R=1, x=5°).
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Fig. 5. The steady state deformation of rotating beam, (a) deformed configuration, (b) axial displacement and (c) lateral displacement (y=100, R=1, x=30°).
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be seen from Tables 1-3 that the difference between the results of
EA and EB is not significant, but still distinguishable. The differ-
ence between results of EA50 and EA100 is negligible for all cases
studied. Thus, in the rest of the section, all numerical results are
obtained using 50 equal EA elements. For =0, and k0, the

M.H. Tsai et al. / International Journal of Mechanical Sciences 53 (2011) 1050-1068

steady state deformation is axial deformation only as expected.
The analytical solution of the maximum steady state membrane
strain ¢M#* given in Ref. [14] and the linear solution given in the
Appendix (Eq. (A7)) are identical. It can be seen that at the same
dimensionless angular speed k, &M™* is independent of the

(op

0.6
XLy

Fig. 6. The steady state deformation of rotating beam, (a) deformed configuration, (b) axial displacement and (c) lateral displacement (y=1000, R=1, x=30°).
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Fig. 7. The steady state deformation of rotating beam, (a) deformed configuration, (b) axial displacement and (c) lateral displacement (7=1000, R= 1, x=90°).
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slenderness ratio #. Thus, for «=0, the allowable k is limited by
eM*and is the same for the rotating beam with different
slenderness ratio 1. Very good agreement is observed between
the natural frequencies obtained by the present study and those
given in Ref. [23], which are obtained using the power series
method. The difference between v’ and 0 is not considered in Ref.
[23]. It can be seen from Tables 1-3 that with increase of the
slenderness ratio # and the inclination angle o, the values of g}'#*
and vyp/Lr increase significantly, and the value of the allowable
dimensionless angular speed k decrease significantly. The results
of EA and LAS have the same tendency. However, the values of the
results of EA are smaller than those of LAS.

To investigate the effect of the lateral deflection on the steady
state deformation and the natural frequency of rotating inclined
beams, the cases (1) #=70, R=1, k=5/70, (2) =100, R=1,
k=.01 and (3) #=1000, R=1, k=.003 are studied with and

U V
—%— —t— (k=0)
(k=0.03)

(k =0.06)

—0— —o—
A A

1.0 +
Mode1

05 r
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XYL,

Mode 3

0.5

0.0
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0.0 05 1.0
XYL,
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without considering the lateral deflection. The present results
are shown in Tables 4-6. The results transcribed from the Figure
given in Ref. [20], in which the steady state lateral deflection and
the rotary inertia are not considered, are also shown in Table 4 for
comparison. It can be seen from Table 4 that except «=0, the
values of ¢ are much larger than the yield strain for most
engineering materials at k= 5/70. Thus the results in Table 4 are
only displayed for the purpose of comparisons between the
results of EC and those given in Ref. [20]. There is a very good
agreement between the natural frequencies obtained using the EC
element and those given in Ref. [20]. Although the comparisons
are beyond the yield point of most engineering materials, results
of EA and EC show that the differences between the cases with
and without considering the lateral deflection become apparent
for the rotating inclined beam with large inclination angle o at
high dimensionless angular speed. It can be seen from Tables 4-6

1.0 1
Mode 2

0.5 :

Modal deflection U,V

XYL,

1.0 1
Mode 4

0.5 1

0.0 1

-0.5 ¢ 1

Modal deflection U,V

-1.0 ]

XYL,

1.0 1
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0.0 :
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10 L ‘ i
0.0 0.5 1.0

XYL,

Fig. 8. The first six vibration mode shapes of a rotating beam (=100, R=1, 2=0°).
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that both the natural frequencies of EA and EC decrease with increase
of o. At allowable dimensionless angular speed, the difference
between the natural frequencies of EA and EC is not significant for
small « or #, but the first natural frequency of EC is much smaller
than that of EA for large o« and #=1000. These may be partially
attributed to that the centrifugal stiffening effect of the rotating
inclined beam decreases with increase of the inclination angle «; but
this decrease is alleviated by the steady state lateral deflections,
which increase significantly with increase of inclination angle and
slenderness ratio # of the rotating beam.

To investigate the effect of angular speed on the steady state
deformation and natural frequency of rotating beams with different
slenderness ratios and inclination angles, the following cases are
considered: slenderness ratio =20, 50, 100, 500, 1000, inclination
angle o=0°, 5°, 15°, 30°, 60°, 90° and dimensionless radius of the
rotating hub R = 0, 1. Tables 7-12 tabulate the maximum steady state
membrane strain and bending strain, dimensionless lateral tip
deflection, and first seven dimensionless natural frequencies for
different #. It can be seen from Egs. (23)-(26) and (59), or Eq. (A5)
that the lateral component of the centrifugal force in the rotating
inclined beam with R=0 is zero. Thus, for cases with R=0, the
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steady state lateral deflection is zero and the natural frequencies are
all the same for the rotating beam with different inclination angle o. It
can be seen from Tables 8-12 that the values of vp/Lr, which is very
small for #=20 and 50, increase significantly with increase of the
dimensionless angular velocities k and slenderness ratio #. Comparing
the results of EA with the results of linear analytical solution given in
Eq. (A9), which is proportional to #2k?, it is found that the difference
between the results of EA and LAS is insignificant for =20 and 50,
but is remarked for #=500 and 1000. These may be explained as
follows. The centrifugal stiffening effect is significant for slender
beam, and the lateral component of the centrifugal force in the
rotating inclined beam decreases with the increase of the steady state
lateral deflection. For a rotating inclined beam with different inclina-
tion angle ¢, it seems that there is a different threshold of #k below
which the centrifugal stiffening effect is negligible, and there is a
different threshold of steady state lateral deflection below which the
decrease of the lateral component of the centrifugal force is negligible.
Due to the stiffening effect of the centrifugal force, as expected, it can
be seen from Tables 10-12 that the lower natural frequencies of
lateral vibration increase remarked with increase of the dimension-
less angular speed for slender beam with o <30°. It may also be
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Fig. 9. The first six vibration mode shapes of a rotating beam (7=100, R=1, a=30°).
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Fig. 10. The first six vibration mode shapes of a rotating beam (7=1000, R=1, x=0°).

noted that the higher natural frequencies of lateral vibration slightly
increase first, then slightly decrease with increase of the dimension-
less angular speed higher for slender beam with o > 60°.

Figs. 4-7 show the deformed configurations, axial displace-
ments and lateral displacements for the steady state deformation
of rotating beams with #=100, «=5°, 30°, and #=1000, o=30°,
90° at different dimensionless angular speeds. In Figs. 4-7, the X;
and X, coordinates of the deformed configurations of rotating
beam are present at the same scale, and X¢ denotes the global
Lagrangian coordinate of the beam axis.

Figs. 8-11 show the first six vibration modes for rotating
beams with slenderness ratio #=100, 1000, and inclination angle
a=0°, 30° at different dimensionless angular speeds. In Figs. 8-11
U and V denote the X; and X, components of the vibration mode,
respectively. The definitions of U and V are given by

U= (U3+U?»)Y%sign(sing,), sing, =U;/(Uz +UH)'/?,

—T<P,<T

V= (Vg +V})'Psign(sing,),  sing, =Vi/(Vg+V})'2,

—-n<¢,<m

. 1 for x>0
sign(x) = -1 for x<O

where Uk and Vg, and U; and V; are the X; and X5 components of Qg
and Q,, real part and imaginary part of the vibration mode given
in Eq. (78), respectively. ¢, and ¢, are phase angles. For non-
rotating beam, ¢, =¢,=0; for rotating beam (k # 0) with inclina-
tion angle «=0, ¢,=0, and ¢, = /2. Thus, the phase angles for
cases with «=0 or k=0 are not shown in Figs. 8-11. It can be seen
from Figs. 8-11, and Tables 10 and 12 that all vibration modes
shown in Figs. 8-11 are lateral vibration at k=0, except the fifth
vibration mode of #=100. It can be seen from Figs. 8 and 10 that
when a=0, the difference between the vibration modes of rotating
beam at different k is not significant for #=100, but is very
significant for #=1000. Due to the steady state lateral deformation,
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Fig. 11. The first six vibration mode shapes of a rotating beam (7=1000, R=1, =30°).

it can be seen from Figs. 9 and 11 that when «=30°, k=0, all
vibration modes consist of the X; and X, components.

4. Conclusions

In this paper, the steady state deformation and the natural
frequency of infinitesimal free vibration measured from the position
of the corresponding steady state deformation are investigated for
rotating the inclined Euler beams with different inclination angles,
slenderness ratios and angular speeds of the hub. A corotational
finite element formulation combined with the rotating frame
method is proposed to derive the equations of motion for a rotating
inclined Euler beam with zero setting angle at constant angular
velocity. The element deformation and inertia nodal forces are
systematically derived by the virtual work principle, the d’Alembert
principle, and consistent linearization of the fully geometrically
nonlinear beam theory in the current element coordinates. The
equations of motion of the system are defined in terms of an inertia
global coordinate system, which is coincident with a rotating global
coordinate system rigidly tied to the rotating hub, while the total
strains in the beam element are measured in an inertia element

coordinate system, which is coincident with a rotating element
coordinate system constructed at the current configuration of the
beam element. The rotating element coordinates rotate about the
hub axis at the angular speed of the hub.

The results of dimensionless numerical examples show that
the geometrical nonlinearities that arise due to steady state
lateral and axial deformations should be considered for the
natural frequencies of the inclined rotating beams. The maximum
steady state bending strain and lateral deformation increase
significantly, but the allowable dimensionless angular speed
decreases significantly with increase of inclination angle and
slenderness ratio of the rotating beam. It seems that the allowable
dimensionless angular speed of the inclined rotating beam is
limited by the steady state bending strain, when the inclination
angle o > 5°. Due to the effect of the centrifugal stiffening, the
lower dimensionless natural frequencies of lateral vibration
increase remarked with increase of the dimensionless angular
speed and dimensionless hub radius for slender beam. The cen-
trifugal stiffening effect of the rotating inclined beam decreases
with increase of the inclination angle. However, this decrease is
alleviated by the steady state lateral deflections, which increase
significantly with increase of inclination angle and slenderness
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Fig. A1. Rotating inclined beam with inclination angle o.

ratio of the rotating beam. These may explain why the difference
between the first natural frequency of the very slender inclined
rotating beam with different inclination angles is not very
remarked, but still not negligible.

Finally, it may be emphasized that, although the proposed
methods are only applied to the uniform rotating cantilever
beams here, the present method can be easily extended to non-
uniform rotating beams with discontinuities, as well as with other
end conditions.

Appendix A. Linear steady state deformation of rotating
inclined beam

If the tension stiffening effect on bending stiffness and the
effect of lateral deflection on the centrifugal force of the rotating
inclined beam are not considered, the equivalent distributed load
along the beam axis for the rotating inclined beam with rectan-
gular cross section as shown in Fig. A1 may be expressed by

(@1, 42,421 = [ R x (@ x Ean)pdA (A1)
Q=1{0,0,Q} (A2)
rap = {Rcoso+x,—Rsino+y,z} (A3)

where q1=q1(x), g2=¢g2(x) and g3=qs(x) are the equivalent dis-
tributed loads in the X;, X, and X5 directions, respectively. p A,
and Q are density, cross section area and angular speed of the
rotating beam, respectively. « is the inclination angle, and R is the
radius of the hub. x, y and z are the X;, X, and X3 coordinates of
point Q, an arbitrary point in the beam.

Substituting Egs. (A1) and (A2) into Eq. (A3), one may obtain

2
1= k EA (Rcosa+x) (A4)
Ly
2
qr=— kLgARsinoc (A5)
q3=0 (AG)

where E is Young’s modulus, Ly is the length of the beam and
kzszzL%/E is the dimensionless angular speed defined in
Eq. (72).

The maximum linear steady state membrane strain induced by
g1 occurs at the root of the beam and may be expressed as

Lt
,max_JO q1dx_ 2(R l
aor = =k (Rcosoc+2 (A7)
where R=R/Lr is the dimensionless radius of the hub defined in
Eq. (72).

For a beam with rectangular cross section of height h and
width b, the maximum linear steady state bending strain induced
by g occurs at the top surface of the root of the beam and may be
expressed as
max _ —@LFh _ V3yk*Rsina
GUF T 27 2 (A8)
where [ is the moment of inertia of the cross section, 1 =
is the slenderness ratio defined in Eq. (72).

The dimensionless linear steady state tip lateral deflection
induced by g, may be expressed by

AL2/1

Vio _ —ayl} _ n*K*Rsino o)
Lt ~— SEILy — 8
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