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The steady state deformation and infinitesimal free vibration around the steady state deformation of a

rotating inclined Euler beam at constant angular velocity are investigated by the corotational finite

element method combined with floating frame method. The element nodal forces are derived using the

consistent second order linearization of the nonlinear beam theory, the d’Alembert principle and the

virtual work principle in a current inertia element coordinates, which is coincident with a rotating

element coordinate system constructed at the current configuration of the beam element. The rotating

element coordinates rotate about the hub axis at the angular speed of the hub. The equations of motion

of the system are defined in terms of an inertia global coordinate system, which is coincident with a

rotating global coordinate system rigidly tied to the rotating hub. Numerical examples are studied to

demonstrate the accuracy and efficiency of the proposed method and to investigate the steady state

deformation and natural frequency of the rotating inclined beam.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating beams are often used as a simple model for propel-
lers, turbine blades, and satellite booms. Rotating beam differs
from a non-rotating beam in having additional centrifugal force
and the Coriolis effects on its dynamics. The free vibration
frequencies of rotating beams have been extensively studied
[1–24]. However, the vibration analysis of rotating beam with
inclination angle, which is considered in the recent computer
cooling fan design on the natural frequencies of rotating beams
[20], is rather rare in the literature [9,18,20,21]. In Refs. [20,21],
the effect of the steady state axial deformation and the inclination
angle on the natural frequencies of the rotating beam was
investigated. However, the lateral steady state deformation and
its effects on the natural frequencies of the rotating beam were
not considered in Refs. [20,21]. It is well known that the spinning
elastic bodies sustains a steady state deformation (time-indepen-
dent deformation) induced by constant rotation [25]. For rotating
beams with an inclination angle as shown in Fig. 1, the steady
state deformations include axial deformation and lateral defor-
mation. The linear solution of the steady state deformation of
rotating inclined beam induced by constant rotation can be easily
obtained using mechanics of materials and is given in Appendix A.
ll rights reserved.

Hsiao).
However, the centrifugal stiffening effect on the steady lateral
deformation is significant for slender rotating inclined beam, and
the centrifugal force is configuration dependent load; thus the
linear solution of the steady state deformation of rotating inclined
beam may be not accurate enough. The lagwise bending and axial
vibration of rotating inclined beams are coupled due to the
Coriolis effects [14,23] and the lateral steady state deformation.
The accuracy of the frequencies obtained from linearizing about
the steady state deformation is dependent on the accuracy of the
steady state deformation and the accuracy of the linearized
perturbation [6,11]. Thus, the geometrical nonlinearities that
arise due to steady state deformation should be considered.
However, to the authors’ knowledge, the lateral steady state
deformation and its effects on the lagwise bending and axial
vibration of rotating inclined beams are not reported in the
literature. The objective of this paper is to investigate the steady
state deformation and its effects on the lagwise bending and axial
vibration of rotating inclined beams with zero setting angle at
constant angular velocity. Here, the large displacement and large
rotation, but small strains are considered for the steady state
deformation. The equations of motion for a rotating inclined Euler
beam at constant angular velocity are derived using a corotational
finite element formulation combined with the rotating frame
method. The nodal coordinates, displacements and rotations,
absolute velocities, absolute accelerations and the equations of
motion of the system are defined in terms of an inertia global
coordinate system, which is coincident with a rotating global
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Fig. 1. A rotating inclined beam, (a) top view and (b) side view.
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Fig. 2. Coordinate systems.
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coordinate system rigidly tied to the rotating hub, while the total
deformations in the beam element are measured in an inertia
element coordinate system, which is coincident with a rotating
element coordinate system constructed at the current configura-
tion of the beam element. The rotating element coordinates rotate
about the hub axis at the angular speed of the hub. The inertia
nodal forces and deformation nodal forces of the beam element
are systematically derived by the virtual work principle, the
d’Alembert principle and consistent linearization of the fully
geometrically nonlinear beam theory [26–28] in the element
coordinates. The element equations are constructed first in the
inertia element coordinate system and then transformed to the
inertia global coordinate system using standard procedure.
The dominant factors in the geometrical nonlinearities of beam
structures are attributable to finite rotations, the strains remain-
ing small. For a beam structure discretized by finite elements, this
implies that the motion of the individual elements to a large
extent will consist of rigid-body motion. If the rigid-body motion
part is eliminated from the total displacements and the element
size is properly chosen, the deformation part of the motion
is always small relative to the local element axes; thus, in
conjunction with the corotational formulation, the higher-order
terms of nodal parameters in the element deformation
nodal forces and inertia nodal forces may be neglected by the
consistent linearization. Due to the consideration of the exact
kinematics of the Euler beam, some coupling terms of axial and
flexural deformations are retained in the element internal nodal
forces.

The infinitesimal free vibrations of rotating beam are measured
from the position of the corresponding steady state deformation.
The governing equations for linear vibration of rotating beam are
obtained by the first order Taylor series expansion of the equation of
motion at the position of steady state deformation.
2. Formulation

2.1. Description of problem

Consider an inclined uniform Euler beam of length LT rigidly
mounted with an inclination angle a on the periphery of rigid hub
with radius R rotating about its axis fixed in space at a constant
angular speed O as shown in Fig. 1. The axis of the rotating hub is
perpendicular to one of the principal directions of the cross
section of the beam. The deformation displacements of the beam
are defined in an inertia rectangular Cartesian coordinates, which
is coincident with a rotating rectangular Cartesian coordinate
system rigidly tied to the hub.

Here only axial and lagwise bending vibrations are considered. It is
well known that the beam sustains a steady state deformations
(time-independent deformation displacements) induced by constant
rotation [25]. In this study, large displacement and rotation with
small strain are considered in the steady state deformation. The
vibration (time-dependent deformation displacements) of the beam
is measured from the position of the steady state deformation, and
only infinitesimal free vibration is considered. Note that the axial and
lagwise vibrations, which are coupled due to the Coriolis effects and
the lateral steady state deformation, cannot be analyzed indepen-
dently. Here the engineering strain and stress are used for the
measure of the strain and stress.

2.2. Basic assumptions

The following assumptions are made in derivation of the beam
element behavior.
(1)
 The beam is prismatic and slender, and the Euler–Bernoulli
hypothesis is valid.
(2)
 The unit extension of the centroid axis of the beam element is
uniform.
(3)
 The deformation displacements and rotations of the beam
element are small.
(4)
 The strains of the beam element are small.
In conjunction with the corotational formulation, the third
assumption can always be satisfied if the element size is properly
chosen.

2.3. Coordinate systems

In this paper, a corotational formulation combined with the
rotating frame method is adopted. In order to describe the
system, we define three sets of right handed rectangular Cartesian
coordinate systems:
(1)
 A rotating global set of coordinates, Xi (i¼1, 2, 3) (see
Figs. 1 and 2); the coordinates rotate about the hub axis at a
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constant angular speed O as shown in Fig. 1. The origin of this
coordinate system is chosen to be the intersection of the
centroid axes of the hub and the undeformed beam. The X1

axis are chosen to coincide with the centroid axis of the
undeformed beam, and the X2 and X3 axes are chosen to be
the principal directions of the cross section of the beam at the
undeformed state. The direction of the axis of the rotating hub
is parallel to the X3 axis. The nodal coordinates, nodal
deformation displacements, absolute nodal velocity, absolute
nodal acceleration and equations of motion of the system are
defined in terms of an inertia global coordinate system, which
is coincident with the rotating global coordinate system.
(2)
 Element coordinates; xi (i¼1, 2, 3) (see Fig. 2), a set of element
coordinates is associated with each element, which is con-
structed at the current configuration of the beam element. The
coordinates rotate about the hub axis at a constant angular
speed O. The origin of this coordinate system is located at the
element node 1, the centroid of the end section. The x1 axis is
chosen to pass through two end nodes of the element; the
directions of the x2 and x3 axes are chosen to coincide with the
principal direction of the cross section in the undeformed state.
Because only the displacements in X1X2 plane are considered,
the directions of x3 axis and X3 axis are coincident. The position
vector, deformations, absolute velocity, absolute acceleration,
internal nodal forces, stiffness matrices and inertia matrices of
the elements are defined in terms of an inertia element
coordinate system, which is coincident with the rotating ele-
ment coordinate system.
In this study, the direction of the axis of the rotating hub is
parallel to the X3 axis and only the displacements in X1X2 plane
are considered. Thus, the angular velocity of the hub referred to
the global coordinates may be given by

XG ¼ 0; 0; O
� �

ð1Þ

where the symbol { } denotes a column matrix, which is used
throughout the paper.
2.4. Kinematics of beam element

Let Q (Fig. 3) be an arbitrary point in the beam element, and P

be the point corresponding to Q on the centroid axis. The position
vector of point Q in the undeformed and deformed configurations
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Fig. 3. Kinematics of Euler beam.
may be expressed as

r0 ¼ fx, y, zg ð2Þ

and

r¼ fr1, r2, r3g ¼ fxpðx,tÞ�ysiny, vðx,tÞþycosy, zg ð3Þ

siny¼
@vðx,tÞ

@s
¼
@vðx,tÞ

@x

@x

@s
¼

v0

1þec
ð4Þ

ec ¼
@s

@x
�1 ð5Þ

where xp(x,t) and v(x,t) are the x1 and x2 coordinates of point P,
respectively, in the deformed configuration, t is time, y¼y(x,t) is
the angle counterclockwise measured from x1 axis to the tangent
of the centroid axis of the deformed beam, ec is the unit extension
of the centroid axis and s is the arc length of the deformed
centroid axis measured from node 1 to point P. In this paper, ( )0

denotes ð Þ,x ¼ @ð Þ=@x, siny is approximated by y, but the difference
between y and v0 is considered.

Here, the lateral deflection of the centroid axis, v(x,t) is
assumed to be the Hermitian polynomials of x and may be
expressed by

vðx,tÞ ¼ fN1,N2,N3,N4g
t
fv1,v01,v2,v02g ¼Nt

bub ð6Þ

where vj¼vj(t) and v0j ¼ v0jðtÞ (j¼1, 2) are nodal values of v and v,x,
respectively, at nodes j. Note that, due to the definition of the
element coordinates, the values of vj (j¼1, 2) are zero. However,
their variations and time derivatives are not zero. Ni (i¼1–4) are
shape functions and are given by

N1 ¼
1

4
ð1�xÞ2ð2þxÞ, N2 ¼

L

8
ð1�x2

Þð1�xÞ

N1 ¼
1

4
ð1þxÞ2ð2�xÞ N2 ¼

L

8
ð�1þx2

Þð1þxÞ ð7Þ

x¼�1þ
2x

L
ð8Þ

where L is the length of the undeformed beam element.
The relationship between xp(x,t), v(x,t) and x in Eq. (3) may be

given as

xpðx,tÞ ¼ u1þ

Z x

0
½ð1þecÞ

2
�v2

,x�
1=2dx ð9Þ

where u1 is the displacement of node 1 in the x1 direction. Note
that due to the definition of the element coordinate system, the
value of u1 is equal to zero. However, the variation and time
derivatives of u1 are not zero.

The axial displacements of the centroid axis may be deter-
mined from the lateral deflections and the unit extension of the
centroid axis using Eq. (9).

Making use of Eq. (9) and assumptions v,x51 and ec51, one
may obtain

‘¼ Lþu2�u1 ¼ xcðL,tÞ�xcð0,tÞ ¼

Z L

0
1þec�

1

2
v2

,x

� �
dx ð10Þ

in which ‘ is the current chord length of the centroid axis of the
beam element, and u2 is the displacement of node 2 in the x1

direction. From Eqs. (6) and (10), ec may be expressed by

ec ¼
1

L
Gt

auaþ
1

2
Gt

bub

� �
ð11Þ

Ga ¼ f�1, 1g ð12Þ

ua ¼ fu1, u2g ð13Þ
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Gb ¼

Z L

0
N0bv,x dx ð14Þ

where ub is defined in Eq. (6).
Substituting Eqs. (9), (11)–(14) into Eq. (3), using the approx-

imation cosy� 1�1
2y

2, sin yEy and 1=ð1þecÞ � ð1�ecÞ, retaining
all terms up to the second order, the position vector in Eq. (3) may
be approximated by

r¼ r1,r2,r3f g ¼ xp�yy, y 1�
1

2
y2

� �
þv, z

� �
ð15Þ

xpðx,tÞ ¼Nt
auaþxþ

x

2L
Gt

bub�
1

2

Z x

0
v2

,x dx ð16Þ

y¼ ð1�ecÞv
0 ð17Þ

Na ¼
1�x

2
,
1þx

2

� �
ð18Þ

From Eq. (3) and the definition of engineering strain [29,30],
making use of the assumption of small strain, and retaining the
terms up to the second order of deformation parameters, the
engineering strain in the Euler beam may be approximated by

e11 ¼ ec�ð1�ecÞyv,xx ð19Þ

The absolute velocity and acceleration vectors of point Q in the
rotating beam element may be expressed as

v¼ fv1,v2,v3g ¼ voþX� rþ _r ð20Þ

a¼ fa1,a2,a3g ¼ aoþ
_X � rþX� ðX� rÞþ2X� _rþ €r ð21Þ

vo ¼X� rAo ð22Þ

ao ¼ fao1,ao2,ao3g ¼X� ðX� rAoÞ ð23Þ

X¼ At
GEXG ð24Þ

rAo ¼ At
GErAoG ð25Þ

rAoG ¼ rAOþrOoG ¼ fRcosaþXo,�RsinaþYo, 0g ð26Þ

where r is the position point of point Q given in Eq. (15), the
symbol ( ˙ ) denotes time derivative, X is the vector of angular
velocity referred to the current inertia element coordinates, XG is
the angular velocity of the hub referred to the global coordinates
given in Eq. (1), AGE is the transformation matrix between the
current global coordinates and the current element coordinates,
vo and ao is the absolute velocity and absolute acceleration of
point o, the origin of the element coordinates, Xo and Yo are
coordinates of point o referred to the current global coordinates, R

is the radius of the hub, and a is inclination angle of the rotating
beam. _r and €r are the velocity and acceleration of point Q relative
to the current moving element coordinates. From Eqs. (11)–(18), _r
and €r may be expressed as

_r ¼ f_r1, _r2, _r3g ¼ f _xp�y _y, _v�y _yy,0g ð27Þ

€r ¼ f€r1, €r2, €r3g ¼ f €xp�y €y, €v�y _y
2
�y €yy,0g ð28Þ

_xp ¼Nt
a
_uaþ

x

L
Gt

b
_ub�

Z x

0
v,x _v ,x dx ð29Þ

_y ¼ ð1�ecÞ _v ,x�_ecv,x ð30Þ

_ec ¼
1

L
ðGt

a
_uaþGt

b
_ubÞ ð31Þ
€xp ¼Nt
a
€uaþ

x

L
ðGt

b
€ubþ

_Gt
b
_ubÞ�

Z x

0
ðv,x €v ,xþ _v ,x _v ,xÞdx ð32Þ

€y ¼ ð1�ecÞ €v ,x�2_ec _v ,x�€ecv,x ð33Þ

€ec ¼
1

L
ðGt

a
€uaþ

_Gt
b
_ubþGt

b
€ubÞ ð34Þ

2.5. Element nodal force vector

Let duj and dvj, and dyj (j¼1, 2) denote the virtual displace-
ments in the x1 and x2 directions of the current inertia element
coordinates, and virtual rotations applied at the element nodes j.
The element nodal force corresponding to virtual nodal displace-
ment duj and dvj, and dyj (j¼1, 2) are fij, the forces in the xi

(i¼1, 2) directions, and mj moments about the x3 axis, at element
local nodes j.

The element nodal force vector is obtained from the d’Alem-
bert principle and the virtual work principle in the current inertia
element coordinates. The virtual work principle requires that

dut
afaþdubfb ¼

Z
V
ðde11s11þrdrt €aÞdV ð35Þ

dua ¼ fdu1,du2g ð36Þ

duy
b ¼ fdv1,dy1,dv2,dy2g ð37Þ

fa ¼ fD
a þfI

a ¼ ff11,f12g ð38Þ

fb ¼ fD
b þfI

b ¼ ff21,m1,f22,m2g ð39Þ

fD
a ¼ ff

D
11,f D

12g ð40Þ

fD
b ¼ ff

D
21, mD

1 , f D
22, mD

2 g ð41Þ

fI
a, ¼ ff I

11, f I
22g ð42Þ

fI
b, ¼ ff I

21, mI
1, f I

22, mI
2g ð43Þ

where f i (i¼a, b) are the generalized force vectors corresponding
to dua and duy

b, fD
i and fI

i (i¼a , b) are element deformation nodal
force vector and inertia nodal force vector corresponding to f i,
respectively, V is the volume of the undeformed beam element,
de11 is the variation of e11 in Eq. (19) corresponding to dua and
duy

b. s11 is the engineering stress. For linear elastic material,
s11¼Ee11, where E is Young’s modulus. r is the density, dr is the
variation of r in Eq. (15) corresponding to dua and duy

b, and a is
the absolute acceleration in Eq. (21). Note that de11 and dua are
functions of dua and dub. However, the difference between dy and
dv
0

is considered here. Thus, the relation between duy
b, dua and

dub is required, and will be derived later in this section.
If the element size is chosen to be sufficiently small, the values of

the deformation parameters of the deformed element defined in the
current element coordinate system may always be much smaller than
unity. Thus the higher-order terms of deformation parameters in the
element internal nodal forces may be neglected. However, in order to
include the nonlinear coupling among the bending and stretching
deformations, the terms up to the second order of deformation
parameters and their spatial derivatives are retained in element
deformation nodal forces by consistent second-order linearization of
de11s11 in Eq. (35). Here, only infinitesimal free vibration is con-
sidered, thus only the terms up to the first order of time derivatives of
deformation parameters and their spatial derivatives are retained in
element inertia nodal forces by consistent first-order linearization of
drt €a in Eq. (35). Note that the values of L, v and v,x will converge to
zero, and the values of v,x=L, ec and v,xx will converge to constants
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with the decrease of the element size. Thus, the higher order terms
containing L, v, and v,x are neglected, and the higher order terms
containing v,x=L, ec and v,xx are retained in the element internal nodal
forces here. However, to avoid improper omission in the element
internal nodal forces in this section and element matrices in the next
section, some third order terms are retained in the derivation process.

From Eqs. (6) and (11)–(14), the variation of e11 in Eq. (19) may
be expressed as

de11 ¼ decþyv,xxdec�ð1�ecÞydv,xx ð44Þ

dec ¼
1

L
ðdut

aGaþdut
bGbÞ ð45Þ

dv,xx ¼ dut
bN00b ð46Þ

From Eqs. (6) and (15)–(18), dr the variation of r in Eq. (15)
may be expressed as

dr¼ fdr1,dr2,0g ¼ fdxp�ydy,dv�yydy,0g ð47Þ

dxp ¼ dut
aNaþ

x

L
dut

bGb�

Z x

0
v,xdv,x dx ð48Þ

dy¼�decv,xþð1�ecÞdv,x ð49Þ

dv,x ¼ dut
bN0b ð50Þ

From Eqs. (45), (49) and (50), the relations between dub in
Eq. (46) or (50) and duy

b in Eq. (37) may be expressed as

dub ¼ Tbduy
bþTbadua ð51Þ

Tb ¼ T1
bþT2

b ð52Þ

T1
b ¼

1 0 0 0

0 1þec 0 0

0 0 1 0

0 0 0 1þec

2
6664

3
7775 ð53Þ

T2
b ¼ ½04�1,v01Gb,04�1,v02Gb�

t ð54Þ

Tba ¼

0 0
�v01

L

v01
L

0 0
�v02

L

v02
L

2
6666664

3
7777775

ð55Þ

Substituting Eqs. (21)–(34) and (44)–(55) into Eq. (35), usingR
y dA¼0, neglecting the higher order terms, we may obtain

fD
a ¼ EAecGa�

EIec

L

Z
v2

,xx dxGa ð56Þ

fD
b ¼ T1t

b EIð1�ecÞ
2
Z

N00bv,xx dxþ f D
12

Z
N0bv,x dx

� 	
ð57Þ

fI
a ¼ rA

Z
NaNt

a dx €uaþO2rAao1

Z
Na dx

�O2rA

Z
NaðN

t
auaþxÞdx�2OrA

Z
Na _v dx ð58Þ

fI
b ¼ T1t

b

�
rA

Z
Nb €v dxþrIð1�ecÞ

2
Z

N0b €v ,x dx

þO2rAao2

Z
Nb dx�O2rA

Z
Nbvdx

�O2rI

Z
N0bv0dxþ2OrA

Z
NbNt

a dx _ua

	
ð59Þ
where the range of integration for the integral
R

( )dx in Eqs. (56)–(59)
is from 0 to L, A is the cross section area, I is moment of inertia of the
cross section, aoi (i¼1 , 2) are the xi components of ao in Eq. (23). The
underlined terms in Eqs. (58) and (59) are the inertia nodal force
corresponding to the steady state deformation induced by the
constant rotation.

2.6. Element matrices

The element matrices considered are element tangent stiff-
ness matrix, mass matrix, centripetal stiffness matrix and gyro-
scopic matrix. The element matrices may be obtained by differ-
entiating the element nodal force vectors in Eqs. (56)–(59) with
respect to nodal parameters, and time derivatives of nodal
parameters.

Using the direct stiffness method, the element tangent stiff-
ness matrix may be assembled by the following submatrices:

kaa ¼
@fD

a

@ua
¼

EA

L
�

EI

L2

Z
v2

,xx dx

� �
GaGt

a ð60Þ

kab ¼ kt
ba ¼

@fD
a

@uy
b

¼�
2EIec

L
Ga

Z
v,xxN00tb dxT1

b ð61Þ

kbb ¼
@fD

b

@uy
b

¼ T1t
b EIð1�ecÞ

2
Z

N00bN00tb dxþ f D
12

Z
N0bN0tb dx

	
T1

b

�
ð62Þ

The element mass matrix may be assembled by the following
submatrices:

maa ¼
@fI

a

@ €ua
¼ rA

Z
NaNt

a dx ð63Þ

mab ¼mt
ba ¼

@fI
a

@ €uy
b

¼ 0 ð64Þ

mbb ¼
@fI

b

@ €uy
b

¼ T1t
b rA

Z
NbNt

b dxþrIð1�ecÞ
2
Z

N0bN0tb dx

� 	
T1

b ð65Þ

The element centripetal stiffness matrix may be assembled by
the following submatrices:

kOaa ¼
@fI

a

O2@ua

¼�rA

Z
NaNt

a dx ð66Þ

kOab ¼ kt
Oab ¼

@fI
a

O2@uy
b

¼ 0 ð67Þ

kObb ¼
@fI

b

O2@uy
b

¼ T1t
b �rA

Z
NbNt

b dx

� 	
T1

b ð68Þ

The element gyroscopic matrix may be assembled by the
following submatrices:

caa ¼
@fI

a

O@ _ua
¼ 0 ð69Þ

cab ¼�ct
ba ¼

@fI
a

O@ _uy
b

¼�2rA

Z
NaNt

b dxT1
b ð70Þ

cbb ¼
@fI

b

O@ _ub
¼ 0 ð71Þ
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2.7. Equations of motion

For convenience, the following dimensionless variables are
used:

x¼
x

LT
, R¼

R

LT
, Xo ¼

Xo

LT
, Yo ¼

Yo

LT
,

L¼
L

LT
, u¼

u

LT
, v¼

v

LT
ð72Þ

u0 ¼
@u

@x
¼ u0, u00 ¼

@2u

@x2
¼ LT u00, v0 ¼

@v

@x
¼ v0, v00 ¼

@2v

@x2
¼ LT v00

f ij ¼
fij

EA
, mj ¼

mj

EALT
, ði¼ 1,2; j¼ 1,2Þ

t¼ t

LT

ffiffiffiffi
E

r

s
, _u¼

@u

@t
¼ _u

ffiffiffiffi
r
E

r
, €u¼

@2u

@t2
¼ LT

r
E
€u

_v¼
@v

@t
¼ _v

ffiffiffiffi
r
E

r
, €v¼

@2v

@t2
¼ LT

r
E
€v

k¼OLT

ffiffiffiffi
r
E

r
, K ¼oLT

ffiffiffiffi
r
E

r
, I¼

I

AL2
T

¼
1

Z2

where E is Young’s modulus, r is the density, t is a dimensionless
time, O and k are angular speed and a dimensionless angular speed
of rotating beam, respectively, o and K are natural frequency and
dimensionless natural frequency of rotating beam, respectively, and
Z is the slenderness ratio of the rotating beam.

The dimensionless nonlinear equations of motion for a rotating
beam with constant angular velocity may be expressed by

u¼ FD
ð
_
Q ÞþFI

ðk2,
_
Q ,

__
Q ,

€_
Q Þ ¼ 0 ð73Þ

_
Q ¼Q sþQ ðtÞ ð74Þ
Table 1

Comparison of results for different cases (Z¼20, R¼ 1:5).

a (deg.) k emax
c (10�3) emax

b (10�3) vtip/LT (10�3) K1

0 0 EA10 0 0 0 .174

EA50 0 0 0 .174

EA100 0 0 0 .174

[23] 0 0 0 .174

[31] 0 0 0 .175

.06 EA10 6.93309 0 0 .197

EA50 7.15492 0 0 .197

EA100 7.18210 0 0 .197

EB100 7.18210 0 0 .198

[23] 7.20000 0 0 .198

LAS 7.20000 0 0 –

5 .03 EA10 1.72680 1.93655 5.48934 .180

EA50 1.78195 1.94115 5.49004 .180

EA100 1.78871 1.94131 5.49007 .180

EB100 1.78870 1.93560 5.47701 .181

LAS 1.79486 2.03794 5.88301 –

30 .01 EA10 .173298 1.29046 3.72389 .175

EA50 .178615 1.29263 3.72394 .175

EA100 .179264 1.29270 3.72395 .175

EB100 .179264 1.29231 3.72300 .175

LAS .179904 1.29904 3.75000 –

90 .01 EA10 .0500346 2.59388 7.49567 .174

EA50 .0500385 2.59808 7.49570 .174

EA100 .0500217 2.59821 7.49570 .174

EB100 .0500216 2.59797 7.49507 .174

LAS .0500000 2.59807 7.50000 –
where u, FD and FI are the dimensionless unbalanced force vector, the
dimensionless deformation nodal force vector and the dimensionless
inertia nodal force vector of the structural system, respectively. FI and
FD are assembled from the dimensionless element nodal force vectors,
which are calculated using Eqs. (56)–(59) and (72) first in the current
element coordinates and then transformed from element coordinate
system to global coordinate system before assemblage using standard
procedure.

_
Q is the dimensionless nodal displacement vector of the

rotating beam,
__

Q ¼ @
_
Q =@t and

€_
Q ¼ @2_Q =@t2 are the dimensionless

nodal velocity vector and the dimensionless nodal acceleration vector
of the rotating beam, respectively, Qs is the dimensionless steady
state nodal displacement vector induced by constant dimensionless
rotation speed k, Q(t) is the time-dependent dimensionless nodal
displacements vector caused by the free vibration of the rotating
beam. Here only infinitesimal vibration is considered.

2.8. Governing equations for steady state deformation

For the steady-state deformations, Q(t)¼0. Thus Eq. (73) can
be reduced to nonlinear dimensionless steady state equilibrium
equations and expressed by

u¼ FD
s ðQ sÞþk2FI

sðQ sÞ ¼ 0 ð75Þ

where FD
s ðQ sÞ and k2FI

sðQ sÞ are the dimensionless deformation

nodal force vector and the dimensionless inertia nodal force (the
centrifugal force) vector of the structural system corresponding to
the dimensionless steady state nodal displacement vector Qs,

respectively. k2FI
sðQ sÞ is corresponding to the underlined terms

of Eqs. (58) and (59). Note that k2FI
sðQ sÞ is deformation depen-

dent. Thus k2FI
sðQ sÞ should be updated at each new configuration.

Here, an incremental-iterative method based on the Newton–
Raphson method is employed for the solution of nonlinear
dimensionless steady state equilibrium equations at different
dimensionless rotation speed k. In this paper, a weighted Euclidean
norm of the unbalanced force is employed for the equilibrium
K2 K3 (a) K4 K5 K6 K7 (a)

788 1.05957 1.57241 2.82495 4.75610 5.19546 8.00214

787 1.05953 1.57086 2.82431 4.71413 5.19120 7.86206

787 1.05953 1.57081 2.82431 4.71283 5.19119 7.85600

79 1.05953 1.57080 2.82431 4.71239 5.19119 –

80 1.10172 1.57080 3.08486 4.71239 6.04510 –

994 1.08369 1.57615 2.84311 4.75729 5.20566 8.00257

894 1.08337 1.57461 2.84191 4.71534 5.19999 7.86273

891 1.08336 1.57456 2.84190 4.71403 5.19994 7.85667

511 1.08726 1.57457 2.85242 4.71403 5.21930 7.85669

62 1.08760 1.57455 2.85276 4.71360 5.21962 –

– – – – – –

882 1.06562 1.57335 2.82949 4.75639 5.19801 8.00220

854 1.06552 1.57180 2.82871 4.71442 5.19339 7.86221

853 1.06552 1.57175 2.82871 4.71312 5.19337 7.85615

020 1.06651 1.57175 2.83136 4.71312 5.19822 7.85616

– – – – – –

392 1.06018 1.57252 2.82541 4.75613 5.19573 8.00213

389 1.06014 1.57097 2.82476 4.71416 5.19142 7.86207

389 1.06014 1.57092 2.82476 4.71285 5.19141 7.85601

407 1.06024 1.57092 2.82503 4.71285 5.19190 7.85601

– – – – – –

830 1.05974 1.57253 2.82511 4.75612 5.19557 8.00206

829 1.05971 1.57098 2.82447 4.71415 5.19128 7.86205

829 1.05971 1.57093 2.82447 4.71284 5.19127 7.85599

835 1.05974 1.57093 2.82456 4.71284 5.19144 7.85599

– – – – – –
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iterations, and is given by

:u:

k2
ffiffiffiffi
N
p

:FI
s:

retol ð76Þ

where N is number of the equations of the system, and etol is a
prescribed value of error tolerance. Unless otherwise stated, the
error tolerance etol is set to 10�5 in this study.
Table 3

Comparison of results for different cases (Z¼1000, R¼ 1:5).

a (deg.) k emax
c (10�3) emax

b (10�3) vtip/LT K1 (10

0 0 EA10 0 0 0 .3516

EA50 0 0 0 .3516

EA100 0 0 0 .3516

[23] 0 0 0 .352

[31] 0 0 0 .3516

.06 EA10 6.93309 0 0 9.003

EA50 7.15492 0 0 8.961

EA100 7.18210 0 0 8.960

EB100 7.18210 0 0 8.961

[23] 7.20000 0 0 8.952

LAS 7.20000 0 0 –

5 .03 EA10 1.73113 3.88613 .0835235 4.546

EA50 1.78397 6.01548 .0838255 4.533

EA100 1.78938 6.21315 .0838279 4.533

EB100 1.78936 6.20203 .0838218 4.533

LAS 1.79486 101.897 14.70753 –

30 .008 EA10 .117176 8.73688 .429697 1.290

EA50 .114344 9.36265 .429987 1.288

EA100 .113413 9.38899 .429994 1.288

EB100 .113410 9.38784 .429986 1.288

LAS .115138 41.5692 6.00000 –

90 .003 EA10 .00632598 8.11019 .747141 .5613

EA50 .00388231 8.15303 .747254 .5605

EA100 .00351746 8.15402 .747257 .5605

EB100 .00351740 8.15396 .747254 .5605

LAS .00450000 11.6913 1.68750 –

Table 2

Comparison of results for different cases (Z¼100, R¼ 1:5).

a (deg.) k emax
c (10�3) emax

b (10�3) vtip/LT K1 (10

0 0 EA10 0 0 0 .3515

EA50 0 0 0 .3515

EA100 0 0 0 .3515

[23] 0 0 0 .3515

[31] 0 0 0 .3516

.06 EA10 6.93309 0 0 1.000

EA50 7.15492 0 0 .9990

EA100 7.18210 0 0 .9989

EB100 7.18210 0 0 .9997

[23] 7.20000 0 0 .9989

LAS 7.20000 0 0 –

5 .03 EA10 1.72775 5.09357 .0511913 .5912

EA50 1.78184 5.17548 .0512390 .5904

EA100 1.78842 5.17847 .0512404 .5904

EB100 1.78840 5.16732 .0511903 .5906

LAS 1.79486 10.1897 .1470753 –

30 .01 EA10 .174250 5.74549 .0788668 .3832

EA50 .178734 5.76488 .0788899 .3831

EA100 .179264 5.76552 .0788906 .3831

EB100 .179262 5.76388 .0788731 .3831

LAS .179904 6.49519 .0937500 –

90 .01 EA10 .0543132 12.7940 .179785 .3611

EA50 .0504783 12.8203 .179801 .3610

EA100 .0499228 12.8211 .179801 .3610

EB100 .0499202 12.8198 .179783 .3610

LAS .0500000 12.9904 .187500 –
2.9. Governing equations for free vibration measured from the

position of steady state deformation

Substituting Eq. (74) into Eq. (73), and setting the first-order
Taylor series expansion of the unbalanced force vector u around
Qs to zero, one may obtain the dimensionless governing equations
for linear free vibration of the rotating beam measured from the
�2) K2 (10�1) K3 (10�1) K4 K5 K6 K7

01 .220349 .617105 .121008 .200340 .300117 .421052

01 .220341 .616949 .120893 .199838 .298509 .416903

01 .220341 .616948 .120893 .199837 .298506 .416896

.2203 .6169 .12089 .19984 .29851 –

.22034 .616972 .120902 – – –

92 2.50170 4.13382 .591357 .784564 .992667 1.21721

71 2.47409 4.06028 .580433 .771135 .975828 1.19320

90 2.47299 4.05718 .580000 .770663 .975346 1.19271

52 2.47312 4.05756 .580088 .770833 .975634 1.19316

2.4708 4.0536 .57955 .77017 .97486 –

– – – – – –

94 1.27442 2.17642 .323061 .442957 .577154 .726538

31 1.26216 2.15013 .319740 .439096 .572342 .719773

04 1.26175 2.14927 .319641 .438996 .572245 .719680

20 1.26179 2.14942 .319678 .439068 .572368 .719873

– – – – – –

66 .405573 .836364 .143457 .221474 .319570 .439088

46 .404148 .836039 .143625 .221421 .318236 .434627

39 .404101 .836030 .143637 .221447 .318271 .434665

40 .404108 .836056 .143643 .221458 .318289 .434691

– – – – – –

66 .232167 .566047 .113316 .190888 .289635 .409720

84 .232181 .566295 .113203 .190324 .287893 .405356

57 .232180 .566302 .113202 .190320 .287884 .405339

58 .232181 .566306 .113202 .190322 .287886 .405342

– – – – – –

�1) K2 K3 K4 K5 (a) K6 K7

20 .219996 .614757 1.20161 1.57241 1.98111 2.95267

20 .219989 .614602 1.20047 1.57086 1.97619 2.93707

20 .219989 .614601 1.20047 1.57081 1.97618 2.93704

.21999 .61460 1.20047 1.57080 1.97618 –

.22034 .616972 1.20902 1.57080 – –

61 .337850 753355 1.35311 1.57588 2.13851 3.11190

08 .336839 .751962 1.35058 1.57434 2.13195 3.09426

59 .336808 .751924 1.35054 1.57429 2.13188 3.09415

10 .337324 .753756 1.35450 1.57429 2.13877 3.10471

.33722 .75363 1.35435 1.57427 2.13860 –

– – – – – –

19 .254778 .652135 1.24001 1.57551 2.02262 2.99338

37 .254476 .651668 1.23856 1.57386 2.01728 2.97726

13 .254467 .651657 1.23855 1.57381 2.01725 2.97721

51 .254646 .652209 1.23966 1.57382 2.01911 2.97999

– – – – – –

79 .223645 .617615 1.20301 1.57860 1.98709 2.95692

44 .223606 .617430 1.20185 1.57696 1.98213 2.94126

40 .223605 .617428 1.20185 1.57691 1.98212 2.94123

73 .223626 .617490 1.20197 1.57691 1.98231 2.94152

– – – – – –

11 .220583 .610488 1.19029 1.60306 1.99241 295467

62 .220567 .610327 1.18916 1.60109 1.98747 293903

60 .220566 .610327 1.18916 1.60104 1.98745 293899

76 .220576 .610354 1.18921 1.60105 1.98753 293912

– – – – – –
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position of the steady-state deformation as follows:

M €Q þC _Q þðKþk2KOÞQ ¼ 0 ð77Þ

where M, C, K and KO are dimensionless mass matrix, gyroscopic
matrix, tangent stiffness matrix and centripetal stiffness matrix
of the rotating beam, respectively. M, C, K, and KO are assem-
bled from the dimensionless element mass matrix, gyroscopic
matrix, tangent stiffness matrix and centripetal stiffness matrix,
which are calculated using Eqs. (60)–(72) first in the current
element coordinates and then transformed from element coordi-
nate system to global coordinate system before assemblage using
standard procedure.

We shall seek a solution of Eq. (77) in the form

Q ¼ ðQ Rþ iQ IÞe
iKt ð78Þ

where i¼
ffiffiffiffiffiffiffi
�1
p

, K and t are dimensionless natural frequency of
rotating beam and dimensionless time defined in Eq. (72), and QR

and QI are real part and imaginary part of the vibration mode.
Table 5

Dimensionless frequencies for rotating beam with different inclination angle (Z¼100,

a (deg.) emax
c (10�3) emax

b (10�3) vtip/LT K1 (10�1)

EA EC EA EA EA EC

0 .148998 .148998 0 0 .375668 .375

10 .148624 .148621 .688751 .009524 .375607 .375

20 .147501 .147494 1.37346 .018996 .375426 .375

30 .145640 .145625 2.05011 .028364 .375124 .374

40 .135791 .135734 3.99154 .055323 .373502 .372

50 .120113 .120001 5.71738 .079478 .370830 .369

60 .099663 .099497 7.12453 .099453 .367164 .365

70 .075822 .075619 8.11670 .113912 .362605 .359

80 .050208 .049995 8.60876 .121597 .357312 .354

Table 6

Dimensionless frequencies for rotating beam with different inclination angle (Z¼1000

a (deg.) emax
c (10�5) emax

b (10�3) vtip/LT K1 (10�2)

EA EC EA EA EA EC

0 1.34094 1.34094 0 0 .529054 .52

10 1.33742 1.33755 .401966 .042755 .528948 .52

20 1.32688 1.32740 .802883 .085366 .528626 .52

30 1.30939 1.31058 1.20170 .127689 .528088 .52

40 1.21666 1.22157 2.37507 .251535 .525149 .51

50 1.06851 1.07997 3.49175 .367905 .520114 .48

60 .874165 .895442 4.52322 .473573 .512761 .45

70 .645893 .680549 5.44045 .565891 .502734 .41

80 .398360 .449942 6.21305 .642909 .489484 .37

Table 4

Dimensionless frequencies for rotating beam with different inclination angle (Z¼70, R

a (deg.) emax
c (10�3) emax

b vtip/LT K

EA EC EA EA EA

0 7.61579 7.61579 0 0 .1

10 7.53381 7.53893 .0220374 .119890 .1

20 7.28963 7.31066 .0438841 .237606 .1

30 6.88882 6.93792 .0653510 .351025 .1

40 6.34057 6.43205 .0862526 .458121 .1

50 5.65758 5.80840 .106408 .557013 .1

60 4.85594 5.08596 .125641 .646008 .1

70 3.95486 4.28663 .143786 .723643 .1

80 2.97641 3.43472 .160683 .788722 .1

90 1.94513 2.55611 .176180 .840342 .1

k¼0, K1¼ .0502050, K2¼ .313742.
Substituting Eq. (78) into Eq. (77), one may obtain a set of
homogeneous equations expressed by

HZ¼ 0 ð79Þ

H¼HðK ,kÞ ¼
Kþk2KO�K2M kKCt

kKC Kþk2KO�K2M

" #
ð80Þ

Z¼ fQ R,Q Ig ð81Þ

where H(K,k) denotes H is a function of K and k. Note that H is a
symmetric matrix.

Eq. (79) is a quadratic eigenvalue problem. For a nontrivial Z,
the determinant of matrix H in Eq. (79) must be equal to zero. The
values of K, which make the determinant vanish, are called
eigenvalues of matrix H. The bisection method is used here to
find the eigenvalues. Note that when k¼0, Eq. (79) will degen-
erate to a generalized eigenvalue problem.
R¼ 1, k¼ .01).

K2 K3 K4

EA EC EA EC EA EC

668 .223145 .223145 .617913 .617913 1.20392 1.20392

588 .223136 .223137 .617890 .617905 1.20387 1.20391

351 .223109 .223116 .617820 .617883 1.20373 1.20389

957 .223064 .223079 .617706 .617846 1.20350 1.20385

865 .222830 .222887 .617116 .617649 1.20232 1.20364

512 .222461 .222582 .616235 .617335 1.20062 1.20332

097 .221990 .222183 .615201 .616926 1.19873 1.20289

884 .221459 .221717 .614181 .616450 1.19700 1.20240

205 .220916 .221216 .613344 .615938 1.19577 1.20187

, R¼ 1, k¼ .003).

K2 (10�1) K3 (10�1) K4

EA EC EA EC EA EC

9054 .247469 .247469 .646623 .646623 .124064 .124064

8552 .247408 .247410 .646343 .646557 .124020 .124057

7049 .247224 .247232 .645506 .646361 .123887 .124036

4546 .246917 .246936 .644121 .646036 .123670 .124001

1096 .245271 .245364 .636859 .644310 .122559 .123815

8923 .242565 .242842 .625541 .641553 .120920 .123519

8389 .238860 .239513 .611240 .637939 .118999 .123132

9991 .234253 .235572 .595231 .633700 .117027 .122679

4358 .228875 .231264 .578803 .629113 .115176 .122190

¼ 1, k¼ 5=70).

1 K2

EC [20] EA EC [20]

05427 .105427 .105 .410792 .410792 .418

05377 .104869 .105 .410400 .410001 .417

05225 .103195 .103 .409219 .407642 .414

04971 .100399 .100 .407246 .403758 .410

04612 .0964721 .096 .404475 .398421 .405

04146 .0913941 .091 .400900 .391733 .398

03568 .0851262 .085 .396518 .383830 .390

02875 .0775919 .077 .391331 .374876 .381

02058 .0686418 .068 .385349 .365073 .371

01109 .0579597 .057 .378595 .354659 .361
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3. Numerical examples

To verify the accuracy of the present method and to investigate
the steady deformation and the natural frequencies of rotating
inclined beams with different inclination angle a, dimensionless
radius of the hub R, and slenderness ratios Z at different dimen-
sionless angular velocities k, several dimensionless numerical
examples are studied here.
Table 8

Dimensionless frequencies for rotating beam with different inclination angle (Z¼20, R

a (deg.) k emax
c (10�4) emax

b (10�3) vtip/LT (10�3) K1

0 0 0 0 0 .174787

.01 1.48998 0 0 .175258

.02 5.96058 0 0 .176661

.04 23.8527 0 0 .182150

.06 53.7076 0 0 .190897

5 .005 .371543 .0377019 .108796 .174905

.01 1.48622 .150388 .433403 .175256

.02 5.94555 .594973 1.70572 .176655

.03 13.3800 1.31504 3.73772 .178959

15 .004 .232994 .0716798 .206879 .174860

.006 .524241 .161163 .464982 .174952

.008 .931995 .286224 .825404 .175079

.01 1.45627 .446646 1.28723 .175243

30 .004 .217170 .138483 .399691 .174853

.006 .488640 .311386 .898436 .174936

.008 .868711 .553076 1.59506 .175052

.01 1.35740 .863181 2.48796 .175200

60 .004 .159194 .239914 .692486 .174828

.006 .358200 .539609 1.55715 .174879

.008 .636832 .958813 2.76593 .174950

.01 .995114 1.49716 4.31705 .175043

90 .004 .0799949 .277114 .799932 .174793

.006 .180004 .623516 1.79965 .174801

.008 .320045 1.10850 3.19889 .174811

.01 .500146 1.73208 4.99725 .174826

Table 7

Dimensionless frequencies for rotating beam with different slenderness ratio (R¼ 0).

Z k emax
c (10�4) K1 K2 K3

20 0 0 .174787 1.05953 1.570

.01 .499954 .174823 1.05972 1.570

.02 2.00007 .174930 1.06027 1.571

.04 8.00427 .175354 1.06248 1.572

.06 18.0246 .176054 1.06615 1.574

50 0 0 .0702550 .437859 1.215

.01 .499954 .0703844 .438455 1.215

.02 2.00007 .0707689 .440240 1.217

.04 8.00427 .0722524 .447313 1.225

.06 18.0246 .0745530 .458872 1.237

100 0 0 .0351520 .219989 .614

.01 .499954 .0354205 .221216 .615

.02 2.00007 .0361954 .224860 .619

.04 8.00427 .0389181 .238890 .635

.06 18.0246 .0425305 .260607 .660

500 0 0 .00703197 .0440661 .123

.01 .499954 .00814757 .0498972 .130

.02 2.00007 .0100978 .0642386 .147

.04 8.00427 .0135687 .102725 .202

.06 18.0246 .0164590 .145081 .268

1000 0 0 .00351601 .0220341 .061

.01 .499954 .00504927 .0321223 .073

.02 2.00007 .00677821 .0513635 .101

.04 8.00427 .00942143 .0942683 .169

.06 18.0246 .0116029 .138373 .240
For simplicity, only the uniform beam with rectangular cross
section is considered here. The maximum steady state axial strain
emax of rotating beam is the sum of the maximum steady state
membrane strain emax

c and bending strain emax
b , which occur at the

root of the rotating beam. In practice, rotating structures are
designed to operate in the elastic range of the materials. Thus, it
is considered that emaxrey (say .01) in this study. At the same
dimensionless angular speed k, emax are different for rotating
¼ 1).

K2 K3 (a) K4 K5 (a) K6 K7 (a)

1.05953 1.57086 2.82431 4.71413 5.19120 7.86206

1.06004 1.57096 2.82469 4.71417 5.19138 7.86208

1.06156 1.57127 2.82581 4.71427 5.19194 7.86213

1.06762 1.57252 2.83030 4.71467 5.19418 7.86236

1.07766 1.57460 2.83779 4.71533 5.19792 7.86273

1.05966 1.57089 2.82441 4.71414 5.19124 7.86206

1.06004 1.57096 2.82469 4.71417 5.19138 7.86208

1.06156 1.57128 2.82581 4.71427 5.19194 7.86213

1.06408 1.57180 2.82768 4.71443 5.19287 7.86222

1.05961 1.57088 2.82437 4.71414 5.19122 7.86206

1.05971 1.57090 2.82445 4.71415 5.19126 7.86207

1.05985 1.57093 2.82455 4.71415 5.19131 7.86207

1.06003 1.57096 2.82468 4.71417 5.19138 7.86208

1.05961 1.57088 2.82437 4.71414 5.19122 7.86206

1.05970 1.57090 2.82444 4.71415 5.19126 7.86207

1.05983 1.57093 2.82453 4.71415 5.19130 7.86207

1.06000 1.57097 2.82466 4.71416 5.19137 7.86207

1.05959 1.57088 2.82436 4.71414 5.19122 7.86206

1.05966 1.57090 2.82441 4.71414 5.19124 7.86206

1.05975 1.57093 2.82448 4.71415 5.19128 7.86207

1.05988 1.57097 2.82458 4.71416 5.19133 7.86207

1.05956 1.57088 2.82434 4.71414 5.19121 7.86206

1.05960 1.57090 2.82437 4.71414 5.19122 7.86206

1.05965 1.57093 2.82441 4.71415 5.19124 7.86206

1.05971 1.57097 2.82446 4.71416 5.19127 7.86206

K4 K5 K6 K7

86 (a) 2.82431 4.71413 (a) 5.19120 7.86206 (a)

96 (a) 2.82446 4.71417 (a) 5.19127 7.86208 (a)

27 (a) 2.82489 4.71427 (a) 5.19148 7.86213 (a)

51 (a) 2.82663 4.71467 (a) 5.19234 7.86236 (a)

58 (a) 2.82952 4.71533 (a) 5.19377 7.86273 (a)

30 1.57086 (a) 2.35176 3.82646 4.71413 (a)

92 1.57096 (a) 2.35238 3.82704 4.71417 (a)

80 1.57125 (a) 2.35425 3.82879 4.71426 (a)

28 1.57240 (a) 2.36171 3.83581 4.71466 (a)

65 1.57433 (a) 2.37409 3.84748 4.71531 (a)

602 1.20047 1.57086 (a) 1.97619 2.93707

938 1.20187 1.57096 (a) 1.97760 2.93847

929 1.20605 1.57124 (a) 1.98183 2.94267

620 1.22261 1.57239 (a) 1.99865 2.95942

876 1.24968 1.57431 (a) 2.02636 2.98715

375 .241735 .399539 .596720 .833235

004 .248856 .406927 .604274 .840899

927 .268932 .428225 .626321 .863435

962 .335905 .503267 .706764 .947569

690 .421555 .605093 .821022 1.07120

6949 .120893 .199838 .298509 .416903

9765 .134505 .214203 .313344 .432052

497 .168006 .251762 .353634 .474228

116 .257543 .360229 .477630 .610650

912 .355544 .483657 .624839 .779391
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beams with different Z, a and R. Thus, the allowable k are
different for rotating beams with different Z, a and R in this study.

To investigate the effect of the consideration of the difference
between v0 and y (see Eq. (17)), and the effect of the lateral deflection
on the steady state deformation and the natural frequency of rotating
Euler beams, here cases with and without considering the difference
between v0 and y, and case without considering the lateral deflec-
tion are studied. The corresponding elements are referred to as EA
Table 10

Dimensionless frequencies for rotating beam with different inclination angle (Z¼100,

a (deg.) k emax
c (10�4) emax

b (10�3) vtip/LT (10�3) K1 (10�1)

0 0 0 0 0 .351520

.01 1.48998 0 0 .375668

.02 5.96058 0 0 .439754

.04 23.8527 0 0 .630513

.06 53.7076 0 0 .852550

5 .005 .371547 .184151 2.62905 .357700

.01 1.48624 .688752 9.52424 .375607

.02 5.94541 2.24028 27.6708 .439644

.03 13.3786 4.02653 42.8179 .528363

15 .004 .233001 .353188 5.06288 .355386

.006 .524272 .780114 11.0871 .360170

.008 .932074 1.35273 18.9983 .366779

.01 1.45640 2.05010 28.3642 .375124

30 .004 .217197 .683351 9.79987 .355048

.006 .488757 1.51201 21.5075 .359457

.008 .869005 2.62751 36.9515 .365619

.01 1.35791 3.99154 55.3226 .373502

60 .004 .159275 1.19032 17.0972 .353793

.006 .358552 2.65115 37.8356 .356773

.008 .637717 4.64576 65.6798 .361176

.01 .996627 7.12453 99.4533 .367164

90 .004 .0801032 1.38534 19.9428 .352036

.006 .180479 3.11508 44.6722 .352910

.008 .321229 5.52865 78.8019 .354544

.01 .502076 8.60877 121.597 .357312

Table 9

Dimensionless frequencies for rotating beam with different inclination angle (Z¼50, R

a (deg.) k emax
c (10�4) emax

b (10�3) vtip/LT (10�3) K1 (10�1)

0 0 0 0 0 .702550

.01 1.48998 0 0 .714858

.02 5.96058 0 0 .750486

.04 23.8527 0 0 .877636

.06 53.7076 0 0 1.05339

5 .005 .371544 .0937658 .674872 .705638

.01 1.48623 .368372 2.62960 .714819

.02 5.94560 1.37849 9.53161 .750365

.03 13.3800 2.81927 18.5488 .805930

15 .004 .232995 .178621 1.28693 .704475

.006 .524249 .399999 2.87568 .706875

.008 .932020 .706460 5.06355 .710224

.01 1.45632 1.09469 7.81586 .714511

30 .004 .217177 .345204 2.48741 .704300

.006 .488671 .773414 5.56161 .706487

.008 .868804 1.36686 9.80109 .709550

.01 1.35761 2.11970 15.1438 .713488

60 .004 .159213 .598775 4.31633 .703655

.006 .358293 1.34391 9.67280 .705054

.008 .637111 2.38084 17.0989 .707047

.01 .995750 3.70333 26.5209 .709666

90 .004 .0800204 .692777 4.99678 .702768

.006 .180129 1.55871 11.2331 .703070

.008 .320420 2.77081 19.9439 .703545

.01 .501000 4.32854 31.1046 .704248
element, EB element and EC element, respectively. For EA element,
all terms in Eqs. (56)–(71) are considered; for EB element, the
approximations 1þecE1 and 1�ecE1 are used in Eqs. (56)–(71),
the term �ðEIec=LÞ

R
v2

,xx dxGa in Eq. (56), the term �ðEI=LÞ
R

v2
,xx dx in

Eq. (60), and Eq. (61) are not considered; for EC element, all terms
in Eqs. (56)–(71) are considered except the underlined terms in
Eq. (59), which are the lateral inertia nodal force corresponding
to the steady state deformation induced by the constant rotation.
R¼ 1).

K2 K3 K4 K5(a) K6 K7

.219989 .614602 1.20047 1.57086 1.97619 2.93707

.223145 .617913 1.20392 1.57096 1.97967 2.94053

.232350 .627728 1.21418 1.57124 1.99008 2.95089

.265905 .665347 1.25429 1.57240 2.03110 2.99195

.313660 .723130 1.31800 1.57433 2.09747 3.05905

.220780 .615428 1.20133 1.57089 1.97706 2.93793

.223136 .617890 1.20387 1.57105 1.97969 2.94052

.232313 .627575 1.21380 1.57195 1.99029 2.95088

.246845 .643385 1.23009 1.57328 2.00786 2.96808

.220486 .615117 1.20100 1.57090 1.97674 2.93761

.221104 .615750 1.20164 1.57102 1.97745 2.93829

.221965 .616617 1.20248 1.57128 1.97848 2.93924

.223064 .617706 1.20350 1.57175 1.97983 2.94047

.220453 .615073 1.20094 1.57097 1.97673 2.93758

.221027 .615619 1.20142 1.57136 1.97747 2.93822

.221821 .616314 1.20192 1.57227 1.97863 2.93913

.222830 .617116 1.20232 1.57395 1.98028 2.94031

.220335 .614922 1.20074 1.57117 1.97666 2.93746

.220751 .615186 1.20073 1.57232 1.97748 2.93796

.221308 .615331 1.20019 1.57517 1.97899 2.93869

.221990 .615201 1.19873 1.58053 1.98153 2.93967

.220177 .614745 1.20053 1.57127 1.97653 2.93730

.220389 .614728 1.20013 1.57288 1.97726 2.93760

.220646 .614359 1.19875 1.57704 1.97887 2.93806

.220916 .613344 1.19577 1.58523 1.98193 2.93871

¼ 1).

K2 K3 K4 (a) K5 K6 K7(a)

.437859 1.21530 1.57086 2.35176 3.82646 4.71413

.439405 1.21686 1.57096 2.35330 3.82790 4.71417

.444012 1.22152 1.57125 2.35791 3.83224 4.71426

.461975 1.23999 1.57241 2.37627 3.84954 4.71466

.490429 1.27012 1.57435 2.40655 3.87823 4.71531

.438245 1.21569 1.57089 2.35214 3.82682 4.71414

.439402 1.21685 1.57096 2.35330 3.82790 4.71417

.443994 1.22144 1.57134 2.35792 3.83222 4.71428

.451541 1.22898 1.57208 2.36562 3.83940 4.71448

.438102 1.21554 1.57088 2.35200 3.82668 4.71414

.438404 1.21584 1.57090 2.35231 3.82696 4.71415

.438828 1.21626 1.57095 2.35273 3.82736 4.71416

.439370 1.21678 1.57102 2.35328 3.82787 4.71418

.438086 1.21552 1.57088 2.35199 3.82667 4.71414

.438369 1.21579 1.57093 2.35228 3.82693 4.71415

.438764 1.21615 1.57103 2.35269 3.82730 4.71417

.439268 1.21657 1.57120 2.35322 3.82777 4.71420

.438030 1.21546 1.57090 2.35194 3.82662 4.71414

.438241 1.21562 1.57100 2.35217 3.82681 4.71416

.438532 1.21579 1.57124 2.35251 3.82708 4.71420

.438899 1.21588 1.57171 2.35298 3.82741 4.71428

.437953 1.21538 1.57090 2.35186 3.82655 4.71414

.438068 1.21543 1.57103 2.35201 3.82666 4.71417

.438223 1.21541 1.57135 2.35223 3.82680 4.71422

.438412 1.21523 1.57200 2.35257 3.82696 4.71432
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In this section, vtip/LT denotes the dimensionless lateral tip deflection
of the steady state deformation; Ki denotes the ith dimensionless
natural frequency of the rotating beam, and denotes that the corres-
ponding vibration mode is lateral vibration at k¼0; in all tables, the
entries with‘(a)’ denotes that the corresponding vibration mode is
axial vibration at k¼0.
Table 12

Dimensionless frequencies for rotating beam with different inclination angle (Z¼1000

a (deg.) k emax
c (10�5) emax

b (10�3) vtip/LT (10�2) K1 (10�2)

0 0 0 0 0 .351601

.01 14.8998 0 0 1.32579

.02 59.6058 0 0 2.52836

.04 238.527 0 0 4.94470

.06 537.076 0 0 7.35850

5 .005 3.71469 .765180 5.97101 .741092

.01 14.8600 1.67595 7.33957 1.32571

.02 59.4715 3.47188 8.02091 2.52828

.03 133.890 5.19998 8.25422 3.73627

15 .004 2.32637 1.74492 15.8089 .630646

.006 5.23165 2.83438 19.1617 .854092

.008 9.30220 3.92558 20.8459 1.08760

.01 14.5421 5.01583 21.8450 1.32503

30 .002 .542410 1.31451 16.2579 .436038

.004 2.15709 3.45508 31.0607 .628041

.006 4.84207 5.61912 37.4732 .851749

.008 8.61283 7.78577 40.6.544 1.08529

60 .001 .099657 .712333 9.94341 .367296

.002 .395596 2.45079 30.4964 .423367

.003 .874165 4.52322 47.3573 .512761

.004 1.52872 6.63384 57.8448 .617231

90 .001 .050204 .860795 12.1582 .357433

.002 .194123 3.21654 40.7207 .400094

.0025 .290777 4.68882 54.0274 .440751

.003 .398359 6.21305 64.2909 .489484

Table 11

Dimensionless frequencies for rotating beam with different inclination angle (Z¼500,

a (deg.) k emax
c (10�5) emax

b (10�3) vtip/LT (10�2) K1 (10�2)

0 0 0 0 0 .703197

.01 14.8998 0 0 1.48226

.02 59.6058 0 0 2.65111

.04 238.527 0 0 5.05357

.06 537.076 0 0 7.46277

5 .005 3.71523 .623972 3.58503 .964371

.01 14.8592 1.53057 5.97156 1.48209

.02 59.4466 3.35362 7.34169 2.65094

.03 133.806 5.16695 7.79682 3.84949

15 .004 2.32945 1.33657 8.25672 .878114

.006 5.23761 2.40353 12.7695 1.05614

.008 9.30567 3.49014 15.8100 1.26123

.01 14.5349 4.57922 17.8071 1.48067

30 .002 .543143 .798138 5.53097 .747272

.004 2.16965 2.62907 16.2583 .872059

.006 4.86672 4.75037 25.1546 1.05026

.008 8.62862 6.91073 31.0627 1.25602

60 .001 .099571 .370269 2.65157 .710412

.002 .398630 1.42467 9.94347 .734584

.003 .895261 3.00402 20.0010 .779944

.004 1.58240 4.90168 30.4970 .846717

90 .001 .050098 .432814 3.11011 .704972

.002 .200817 1.72159 12.1583 .714860

.0025 .313142 2.66832 18.5342 .726241

.003 .448275 3.79060 25.7176 .743838
The example first considered is the rotating inclined beams
with dimensionless radius of the hub R¼ 1:5, inclination angle
a¼ 01, 51, 301, 901 and slenderness ratios Z¼20, 100, 1000. The
present results are shown in Tables 1–3 together with some
results available in the literature. In Tables 1–3, EAn and EBn,
n¼10, 50 and 100, denote that n equal EA and EB elements,
, R¼ 1).

K2(10�1) K3(10�1) K4 K5 K6 K7

.220341 .616949 .120893 .199838 .298509 .416903

.432330 .885977 .151847 .233362 .333715 .453260

.766152 1.38402 .216170 .309504 .418994 .545501

1.46591 2.47884 .364608 .495920 .640731 .799060

2.17470 3.60269 .518160 .691561 .878499 1.07803

.289187 .695390 .129389 .208697 .307592 .426132

.432299 .885713 .151759 .233177 .333411 .452825

.766140 1.38394 .216134 .309404 .418777 .545103

1.11397 1.92494 .289119 .400294 .525712 .665915

.265964 .665293 .125858 .204796 .303429 .421755

.314085 .723732 .132190 .211269 .309887 .428128

.370658 .798239 .140759 .220369 .319173 .437418

.432039 .883572 .151045 .231702 .331041 .449500

.231505 .625672 .121676 .200527 .299137 .417464

.264065 .655495 .124158 .202506 .300707 .418660

.312451 .712882 .129769 .207592 .305203 .422605

.369462 .788909 .138171 .215887 .312999 .429813

.222367 .617842 .120950 .199862 .298514 .416886

.227869 .613626 .120111 .198677 .297113 .415275

.238860 .611240 .118999 .196928 .294949 .412763

.256517 .620640 .118883 .196085 .293610 .411048

.221288 .616084 .120749 .199640 .298279 .416639

.222722 .599363 .118425 .196788 .295121 .413183

.224722 .587409 .116668 .194632 .292733 .410601

.228875 .578803 .115176 .192739 .290593 .408272

R¼ 1).

K2 (10�1) K3 K4 K5 K6 K7

.440661 .123375 .241735 .399539 .596720 .833235

.578458 .139137 .258881 .417488 .615179 .852038

.864577 .177158 .303589 .466489 .666975 .905720

1.53227 .276760 .432184 .618642 .837278 1.08978

2.22828 .385008 .578158 .800313 1.05084 1.33083

.478904 .127486 .246092 .404032 .601297 .837856

.578323 .139055 .258706 .417215 .614805 .851525

.864514 .177104 .303407 .466095 .666282 .904574

1.19171 .224942 .363905 .536149 .743176 .986233

.464921 .125811 .244238 .402050 .599215 .835658

.493800 .128805 .247270 .405036 .602116 .838383

.531886 .133036 .251633 .409363 .606322 .842347

.577239 .138395 .257330 .415102 .611946 .847700

.446394 .123905 .242269 .400063 .597231 .833714

.462982 .125115 .243280 .400855 .597815 .833958

.490506 .127347 .245018 .402093 .598573 .834055

.528088 .131069 .248188 .404621 .600444 .835114

.441743 .123473 .241833 .399633 .596811 .833319

.444712 .123552 .241842 .399566 .596676 .833067

.449239 .123279 .241278 .398722 .595591 .831610

.455709 .122699 .240117 .397048 .593498 .828946

.441242 .123414 .241769 .399566 .596740 .833244

.442553 .123200 .241437 .399113 .596183 .832514

.443213 .122774 .240833 .398338 .595264 .831370

.443815 .122046 .239816 .397053 .593764 .829553
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respectively, are used for discretization, and LAS denotes the
linear analytical solution of the steady state deformation given in
the Appendix A of this study. For k¼0, the results of EA and EB are
identical; thus only the results of EA are given. It can be seen that
for higher natural frequencies of lateral vibration, the discrepancy
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Fig. 5. The steady state deformation of rotating beam, (a) deformed configuration
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between the present results and the analytical solutions given in
Ref. [31], in which the rotary inertia is not considered, increases
with decrease of the slenderness ratio. It seems that the effect of
the rotary inertia on the higher natural frequencies of the Euler
beam is not negligible when the slenderness ratio is small. It can
0.0 0.2 0.4 0.6 0.8 1.0
-2.0

-1.5

-1.0

-0.5

0.0

u s
 /L

T
 (

10
-3

)

)10( 3−k
4
6
8

10

0.4 0.6 0.8 1.0

X 01/LT

X 01/LT

, (b) axial displacement and (c) lateral displacement (Z¼100, R¼ 1, a¼301).

0.0 0.2 0.4 0.6 0.8 1.0
-3

-2

-1

0

1

2

3

u s
 /L

T
 (1

0
)

k (10−2)
1
2
3

0.6 0.8 1.0

X1 
0/LT

X1 
0/LT

n, (b) axial displacement and (c) lateral displacement (Z¼100, R¼ 1, a¼51).



M.H. Tsai et al. / International Journal of Mechanical Sciences 53 (2011) 1050–10681062
be seen from Tables 1–3 that the difference between the results of
EA and EB is not significant, but still distinguishable. The differ-
ence between results of EA50 and EA100 is negligible for all cases
studied. Thus, in the rest of the section, all numerical results are
obtained using 50 equal EA elements. For a¼0, and ka0, the
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Fig. 7. The steady state deformation of rotating beam, (a) deformed configuration
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Fig. 6. The steady state deformation of rotating beam, (a) deformed configuration
steady state deformation is axial deformation only as expected.
The analytical solution of the maximum steady state membrane
strain emax

c given in Ref. [14] and the linear solution given in the
Appendix (Eq. (A7)) are identical. It can be seen that at the same
dimensionless angular speed k, emax

c is independent of the
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slenderness ratio Z. Thus, for a¼0, the allowable k is limited by
emax

c , and is the same for the rotating beam with different
slenderness ratio Z. Very good agreement is observed between
the natural frequencies obtained by the present study and those
given in Ref. [23], which are obtained using the power series
method. The difference between v0 and y is not considered in Ref.
[23]. It can be seen from Tables 1–3 that with increase of the
slenderness ratio Z and the inclination angle a, the values of emax

b

and vtip/LT increase significantly, and the value of the allowable
dimensionless angular speed k decrease significantly. The results
of EA and LAS have the same tendency. However, the values of the
results of EA are smaller than those of LAS.

To investigate the effect of the lateral deflection on the steady
state deformation and the natural frequency of rotating inclined
beams, the cases (1) Z¼70, R¼ 1, k¼ 5=70, (2) Z¼100, R¼ 1,
k¼ .01 and (3) Z¼1000, R¼ 1, k¼ .003 are studied with and
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Fig. 8. The first six vibration mode shapes o
without considering the lateral deflection. The present results
are shown in Tables 4–6. The results transcribed from the Figure
given in Ref. [20], in which the steady state lateral deflection and
the rotary inertia are not considered, are also shown in Table 4 for
comparison. It can be seen from Table 4 that except a¼0, the
values of emax

b are much larger than the yield strain for most
engineering materials at k¼ 5=70. Thus the results in Table 4 are
only displayed for the purpose of comparisons between the
results of EC and those given in Ref. [20]. There is a very good
agreement between the natural frequencies obtained using the EC
element and those given in Ref. [20]. Although the comparisons
are beyond the yield point of most engineering materials, results
of EA and EC show that the differences between the cases with
and without considering the lateral deflection become apparent
for the rotating inclined beam with large inclination angle a at
high dimensionless angular speed. It can be seen from Tables 4–6
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that both the natural frequencies of EA and EC decrease with increase
of a. At allowable dimensionless angular speed, the difference
between the natural frequencies of EA and EC is not significant for
small a or Z, but the first natural frequency of EC is much smaller
than that of EA for large a and Z¼1000. These may be partially
attributed to that the centrifugal stiffening effect of the rotating
inclined beam decreases with increase of the inclination angle a; but
this decrease is alleviated by the steady state lateral deflections,
which increase significantly with increase of inclination angle and
slenderness ratio Z of the rotating beam.

To investigate the effect of angular speed on the steady state
deformation and natural frequency of rotating beams with different
slenderness ratios and inclination angles, the following cases are
considered: slenderness ratio Z¼20, 50, 100, 500, 1000, inclination
angle a¼01, 51, 151, 301, 601, 901 and dimensionless radius of the
rotating hub R¼ 0, 1. Tables 7–12 tabulate the maximum steady state
membrane strain and bending strain, dimensionless lateral tip
deflection, and first seven dimensionless natural frequencies for
different Z. It can be seen from Eqs. (23)–(26) and (59), or Eq. (A5)
that the lateral component of the centrifugal force in the rotating
inclined beam with R¼ 0 is zero. Thus, for cases with R¼ 0, the
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Fig. 9. The first six vibration mode shapes of
steady state lateral deflection is zero and the natural frequencies are
all the same for the rotating beam with different inclination angle a. It
can be seen from Tables 8–12 that the values of vtip/LT, which is very
small for Z¼20 and 50, increase significantly with increase of the
dimensionless angular velocities k and slenderness ratio Z. Comparing
the results of EA with the results of linear analytical solution given in
Eq. (A9), which is proportional to Z2k2, it is found that the difference
between the results of EA and LAS is insignificant for Z¼20 and 50,
but is remarked for Z¼500 and 1000. These may be explained as
follows. The centrifugal stiffening effect is significant for slender
beam, and the lateral component of the centrifugal force in the
rotating inclined beam decreases with the increase of the steady state
lateral deflection. For a rotating inclined beam with different inclina-
tion angle a, it seems that there is a different threshold of Zk below
which the centrifugal stiffening effect is negligible, and there is a
different threshold of steady state lateral deflection below which the
decrease of the lateral component of the centrifugal force is negligible.
Due to the stiffening effect of the centrifugal force, as expected, it can
be seen from Tables 10–12 that the lower natural frequencies of
lateral vibration increase remarked with increase of the dimension-
less angular speed for slender beam with ar301. It may also be
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Fig. 10. The first six vibration mode shapes of a rotating beam (Z¼1000, R¼ 1, a¼01).
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noted that the higher natural frequencies of lateral vibration slightly
increase first, then slightly decrease with increase of the dimension-
less angular speed higher for slender beam with aZ601.

Figs. 4–7 show the deformed configurations, axial displace-
ments and lateral displacements for the steady state deformation
of rotating beams with Z¼100, a¼51, 301, and Z¼1000, a¼301,
901 at different dimensionless angular speeds. In Figs. 4–7, the X1

and X2 coordinates of the deformed configurations of rotating
beam are present at the same scale, and X0

1 denotes the global
Lagrangian coordinate of the beam axis.

Figs. 8–11 show the first six vibration modes for rotating
beams with slenderness ratio Z¼100, 1000, and inclination angle
a¼01, 301 at different dimensionless angular speeds. In Figs. 8–11
U and V denote the X1 and X2 components of the vibration mode,
respectively. The definitions of U and V are given by

U ¼ ðU2
RþU2

I Þ
1=2signðsinfuÞ, sinfu ¼UI=ðU

2
RþU2

I Þ
1=2,

�prfurp
V ¼ ðV2
R þV2

I Þ
1=2signðsinfvÞ, sinfv ¼ VI=ðV

2
R þV2

I Þ
1=2,

�prfvrp

signðxÞ ¼
1 for x40

�1 for xo0

(

where UR and VR, and UI and VI are the X1 and X2 components of QR

and QI, real part and imaginary part of the vibration mode given
in Eq. (78), respectively. fu and fv are phase angles. For non-
rotating beam, fu¼fv¼0; for rotating beam (ka0) with inclina-
tion angle a¼0, fu¼0, and jv ¼ p=2. Thus, the phase angles for
cases with a¼0 or k¼0 are not shown in Figs. 8–11. It can be seen
from Figs. 8–11, and Tables 10 and 12 that all vibration modes
shown in Figs. 8–11 are lateral vibration at k¼0, except the fifth
vibration mode of Z¼100. It can be seen from Figs. 8 and 10 that
when a¼0, the difference between the vibration modes of rotating
beam at different k is not significant for Z¼100, but is very
significant for Z¼1000. Due to the steady state lateral deformation,
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Fig. 11. The first six vibration mode shapes of a rotating beam (Z¼1000, R¼ 1, a¼301).
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it can be seen from Figs. 9 and 11 that when a¼301, ka0, all
vibration modes consist of the X1 and X2 components.
4. Conclusions

In this paper, the steady state deformation and the natural
frequency of infinitesimal free vibration measured from the position
of the corresponding steady state deformation are investigated for
rotating the inclined Euler beams with different inclination angles,
slenderness ratios and angular speeds of the hub. A corotational
finite element formulation combined with the rotating frame
method is proposed to derive the equations of motion for a rotating
inclined Euler beam with zero setting angle at constant angular
velocity. The element deformation and inertia nodal forces are
systematically derived by the virtual work principle, the d’Alembert
principle, and consistent linearization of the fully geometrically
nonlinear beam theory in the current element coordinates. The
equations of motion of the system are defined in terms of an inertia
global coordinate system, which is coincident with a rotating global
coordinate system rigidly tied to the rotating hub, while the total
strains in the beam element are measured in an inertia element
coordinate system, which is coincident with a rotating element
coordinate system constructed at the current configuration of the
beam element. The rotating element coordinates rotate about the
hub axis at the angular speed of the hub.

The results of dimensionless numerical examples show that
the geometrical nonlinearities that arise due to steady state
lateral and axial deformations should be considered for the
natural frequencies of the inclined rotating beams. The maximum
steady state bending strain and lateral deformation increase
significantly, but the allowable dimensionless angular speed
decreases significantly with increase of inclination angle and
slenderness ratio of the rotating beam. It seems that the allowable
dimensionless angular speed of the inclined rotating beam is
limited by the steady state bending strain, when the inclination
angle a451. Due to the effect of the centrifugal stiffening, the
lower dimensionless natural frequencies of lateral vibration
increase remarked with increase of the dimensionless angular
speed and dimensionless hub radius for slender beam. The cen-
trifugal stiffening effect of the rotating inclined beam decreases
with increase of the inclination angle. However, this decrease is
alleviated by the steady state lateral deflections, which increase
significantly with increase of inclination angle and slenderness
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ratio of the rotating beam. These may explain why the difference
between the first natural frequency of the very slender inclined
rotating beam with different inclination angles is not very
remarked, but still not negligible.

Finally, it may be emphasized that, although the proposed
methods are only applied to the uniform rotating cantilever
beams here, the present method can be easily extended to non-
uniform rotating beams with discontinuities, as well as with other
end conditions.
Appendix A. Linear steady state deformation of rotating
inclined beam

If the tension stiffening effect on bending stiffness and the
effect of lateral deflection on the centrifugal force of the rotating
inclined beam are not considered, the equivalent distributed load
along the beam axis for the rotating inclined beam with rectan-
gular cross section as shown in Fig. A1 may be expressed by

fq1, q2, q3g ¼

Z
A
X� ðX� rAPÞrdA ðA1Þ

X¼ f0,0,Og ðA2Þ

rAP ¼ fRcosaþx,�Rsinaþy,zg ðA3Þ

where q1¼q1(x), q2¼q2(x) and q3¼q3(x) are the equivalent dis-
tributed loads in the X1, X2 and X3 directions, respectively. r A,
and O are density, cross section area and angular speed of the
rotating beam, respectively. a is the inclination angle, and R is the
radius of the hub. x, y and z are the X1, X2 and X3 coordinates of
point Q, an arbitrary point in the beam.

Substituting Eqs. (A1) and (A2) into Eq. (A3), one may obtain

q1 ¼
k2EA

L2
T

ðRcosaþxÞ ðA4Þ

q2 ¼�
k2EA

L2
T

Rsina ðA5Þ

q3 ¼ 0 ðA6Þ

where E is Young’s modulus, LT is the length of the beam and
k2 ¼ rO2L2

T=E is the dimensionless angular speed defined in
Eq. (72).
The maximum linear steady state membrane strain induced by
q1 occurs at the root of the beam and may be expressed as

emax
0L ¼

R LT

0 q1 dx

AE
¼ k2 Rcosaþ 1

2

� �
ðA7Þ

where R¼ R=LT is the dimensionless radius of the hub defined in
Eq. (72).

For a beam with rectangular cross section of height h and
width b, the maximum linear steady state bending strain induced
by q2 occurs at the top surface of the root of the beam and may be
expressed as

emax
bL ¼

�q2L2
T

2EI

h

2
¼

ffiffiffi
3
p

Zk2Rsina
2

ðA8Þ

where I is the moment of inertia of the cross section, Z¼
ffiffiffiffiffiffiffiffiffiffiffiffi
AL2

T=I
q

is the slenderness ratio defined in Eq. (72).
The dimensionless linear steady state tip lateral deflection

induced by q2 may be expressed by

VL
tip

LT
¼
�qyL4

T

8EILT
¼
Z2k2Rsina

8
ðA9Þ
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